
A Sufficient Condition for Detecting AND-OR-AND-Type Logic

Elena Dubrova Andrew J. Sullivan

Department of Electronics IBM EDA group
Royal Institute of Technology Fishkill, N.Y.

Stockholm, Sweden USA
elena@ele.kth.se sullia@us.ibm.com

Abstract

Three-level logic is shown to have a potential for reduc-
tion of the area over two-level implementations, as well as
for a gain in speed over multi-level implementations. Al-
gorithms for finding AND-OR-XOR and AND-OR-AND ex-
pressions were developed, however an open problem re-
mained which of the algorithms should be used to find an
optimal solution for a given function. In this paper we for-
mulate a sufficient condition for a function to have a de-
composition of type , with the total number of
products in , and smaller or equal than the number of
products in . This condition is used to design an algorithm
for deciding whether a function is likely to have a compact
AND-OR-XOR expression.

1. Introduction

Three-level logic is shown to be a good trade-off be-
tween the speed of two-level logic and the density of multi-
level logic. Three-level logic can be implemented by a
Programmable Logic Device (PLD) whose simplified logic
block consists of two Programmable Logic Arrays (PLAs),
implementing the first two levels of logic, and a set of two-
input gates, called logic expanders, implementing the third
level. Each logic expander can be programmed to realize
any function of two variables. Such a PLD implements
logic expressions of the type:

(1)

where denotes an arbitrary product-term
involving some of the variables or their comple-
ments, “ ” denotes a binary operation, and .

The first algorithm, addressing the optimization of such
PLDs, was presented in 1991 by Malik, Harrison and Bray-
ton in [1]. It first determines a minimal expression (1) for

the case of “ ” = AND, and then applies output phase op-
timization to the logic expander to check suitability of the
other choices of “ ”. Such a scheme minimizes (1) for all
interesting cases except “ ” = XOR, “ ” = XNOR. A mod-
ified version of the algorithm [1], aiming to reduce its run-
time, was presented in [2]. Several algorithm addressing
“ ” = XOR case were designed in [3]-[6].

In many cases, functions which have compact AND-OR-
XOR expressions blow up when represented as AND-OR-
AND, and vice versa. Since AND-OR-AND algorithms and
AND-OR-XOR algorithms are quite time-consuming for
large functions, it would be attractive to know a priori which
of them to use for a given function. We address this problem
in this paper. We study what kind of structure a function
should have to benefit from AND-OR-AND optimization,
and prove a theorem characterizing one such structure. This
theorem formulates a sufficient condition for a given func-
tion , , to have a decomposition
of type with the total number of prod-
ucts in and smaller or equal than the number of products
in . If only a subset of the on-set of satisfies the condi-
tion, then is represented as .
The smaller the ”reminder” , the more likely to have
a compact AND-OR-AND expression. The algorithm we
present in this paper estimates how big is by subsequently
enlarging and until it is no longer possible. Note, that
the purpose of the algorithm is not to find an optimal decom-
position , but rather to quickly decide whether
an AND-OR-AND form with a number of products smaller
than the one in two-level AND-OR form exists. It is also
interesting to observe that we put no restrictions on the sup-
port sets of and , i.e. they can be equal, overlapping or
disjoint. This differs our method from the existing methods
for algebraic and Boolean decomposition. For example, the
algebraic division method [7] requests the intersection of
the support sets of and to be disjoint. The generalized
algebraic division method [8] requests the support sets of
and to have at least one disjoint variable. In the classi-

1



cal Boolean decomposition theory [9], [10], the case when
and have the same support set of is classified as trivial

non-disjoint decomposition, and is omitted from considera-
tion. Since our algorithm is more general, it has a potential
of finding decomposition for functions which cannot be op-
timized by algebraic and Boolean algorithms.

The paper is organized as follows. Section 2 describes
the basic notation and definitions used in the sequel. Sec-
tion 3 presents the theorem formulating the sufficient con-
dition. Section 4 describes the algorithm for checking the
condition. Section 5 shows the experimental results. In the
final section, some conclusions are drawn and directions for
further research are proposed.

