
A Design Technique for High-Performance Self-Checking Combinational
Circuits

Elena Dubrova
Department of Electronics

Royal Institute of Technology
Kista, Sweden

elena@ele.kth.se

Abstract

In this paper, we present a new technique for design of
the functional part of a self-checking combinational logic
circuit, targeting high-performance applications. Our im-
plementation is three-level AND-OR-AND logic, with the
first two levels realized by PLAs and the third level real-
ized by two-input AND gates. The outputs of the circuit are
encoded in Berger code. Since such a design has inverters
only on primary inputs, the polarity of the error produces
on the output is the same as the polarity of the fault which
caused this error. Therefore, the majority of realistic sin-
gle faults and of the multiple stuck-at faults result in
an unidirectional error on the output which are detected by
Berger code. Experimental results show that, on average,
an AND-OR-AND implementation with outputs encoded in
Berger code is smaller (19%) than the non-encoded two-
level PLA implementation of the same function.

1. Introduction

In the last decade, advances in integrated circuit technol-
ogy have increased drastically the complexity of systems
that can be realized as a ULSI scale single chip. This on-
going transition from traditional Application Specific Inte-
grated Circuits to System-on-a-Chip has lead to new chal-
lenges and paradigm shifts in design methods, system and
circuit architectures and testing techniques. Shrinking of
device size and power supply levels, as well as increase in
operating speed, result in reduction of noise margins. This
makes the circuit increasingly sensitive to transient faults
caused by single even upsets like atmospheric neutrons and
alpha particles [11]. In order to maintain acceptable level
of reliability, it is becoming mandatory to design ICs that
are tolerant to these faults. Fault tolerant techniques using
massive hardware redundancy, like duplication with com-

parison, are too costly to be used in commodity applica-
tions. Self-checking circuits, combining information and
hardware redundancy, are an attractive alternative, allowing
to achieve fault tolerance with a much lower hardware over-
head.

In this paper we present a tool for automatic synthesis of
the functional part of a self-checking circuit implemented
in three-level AND-OR-AND logic. The first two levels are
realized by PLAs and the third level is implemented by a
set of two-input AND gates (Figure 1). Such an implemen-
tation has inverters only on primary inputs and therefore,
for any internal line, all paths connecting the line to the
circuit outputs have the same inversion parity. Therefore,
the polarity of the error produces on the output is the same
as the polarity of the fault which caused this error. If the
outputs of such a circuit are encoded in an unidirectional
error-detecting code, then this simple scheme allows detec-
tion of majority of single physical defects (including stuck-
at faults, single-element faults (gate, transistor)), as well as
a large part of multiple stuck-at faults (at least , as we
show later).

2. Self-checking circuits

For arbitrary combinational circuits the problem of
choosing and designing a suitable code can be a very com-
plex problem. Even a single stuck-at fault in the circuit can
cause bidirectional errors in the output. Peterson and Rabin
[6] show that the only code capable of detecting all errors
in an arbitrary combinational circuit is straight duplication.
It leads to a big area overhead, which is not acceptable for
commodity applications. It is possible, however, to ensure
by using certain design techniques that most of the single
faults in the circuit cause only errors of a certain type. Two
basic attributes which can be exploited to achieve the fault
secure property are maximum error multiplicity and error
polarity. Circuits of the first type are designed so that that

1



Figure 1. Three-level PLD implementing the
functional part of the TSC circuit.

the number of output errors produced by a single fault in
the circuit does not exceed a certain value . Encoding the
circuit’s outputs in a -error detection code allows detection
of all singe faults [2], [9], [7]. Second type of the circuits
are design to assure that, for any circuit line, all paths con-
necting the line to the circuit outputs have the same number
of inverting gates modulo 2 (called inversion parity of the
path). The inversion parity of a path determines the polar-
ity of the error produces on the path output. For example,
if the path inversion polarity is 0, then a fault will
cause the output error . Since the inversion parity is
the same for all lines in the circuit, any number of multiple
unidirectional faults will cause only unidirectional errors on
the output. Encoding the outputs in a unidirectional code,
such as Berger of m-of-n, allows detection of all multiple
unidirectional errors [8]. Some methods use a combination
of both approaches [5].

