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Abstract

Three-level logic is shown to have a potential for reduc-
tion of the area over two-level implementations, as well as
for a gain in speed over multi-level implementations. Al-
gorithms for finding AND-OR-XOR and AND-OR-AND ex-
pressions were developed, however an open problem re-
mained which of the algorithms should be used to find an
optimal solution for a given function. In this paper we for-
mulate a sufficient condition for a function to have a de-
composition of type f = g - h + 7, with the total number of
productsin g, h and r smaller or equal than the number of
productsin f. Thiscondition is used to design an algorithm
for deciding whether a function is likely to have a compact
AND-OR-XOR expression.

1. Introduction

Three-level logic is shown to be a good trade-off be-
tween the speed of two-level logic and the density of multi-
level logic. Three-level logic can be implemented by a
Programmable Logic Device (PLD) whose simplified logic
block consists of two Programmable Logic Arrays (PLAS),
implementing the first two levels of logic, and a set of two-
input gates, called logic expanders, implementing the third
level. Each logic expander can be programmed to realize
any function of two variables. Such a PLD implements
logic expressions of the type:

f@i,.zn) = (Pr+...+Pr)o(Pryr+..-+Pr) (D)

where P;, i € {1,...,r} denotesan arbitrary product-term
involving some of thevariables x4, . . . , z,, or their comple-
ments, “o” denotes abinary operation,and 1 < k£ < r.
The first algorithm, addressing the optimization of such
PLDs, was presented in 1991 by Malik, Harrison and Bray-
tonin [1]. It first determines a minimal expression (1) for
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the case of “o” = AND, and then applies output phase op-
timization to the logic expander to check suitability of the
other choices of “o”. Such a scheme minimizes (1) for all
interesting cases except “o” = XOR, “o” = XNOR. A mod-
ified version of the algorithm [1], aiming to reduce its run-
time, was presented in [2]. Severa agorithm addressing
“o" = XOR case were designed in [3]-[6].

In many cases, functionswhich have compact AND-OR-
XOR expressions blow up when represented as AND-OR-
AND, and viceversa. Since AND-OR-AND algorithmsand
AND-OR-XOR agorithms are quite time-consuming for
largefunctions, it would be attractiveto know apriori which
of them to usefor agiven function. We addressthis problem
in this paper. We study what kind of structure a function
should have to benefit from AND-OR-AND optimization,
and prove atheorem characterizing one such structure. This
theorem formulates a sufficient condition for a given func-
tion f(X), X = {1, 22, ...,2n}, tohaveadecomposition
of type f(X) = g(X)-h(X) with thetotal number of prod-
uctsin g and h smaller or equal than the number of products
in f. If only a subset of the on-set of f satisfies the condi-
tion, then f isrepresented as f(X) = g(X) - h(X) +r(X).
The smaller the "reminder” r, the more likely f to have
a compact AND-OR-AND expression. The algorithm we
present in this paper estimates how bigisr by subsequently
enlarging g and A until it is no longer possible. Note, that
the purpose of the algorithmisnot to find an optimal decom-
position f = g - h + r, but rather to quickly decide whether
an AND-OR-AND form with a number of products smaller
than the one in two-level AND-OR form exists. It isaso
interesting to observe that we put no restrictions on the sup-
port sets of g and h, i.e. they can be equal, overlapping or
digoint. This differs our method from the existing methods
for algebraic and Boolean decomposition. For example, the
algebraic division method [7] requests the intersection of
the support sets of g and h to be disjoint. The generalized
algebraic division method [8] requests the support sets of g
and h to have at least one digoint variable. In the classi-



cal Boolean decomposition theory [9], [10], the case when
g and h have the same support set of is classified as trivial
non-disjoint decomposition, and is omitted from considera-
tion. Since our agorithm is more general, it has a potential
of finding decomposition for functions which cannot be op-
timized by algebraic and Boolean algorithms.