2. Notation

Let be an incompletely specified
Boolean function of type , of the
variables , where “ ” denotes a don’t care value.
We use , and to denote on-set, off-set and don’t-
care-set of a function , respectively.

A product-term is a Boolean product (AND) of one or
more variables or their complements. A conve-
nient representation for a product-term is cube. We use the
terms cube and product-term interchangeably.

The size of a set , denoted by , is the number of
cubes in it. The complement of a set , denoted by , is the
intersection of the complements for each cube of . The
intersection of two sets and , denoted by , is the
union of the pairwise intersection of the cubes from and

. The union of two sets and , denoted by , is
the union of the cubes from and .

A supercube of two cubes and , denoted by
, is the smallest cube containing both and .

3. Sufficient condition

In this section we examine what kind of structure a func-
tion should have to benefit from AND-OR-AND optimiza-
tion, and prove a theorem characterizing one such structure.

To optimize a Boolean expression according to some op-
timization criteria, one normally looks for some property
reducing the ”cost” of the expression. For example, the
number of product-terms in the two-level AND-OR (sum-
of-products) expression can be reduced by applying the rule

, where is a variable and is a product-
term.

We would like to formulate a rule which could be ap-
plied to a two-level AND-OR expression to transform it
to a three-level AND-OR-AND expression with a smaller
number of product-terms. Unfortunately, it is very hard (if
possible) to formulate a property reducing the number of

product-terms. We were only able to formulate a condition
which guarantees non increasing of them. Furthermore, this
condition is sufficient, but not necessary in general.

The theorem formulated below shows how we can sub-
stitute a subset of the on-set of a function

by two functions and of type
so that ,

and the total number of cubes in and is no greater
that in .

Theorem 1 Let be a subset of the
one-set of , with being an even integer greater than 2.
If for all and
it is holds that

(2)

where is the addition modulo , then and
, where

(3)

with and being the addition and substitution
modulo , respectively.

Proof: First we show that :

from eq.

distributivity of over

selecting and

substituting

2



To show that , we observe that the third
row in the above proof, namely:

can be further expanded to a union of terms
over all and all

. Since by (2) this union is in ,
we can conclude that holds.

Since covers all cubes in ,
. The number of cubes in and can often be fur-

ther reduced by applying standard two-level AND-OR min-
imization techniques to and .

As an example, consider a 5-variable function shown
in Figure 1. Assume , , ,

0 1
00 01 11 10 10 11 01 00

00 1 0 0 0 1 0 0 0
01 0 1 0 0 0 1 0 0
11 0 0 1 0 0 0 1 0
10 0 0 0 1 0 0 0 1

Figure 1. An example function.

, , , and
. Let us check whether condition (2) is satisfied.

Since , we have to check all combinations of
and all :

Since all resulting intersections are either contained in or
empty, condition (2) is satisfied. Thus, can be represented
as , with

and
.

4. The algorithm

We use Theorem 1 to design an algorithm for deciding
whether a function has a compact AND-OR-AND expres-
sion. The algorithm searches for a largest subset of sat-
isfying condition (2), represents as and
estimates the size of the ”reminder” . The greater the frac-
tion , the more likely to have an AND-OR-AND
expression with a smaller number of products than the one
in AND-OR expression.

The input is the on-set , don’t care-set and off-set
of , and the output is the on-sets , and , of ,

and , correspondently. The algorithm repeats the following
basic steps:

1. Choose an initial pair of cubes, and , and com-
pute their supercube ;

2. Check whether a cube can be found, such that
;

3. Repeat step 2 until either a cube is found, such
that , or until
condition (2) is not met for some and ;

4. Repeat 1, 2 and 3 for all pairs of and , updating
best solution after each iteration;

5. Compute the reminder .

The pseudocode of the algorithm is shown in Figure 2.
The subroutine FindNext (Figure 3) takes two cubes, and

, and finds a cube such that
. is the initial cube of the sequence of cubes

which we currently check. It is passed as an argument
with each recursive call of FindNext. FindNext terminates
when a cube is found whose supercube with the initial cube
can ”connect” the generated sequence of cubes in a loop.
If FindNext returns 1, then a sequence of cubes satisfying
condition (2) is found. LoopCost function checks whether
the obtained sequence of cubes has a smaller cost that the
sequences found in previous iterations of inner for-loop.
The cost is computed as