The technique we propose in this paper falls into the sec-
ond category, exploiting the error polarity. The error polar-
ity is related to the unate properties of the functions realized
by the circuit. Internally unate circuits can be implemented
by a Programmable Logic Array (PLA) [10] [5]. It is also
possible to obtain a multi-level implementation of the cir-
cuits with inverters only on primary inputs, by apply De
Morgan’s laws to a multi-level circuit to pull the invertors
to the inputs [4]. A PLA implementation is fast, but it might
be quite large. A multiple-level implementation is usually
smaller in area, but it is slower.

As a trade-off between these two, we present a design
technique using a three-level Programmable Logic Device
(PLD) consisting of PLA and PLA , implementing the first
two levels of logic, and a set of two-input AND gates, im-
plementing the third level (Figure 1). Since PLAs produce
the true and complement form of each variable as secondary
inputs, such a PLD is unate with respect to the logical val-
ues carried by all internal lines of AND and OR arrays of

PLAs as well as the the AND gates on the third level. To-
gether with the inverters on the secondary inputs lines it is
internally unate. Therefore any single stuck-at fault except
the fault on primary inputs results in an unidirectional error
on the output. Encoding the outputs of such a circuit in an
unidirectional error-detecting code, like Berger, allows de-
tection of all single stuck-at fault faults. Furthermore, it was
proved in [11], that the circuits achieving fault secure prop-
erty by means of output polarity (like in our case) also detect
a more general class of single-element faults, in which only
a single circuit element (line, gate, transistor) if affected by
a fault, including timing faults and faults creating undeter-
mined signal levels. Single-element faults are respected by
the majority of physical defects, since most of the defects
affect a single line, contact or transistor (opens, gate-oxide,
gate-drain, source-drain shorts). The realistic faults outside
this class are: some of the bridging faults (e.g. the ones
creating undetermined values on the two bridged lines) and
some faults caused by crosstalk [11].

Next, we analyze the case of multiple stuck-at faults. For
a circuit with lines (excluding the primary inputs), there
are multiple stuck-at-faults to be considered. All uni-
directional (i.e. only stuck-at-0 or only stuck-at-1) multiple
faults in the monotone part of the circuits cause a unidirec-
tional error on the outputs of the circuit and are detected.
We do not detect only those multiple faults, which include
a line outside the monotone part of the circuit. There are as
many such lines, as there are primary inputs. If the number
of primary inputs are , then the total number of the unidi-
rectional multiple faults is , i.e. approximately
2/3 of the multiple faults for . So, assuming that
the primary inputs are faulty-free, the method guarantees to
cover at least of the errors caused by multiple stuck-at
faults.

3. Experimental results

We have developed a tool for automatic synthesis of the
functional unit of a self-checking circuit. First, the output
functions are encoded in a Berger code. Then, the algo-
rithm for three-level minimization of AND-OR-AND ex-
pressions [3] is applied to map the encoded functions into
a three-level PLD and to minimize its area. We have ap-
plied out tool to a set of benchmark functions to analyze the
area overhead. Table 1 compares the number of products
in the two-level AND-OR expression computed by Berke-
ley’s two-level minimized Espresso [1] (column 3 for non-
encoded outputs, , and column 4 for encoded in Berger
code outputs, ), to the the number of products in the
three-level AND-OR-AND expression computed by the al-
gorithm [3] (column 5 for non-encoded outputs, , and col-
umn 6 for encoded in Berger code outputs, ). Columns
2 and 3 give the number of inputs and the number of out-

2



Table 1. Experimental results.