The paper is organized as follows. Section 2 describes
the basic notation and definitions used in the sequel. Sec-
tion 3 presents the theorem formulating the sufficient con-
dition. Section 4 describes the algorithm for checking the
condition. Section 5 shows the experimental results. In the
final section, some conclusions are drawn and directionsfor
further research are proposed.

2. Notation

Let f(z1,z2,...,2,) be an incompletely specified
Boolean function of type f : {0,1}"™ — {0,1, -}, of the
variablesz, ..., z,, where“—" denotesadon’'t care value.
We use Fy, Ry and Dy to denote on-set, off-set and don’t-
care-set of afunction f, respectively.

A product-term is a Boolean product (AND) of one or
more variables 1, . .., z,, or their complements. A conve-
nient representation for a product-term is cube. We use the
terms cube and product-term interchangeably.

The size of a set A, denoted by |A|, is the number of
cubesin it. The complement of aset A, denoted by 4, isthe
intersection of the complements for each cube of A. The
intersection of two sets A and B, denoted by A N B, isthe
union of the pairwise intersection of the cubes from A and
B. The union of two sets A and B, denoted by A U B, is
the union of the cubesfrom A and B.

A supercube of two cubes ¢; and c¢p, denoted by
sup(cy, c2), isthe smallest cube containing both ¢; and cs.

3. Sufficient condition

In this section we examine what kind of structure afunc-
tion should have to benefit from AND-OR-AND optimiza-
tion, and prove atheorem characterizing one such structure.

To optimize a Boolean expression according to some op-
timization criteria, one normally looks for some property
reducing the "cost” of the expression. For example, the
number of product-terms in the two-level AND-OR (sum-
of-products) expression can be reduced by applying therule
z-Y+Z-Y =Y,wherez isavariableand Y isaproduct-
term.

We would like to formulate a rule which could be ap-
plied to a two-level AND-OR expression to transform it
to a three-level AND-OR-AND expression with a smaller
number of product-terms. Unfortunately, it is very hard (if
possible) to formulate a property reducing the number of

product-terms. We were only able to formulate a condition
which guarantees non increasing of them. Furthermore, this
condition is sufficient, but not necessary in general.

The theorem formulated below shows how we can sub-
stitute a subset F; of the on-set F of a function f :
{0,1}* = {0,1, —} by two functions g and h of typeg, h :
{0,1}" — {0,1} sothat F; C Fy - Fp, Fy,NFyN Ry = O
and the total number of cubes in F;, and F}, is no grester
that in F;.

Theorem 1 Let F} = {co,c1,. .., cp—1} beasubset of the
one-set F; of f, with & being an even integer greater than 2.
Ifforall i € {0,2,4,...,k—2}andj € {1,3,5,...,k—1}
it is holds that

sup(c;, ciy1) N sup(cj, civ1) C(FyUDy)  (2)

where + isthe addition modulo &, then F}‘ C F, N Fy and
F,NF,N Ry =0, where

k/2—1
F, = U sup(Cam, Com+1)
¥ )
Fy = U sup(Ccam-—1,Cam)
m=0
with” + 7 and ” — ” being the addition and substitution

modulo &, respectively.
Proof: First we show that F;‘ CFyNFy:

Fg NFy, =
k/2—-1 k/2—-1

= |J sup(cams, comis1) N | sup(camo—1,cam,)
mi1=1 ma=0

{fromeq.(3)}
k/2—1

k/2-1
= U sup(czm1,02m1+1)ﬂ U sup(czm21,02m2)>

m1=0 m2=0
{distributivity of ” N” over” U”}
k/2—1
2 U (sup(02m1,czm1+1) N (SUp(C2m1_1, c2m1) u
m1:0
U sup(Cam;+1, Comi+2)))
{Selecting mo = my andme = m; + 1}
k—1
= U (sup(em, em+1) N sup(cm—1,¢m))

m=0
{substitutingm = 2 - my }

k—1
2 U Cm

m=0
{sup(cm—1,¢m) N sup(cm, Cms1) 2 cm}
=F}



To show that F, N F, N Ry = @, we observethat the third
row in the above proof, namely:

7I’L1=0 ma =0

/2—1 k/2—1
U sup(Camy ; C2my+1) N U sup(Camy—1, C2ams)

can be further expanded to a union of terms sup(c;, ¢;+1) N
sup(cj, cj41) over al ¢ € {0,2,4, k—2}andalj e
{1,3,5,...,k —1}. Since by (2) thisunionisin Fy U Dy,
we can concludethat F; N F, N Ry = @ holds.

O

Since F, N F}, coversal k cubesin Ff, |Fy| + |Fp| <
|F'7|. The number of cubesin F,; and F}, can often be fur-
ther reduced by applying standard two-level AND-OR min-
imization techniquesto g and h.

As an example, consider a 5-variable function f shown
inFigure 1. Assumecy = 00000, ¢; = 00101, ¢ = 01111,

\ZL‘1 0 1
xaxs\z2e¢s | 00 01 11 10|10 11 01 00
00 1 0 0 O0O|1 0 O O
01 o 1 o0 OoO|0 1 0 O
11 0 0 1 0 0 0 1 0
10 o o O 1|0 O 0 1

Figure 1. An example function.

c3 = 01010, ¢4 = 10010, ¢5 = 10111, ¢g = 11111 and
¢7 = 11000. Let uscheck whether condition (2) is satisfied.
Since £k = 8, we have to check all combinations of 7 €
{0,2,4,6}and al j € {1,3,5,7}:
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Sinceall resulting intersectionsare either containedin F'y or
empty, condition (2) issatisfied. Thus, f can be represented
asf=g-h,withg = 1 T2%4 +T1 2224 + 21 L2T4 + 1 T2 24

and h = T3x3xs + T123%5 + T3T4Ts + T3TaTs = T3T5 +
T3T5.

4. The algorithm

We use Theorem 1 to design an algorithm for deciding
whether a function has a compact AND-OR-AND expres-
sion. The agorithm searches for a largest subset of F; sat-
isfying condition (2), represents f as f = (¢ - h) + r and
estimates the size of the ”reminder” r. The greater the frac-
tion F;/F,, the more likely f to have an AND-OR-AND
expression with a smaller number of products than the one
in AND-OR expression.

Theinput isthe on-set Fy, don't care-set Dy and off-set
Ry of f, and the output isthe on-sets Fy;, F}, and F;., of g, h
and r, correspondently. The algorithm repeatsthe following
basic steps:

1. Choose an initial pair of cubes, ¢y and ¢;, and com-
pute their supercube sup(cg, ¢1);

2. Check whether a cube ¢ can be found, such that
sup(co,c1) N sup(cr,c2) C (Fy U Dy);

3. Repest step 2 until either a cube ¢, isfound, such
that sup(cg—1,co)Nsup(co, c1) C (FrUDy), or until
condition (2) is not met for some and j;