. If at least one sequence is
found for a given , the flag found loop is raised to 1. Af-
ter all choices of are tried for a given , the and
with the best cost (if found) are unioned with previously se-
lected the and , enlarging the subset of covered by

. In FindNext, the coloring of sup is always per-
formed not only with respect to the currently created and

, but also with respect to the already accepted and stored
and . This guarantees that the relations

3



Check AND OR AND
input: on-set , don’t care set and off-set of
output: sets of cubes and satisfying condition (2),
and such that

for each
found loop = 0;
for each

Replace and by their supercube ;
flag = FindNext , sup, sup, ;
if flag = 1

found loop = 1;
cost = LoopCost ;
if cost best local cost

best local cost = cost;
Update best and best ;

if found loop = 1
best = best ;
best = best ;

;
return best , best ;

Figure 2. Pseudocode of the algorithm.

and are always satisfied, for being
the union of cubes of contained in current and stored
and . The more sequences are found, the larger is the part
of is covered by . The algorithm terminates after
all choices of the initial cube are tired.

5. Experimental results

Tables 1 and 2 shows the experimental results on some
benchmark functions. Columns 2 and 3 give the number of
inputs and the number of outputs of the function. Col-
umn 4 refers to the number of cubes in the cover com-
puted by Espresso [11]. , and are the sizes
of the on-sets of , and , respectively, obtained by the
our algorithm and the Algorithm for AND-OR-AND opti-
mization [2]. and are user times in seconds measured
using the UNIX system command time. All programs were
run on a Sun Ultra 60 operating with two 360 MHz CPU
and with 1024 MB RAM main storage. and show
the improvement of the algorithms over Espresso in terms
of the number of cubes, computed as and

.
Table 1 lists the benchmarks with the reminder

smaller that half of the size of the initial on-set cover
(computed by Espresso). The condition 2 is sufficient, so
we would expect the functions which satisfy it with a small
reminder to have a compact AND-OR-AND expression.

FindNext , sup,
input: inital cube and supercibe , current supercube sup of
cubes and
output: returns 1 if a sequence satisfying condition (2) was found, 0 if not

/* Termination - sequence closes in a loop */
if Color sup Color sup

sup Union ;
if can color sup in opposite to Color sup color

Save sup in or , depending on its color;
return ; /* success */

/* Recursive step - finding next cube */
for each

sup Union ;
if can color sup in opposite to Color sup color

Save sup in or , depending on its color;
return FindNext , sup , sup ;

return ; /* failure */

Figure 3. Pseudocode of the FindNext .

Since the AND-OR-AND expression obtained by our algo-
rithm is not guaranteed to be the optimal, we also list the
solutions of the algorithm for AND-OR-AND optimization
[2], Surprisingly, for our solution is much better that
the solution of [2]. We can see that all the functions have
AND-OR-XOR expressions with at least 25% less products
then that in their Espresso cover.

Table 2 shows the cases where the reminder takes the
large part of the initial cover (more than ). In general,
because the condition is not necessary, the large reminder
should not necessarily imply the bad AND-OR-AND ex-
pression. However, we found that it is almost always the
case in practice.

6. Conclusion

In this paper we have formulated a sufficient condition
for a function to have decomposition of type ,
with the total number of products in , and smaller or
equal than the number of products in . Using this condi-
tion, we have designed an algorithm for deciding whether a
function is likely to have a compact AND-OR-XOR expres-
sion.

Our current research includes integrating the new algo-
rithm with the algorithm [2] to reduce the run-time of [2].
We also looking into the ways to relax the condition 2 and,
if possible, to formulate a necessary condition.

4



Table 1. Benchmarks with .