Example in. out. AND-OR AND-OR-AND

function

5xp1 7 10 65 65 55 56 1.16
alu2 10 8 68 68 50 58 1.17
alu3 10 8 66 66 44 52 1.27
b9 16 5 119 340 119 190 0.63
b12 15 9 43 43 28 40 1.08
clip 9 5 120 135 120 100 1.20
dist 8 5 123 124 115 120 1.03

f51m 8 8 76 78 76 64 1.19
life 9 1 84 190 84 126 0.67

newtpla 15 5 23 44 19 41 0.56
newcpla1 9 16 38 45 30 37 1.03

radd 8 5 75 76 37 45 1.67
rd53 5 3 31 32 24 27 1.15
rd73 7 3 127 128 91 81 1.57
ryy6 16 1 112 119 7 30 3.73
sqn 7 3 38 49 33 49 0.78
t2 17 16 53 72 44 69 0.77
z4 7 4 59 60 29 39 1.51

Z5xp1 7 10 65 65 55 55 1.18

average 1.23

puts of the benchmarks functions. Column 7 gives a com-
parison of the encoded AND-OR-AND versus non-encoded
AND-OR implementation, computed as .

The experimental results demonstrate that, on average,
the AND-OR-AND implementation with outputs encoded
in Berger code is 19% smaller than the non-encoded AND-
OR PLA implementation of the same function. The number
of products in the encoded AND-OR-AND implementa-
tion can be up to 3 times smaller that the number of products

of the non-encoded AND-OR implementation (ryy6).
Note, that sometimes the number of products in the en-

coded AND-OR-AND expression is smaller than the num-
ber of products in the non-encoded AND-OR-AND expres-
sion. This paradox is due to the fact that the algorithm [3]
is a heuristic and therefore the solution it finds is not always
minimal. If the check-bit functions happen to be ”suitable”
for AND-OR-AND minimization, then the solution of the
algorithm [3] can be smaller than the solution for the data-
bit functions only.

4. Conclusions

We presented a new technique for synthesis of functional
part of self-checking combinational logic circuit, target-
ing high-performance applications. Our implementation is
three-level AND-OR-AND logic with the outputs encoded
in Berger code. Such a design guarantees that the major-
ity of realistic single faults and of the multiple stuck-at
faults result are detected. Experimental results show that,
on average, an encoded AND-OR-AND implementation is
smaller than the non-encoded two-level PLA implementa-

tion of the same function.

References

[1] R.K. Brayton, G. Hachtel, C. McMullen, A.
Sangiovanni-Vincentelli, Logic Minimization Algo-
rithms for VLSI Synthesis, Kluwer Academic Pub-
lisher, 1984.

[2] K. De, C. Natarajan, D. Nair, P. Banerjee, RSYN: A
system for automated synthesis of reliable multilevel
circuits, IEEE trans. on VLSI Systems, 2, No 2, June
1994, pp. 184-195.

[3] E. Dubrova, P. Ellervee A fast algorithm for three-
level logic optimization, Proc. Int. Workshop on Logic
Synthesis, Lake Tahoe, May 1999, pp. 251-254.

[4] N. K. Jha and S-J. Wang, Design and synthesis of
self-checking VLSI circuits, IEEE Transactions on
Computer-Aided Design and Systems,12, June 1993,
pp. 878–887.

[5] M. Nicolaidis, M. Boudjit, New implementations,
tools and experiments for decreasing self-checking
PLAs area overhead, IEEE Int. Conf on Computer de-
sign, Oct. 1991.

[6] W. W. Peterson and M. O. Rabin, On codes for check-
ing logic operations, IBM Journal of Research and De-
velopment, 3, 1959, pp. 163–168.

[7] V. V. Saposhnikov, VI. V. Saposhnikov, A. Morosov,
M. Gossel, Design of self-checking unidirectional
combinational circuits, Proc. 7th Fault Tolerant Com-
puting Symposium, June 1997.

[8] J. E. Smith and G. Metze, The design of totally self-
checking combinatorial circuits, Proc. 7th Fault Toler-
ant Computing Symposium, June 1997.

[9] N. A. Touba, E. J. McCluskey, Logic Synthesis tech-
niques for reduced area implementation of multilevel
circuits with concurrent error detection, Proc. ICCAD,
1994.

[10] X. Zhu, A. Breuer, A survey of testable PLA design,
IEEE Design and Test of Computers, 5, No 4, August
1988, pp.14-28.

[11] L. Znghel, M. Nicolaidis, I. Alzaher-Noufal. Self-
checking circuits versus realistic faults in very deep
submicron VLSI Test Symposium, pp 55-63, 2000.

3