4. Repeat 1, 2 and 3 for all pairsof ¢q and ¢;, updating
best solution after each iteration;

5. Compute thereminder F,. = Fy — (F, N F},).

The pseudocode of the algorithm is shown in Figure 2.
The subroutine FindNext (Figure 3) takestwo cubes, ¢; and
¢o, andfindsacube ¢; such that sup(cy, ca) Nsup(ca, c3) C
(Fy U Dy). cir istheinitial cube of the sequence of cubes
which we currently check. It is passed as an argument
with each recursive call of FindNext. FindNext terminates
when a cube is found whose supercube with theinitial cube
can "connect” the generated sequence of cubes in a loop.
If FindNext returns 1, then a sequence of cubes satisfying
condition (2) isfound. LoopCost function checks whether
the obtained sequence of cubes has a smaller cost that the
sequences found in previous iterations of inner for-loop.
Thecost is ComDUted as (Nliterals (Ff) - (Nliterals (Fg) +
le‘terals(Fh)))/(Nliterals(Ff))- If at least one%quenceis
found for a given ¢, the flag found_loop israised to 1. Af-
ter al choices of ¢; are tried for a given ¢y, the F, and F},
with the best cost (if found) are unioned with previously se-
lected the F; and F,, enlarging the subset of F'; covered by
F,NFy. InFindNext, the coloring of SUpp..:+ iSalways per-
formed not only with respect to the currently crested F, and
Fy,, but also with respect to the already accepted and stored
F, and F},. Thisguaranteesthat therelations F; N Fy, D F;‘



Check AND_OR_AND(F¢, D¢, Ry)

input: on-set Fy, don't care set Dy and off-set Ry of f
output: setsof cubes Fy and F, satisfying condition (2),
and F suchthat (Fy N Fy,) + Fr D Fy

for (each co € Fy) {
found_loop = 0;
for (eachc1 € Fy) {
Replace ¢p and ¢1 by their supercube sup;
flag = FindNext(co, sup, sup, co, ¢1);
if (flag=1) {
found_loop = 1;
cost = LoopCost(Fy, Fp, Fy);
if (cost < best_local_cost) {
best_local_cost = cost;
Update best_F, and best_F},;

}

}

if (found_loop = 1) {
best Fy = best_ Fjy U Fy;
best_F}, = best_Fp, U Fy,;

}

Fy = Ff — (best_Fy, N best_Fy);
return(best_Fy, best_Fy,, Fr);

Figure 2. Pseudocode of the algorithm.

and F, N F, N Ry = O are always satisfied, for F; being
the union of cubes of F; contained in current and stored F,
and F},. Themore sequencesare found, the larger isthe part
of Fy iscovered by F,; N F},. Thea gorithm terminates after
all choices of theinitial cube ¢q aretired.

5. Experimental results

Tables 1 and 2 shows the experimental results on some
benchmark functions. Columns 2 and 3 give the number of
inputs n and the number of outputsm of the function. Col-
umn 4 refers to the number F; of cubes in the cover com-
puted by Espresso [11]. |F,|, |F| and |F;| are the sizes
of the on-sets of g, h and r, respectively, obtained by the
our algorithm and the Algorithm for AND-OR-AND opti-
mization [2]. ¢, and t» are user times in seconds measured
using the UNIX system command time. All programs were
run on a Sun Ultra 60 operating with two 360 MHz CPU
and with 1024 MB RAM main storage. §; and d, show
the improvement of the algorithms over Espresso in terms

of the number of cubes, computed as é; = % and
5 | Fr |

2 = TFg[+[Fh|+IFW] "

Table 1 lists the benchmarks with the reminder F.
smaller that half of the size of the initial on-set cover Fy
(computed by Espresso). The condition 2 is sufficient, so
we would expect the functions which satisfy it with a small
reminder to have a compact AND-OR-AND expression.

FindNext(c;n,, supin, SUp, ¢1,c2)

input: inital cube ¢;,, and supercibe sup;,, current supercube sup of
cubes ¢y and co

output: returns 1 if a sequence satisfying condition (2) wasfound, O if not

/* Termination - sequence closesin aloop */
if(Color(sup;, ) = Color(sup)) {
SUPnext = UNion(cin, c2);
if(can color suppe¢ in opposite to Color (sup) color) {
Save SUppest iN Fy or Fy,, depending on its color;
return(l); /* success*/

}
}
* Recursive step - finding next cube */
for (eachcs € Fy) {
SUPrert = Union(ea, c3);
if(can color supnez¢ in opposite to Color (sup) color) {
Save SUppeqt iN Fy or Fy,, depending onits color;
return(FindNext(c;n,, SUPin , SUPnext; C2,€3));
}
}

return(0); /* failure*/

Figure 3. Pseudocode of the FindNext().