Example Espr. Algorithm [2] new Algorithm
function ,sec ,sec

alu2 10 8 68 33 19 1.31 32 11 11 28 1.36 1.38 2.43
alu3 10 8 66 28 19 1.40 24 11 6 30 1.40 1.76 2.20
b9 16 5 119 49 16 1.83 108 21 21 35 1.55 4.91 3.40

radd 8 5 75 19 20 1.92 14 19 19 31 1.09 0.76 2.42
ryy6 16 1 112 2 5 16.00 379 6 1 0 16.00 0.59

sym10 10 1 210 69 41 1.91 241 29 20 83 1.59 9.84 2.53
t1 21 23 102 43 18 1.67 1146 21 18 48 1.17 13.2 2.13

ts10 22 16 128 54 55 1.17 4830 32 4 39 1.71 1.41 3.28
z4 7 4 59 16 17 1.79 2.1 16 14 23 1.11 0.43 2.57

3-bit adder 6 4 31 14 8 1.41 2.80 11 8 7 1.19 0.23 4.43
4-bit adder 8 5 75 19 20 1.92 14.8 19 19 31 1.09 0.86 2.42
5-bit adder 10 6 167 55 38 1.80 78.6 41 33 73 1.14 7.42 2.29

Table 2. Benchmarks with .

Example Espr. Algorithm [2] new Algorithm
function

b10 15 11 100 76 18 1.06 219 8 8 84 1.00 5.65 1.19
bc0 26 11 179 117 57 1.03 5078 8 8 163 1.00 23.4 1.09
gary 15 11 107 80 26 1.01 412 8 8 91 1.00 5.81 1.17
in0 15 11 107 80 26 1.01 389 8 8 91 1.00 5.26 1.18

misex1 8 7 12 9 5 0.86 0.72 0 0 12 1.00 0.01 1.00
sqn 7 3 38 27 7 1.12 6.1 3 3 32 1.00 0.26 1.19

References

[1] A. A. Malik, D. Harrison, R.K. Brayton, ”Three-level
decomposition with application to PLDs”, IEEE Int.
Conference on Computer Design, 1991, pp. 628-633.

[2] E. Dubrova, P. Ellervee ”A fast algorithm for three-
level logic optimization”, Proc. Int. Workshop on
Logic Synthesis, Lake Tahoe, May 1999, pp. 251-254.

[3] T. Sasao, ”A design method for AND-OR-EXOR
three-level networks”, Proc. Int. Workshop on Logic
Synthesis, Lake Tahoe, May 1995.

[4] D. Debnath, T. Sasao, ”A heuristic algorithm to design
AND-OR-EXOR three-level networks”, Proc. Asia
and South Pacific Design Automation Conf. (ASP-
DAC’98), Yokohama, Japan, Feb. 1998.

[5] E. V. Dubrova, D. M. Miller, J. C. Muzio, ”AOXMIN-
MV: A Heuristic Algorithm for AND-OR-XOR Min-
imization”, Proc. 4th International Workshop on the
Applications of the Reed-Muller Expansion in Circuit
Design, Victoria, B.C., Canada, August 20-21, 1999,
pp. 37-53.

[6] A. Jabir, J. Saul, ”A Heuristic Decomposition Algo-
rithm for AND-OR-EXOR Three-Level Minimization
of Boolean functions”, Proc. 4th International Work-
shop on the Applications of the Reed-Muller Expan-
sion in Circuit Design, Victoria, B.C., Canada, August
20-21, 1999, pp. 55-72.

[7] R.K. Brayton, C. McMullen, ”The Decomposition and
factorization of Boolean Functions”, Proc. ISCAS-82,
1982, pp. 49-54.

[8] T. Stanion, C. Sechen, ”Quasi-algebraic decompo-
sition of switching functions”, Proc. Int. Conf. Ad-
vanced Research in VLSI, 1995, pp. 358-367.

[9] R. L. Ashenhurst, ”The decomposition of switch-
ing functions”, Proc. International Symp. Theory of
Switching Part I 29, 1959, pp. 74-116.

[10] H. A. Curtis, A New Approach to the Design of Switch-
ing Circuits, Van Nostrand, Princeton, 1962.

[11] R.K. Brayton, G. Hachtel, C. McMullen, A.
Sangiovanni-Vincentelli, Logic Minimization Algo-
rithms for VLSI Synthesis, Kluwer Academic Pub-
lisher, 1984.

5