Since the AND-OR-AND expression obtained by our algo-
rithm is not guaranteed to be the optimal, we aso list the
solutions of the algorithm for AND-OR-AND optimization
[2], Surprisingly, for ts10 our solution is much better that
the solution of [2]. We can see that al the functions have
AND-OR-XOR expressionswith at least 25% less products
then that in their Espresso cover.

Table 2 shows the cases where the reminder takes the
large part of the initial cover (more than 4/5). In generdl,
because the condition is not necessary, the large reminder
should not necessarily imply the bad AND-OR-AND ex-
pression. However, we found that it is almost always the
casein practice.

6. Conclusion

In this paper we have formulated a sufficient condition
for afunction f to have decomposition of type f = g-h+r,
with the total number of productsin g, h and » smaller or
equal than the number of productsin f. Using this condi-
tion, we have designed an algorithm for deciding whether a
functionislikely to have acompact AND-OR-XOR expres-
sion.

Our current research includes integrating the new algo-
rithm with the algorithm [2] to reduce the run-time of [2].
We also looking into the ways to relax the condition 2 and,
if possible, to formulate a necessary condition.



Table 1. Benchmarks with |F}.| < 1/2|F%|.

Example Espr. Algorithm [2] new Algorithm
function | n | m || |Fy| [T [ [Pl | 01 [ tr.ec || [Fgl | [Fal | [l | 02 [ ta.5ec || |Fyl/|Fr]
au2 10| 8 68 33 | 19 | 131 2 11 | 11 | 28 | 136 | 138 243
au3 10| 8 66 28 | 19 | 140 24 1 6 30 | 140 | 176 2.20
b9 6| 5| 119 || 49 | 16 | 183 | 108 21 | 21 | 35 | 155 | 491 3.40
radd 8| 5 75 19 | 20 | 12 14 19 | 19 | 31 | 109 | 076 242
ryy6 6| 1 || 112 2 5 | 1600 | 379 6 1 0 | 1600 | 059 o
syml0 | 10| 1 || 210 69 | 41 | 191 | 241 20 | 20 | 83 | 159 | 984 2.53
t1 21| 23| 102 || 43 | 18 | 167 | 1146 || 21 | 18 | 48 | 117 | 132 213
ts10 22| 16 || 128 54 | 55 | 117 | 4830 || 32 4 39 | 171 | 14 3.28
z4 7| 4 59 6 | 17 | 179 | 21 6 | 14 | 23 | 111 | 043 2.57
3-hitadder | 6 | 4 31 14 8 141 | 280 11 8 7 119 | 023 4.43
4-bitadder | 8 | 5 75 19 | 20 | 192 | 148 19 | 19 | 31 | 109 | 086 242
S-hitadder | 10 | 6 || 167 55 | 38 | 180 | 786 41 | 33 | 73 | 114 | 742 2.29
Table 2. Benchmarks with |Fy.| > 4/5|F%|.
Example Espr. Algorithm[2] new Algorithm
function n m ‘Ff| ‘Fg‘ ‘Fh‘ 01 t1 |Fg| |Fh| ‘FT| 02 to |Ff‘/|FT‘
b10 15 | 11 || 100 76 | 18 | 1.06 | 219 8 8 84 | 1.00 | 565 119
bco 26 | 11| 179 || 117 | 57 | 103 | 5078 || 8 8 | 163 | 1.00 | 234 1.09
gary 15 | 11 || 107 80 | 26 | 101 | 412 8 8 91 | 100 | 581 117
in0 15 | 11 || 107 80 | 26 | 101 | 389 8 8 91 | 1.00 | 5.26 1.18
misex1 | 8 | 7 12 9 5 | 08 | 072 0 0 12 | 100 | 0.01 1.00
sgn 7] 3 38 27 7 | 112 ] 61 3 3 32 | 100 | 026 1.19
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