AOXMIN: A Three-Level Heuristic AND-OR-XOR

Minimizer for Boolean Functions
E.V. Dubrova D.M. Miller J.C. Muzio
VLSI Design and Test Group

Department of Computer Science
University of Victoria, P.O.Box 3055
Victoria, B.C., Canada, VW 3P6

{elena, mmiller, jmuzio}@csr.uvic.ca

Abstract

It was previously shown that an AND-OR-XOR expansion, which is the
XOR-sum of two sum-of-products expressions, has a smaller upper bound on
the number of products than that of the AND-OR and AND-XOR expan-
sions. In this paper, a new heuristic algorithm for minimizing AND-OR-XOR
expansions of incompletely specified Boolean functions is presented. We also
hypothesize an upper bound of 27=2 4 1 on the number of products in the
AND-OR-XOR expansion, which is tighter than the bounds previously re-
ported.

1 Introduction

This paper considers the logic synthesis of circuits composed of AND, OR. XOR and
NOT gates. The goal is to find a minimal circuit realization for a given function in
terms of these gates (under some criteria of minimality). Fulfilling this general goal
without any limitations on a circuit’s structure is known to be an extremely difficult
task in terms of computational complexity. To be feasible, practical algorithms put
some restrictions on the problem. A common approach is to restrict the circuit to
a particular topology (e.g. to a two-level AND-OR circuit). We here consider the
case of the XOR sum of two sum-of-products expressions, which is known as an
AND-OR-XOR expansion. It has been shown in [2] and [3] that an AND-OR-XOR
expansion has a smaller upper bound on the number of products than that of the
conventional AND-OR and AND-XOR expansions.

XOR gates have prohibitive cost in some technologies. However, an XOR gate
can be justified if it leads to savings elsewhere in the circuit. Also, AND-OR-XOR
expansion can be easily realized by an industrially offered three-level Programmable
Logic Device (PLD) [4]. The first two levels are implemented by a Programmable
Logic Array (PLA) and the third by a set of logic expanders. Each logic expander
can be programmed to realize any logic function of two variables, and programming
it to implement the XOR operation brings no disadvantage as compared to AND or
OR.

Since an AND-OR-XOR expansion has three levels, finding a minimal form
is much harder than finding two-level AND-OR and AND-XOR minimal expan-
sions. An exact algorithm for solving this problem most likely has exponential
time-complexity O(2%"), since for an n-variable function f there are 22" possible

ways to choose two functions, say ¢; and ¢y, so that g; & g3 is a realization of f.
Performing an exhaustive search is out of the question for large functions. Hence, to
be feasible, an algorithm for minimizing AND-OR-XOR expansions should balance
the quality of the solution against the length of time required to find it. One such
algorithm has been developed in [5]. In this paper we present another algorithm for

minimizing AND-OR-XOR expansions.

2 Notation and Definitions

Y = {0.1,*}, with % denoting a don’t care value. A point in the domain B" of the
function is called a minterm. The on-set T, the don’t care-set D and the off-set F
of f are the sets of minterms that are mapped by f to 1, * and 0. respectively. The
function is specified by the triple f = (7. D, F). If D = @, then the function is a
completely specified function, otherwise it is incompletely specified. A realization of
an incompletely specified function g := B" — Y is any completely specified function
f: B® — B such that for every n-tuple a € B", if g(a) € B, then f(a) = g(a).

A product-term is a product (AND) of zero or more variables or their comple-
ments, such that each variable occurs at most once. We denote product-terms by
pi. 1 > 0. A sum-of-products is a sum (OR) of product-terms.

An AND-OR-XOR expansion is the XOR-sum of two sum-of-products expres-
sions. A minimal AND-OR-XOR expansion is the expansion with the smallest num-
ber of product-terms. For example, consider the function f(x1, z2, 3, x4) shown in
Figure 1(a). Its minimal AND-OR-XOR expansion consists of 4 product-terms,
namely:

flx1, o, w3, T4) = ()22 + 2h24) & (2125 + 232))

X1X2 X1X2
XN 01 1110 £\ 00 Q1 11 10|
o0 [0 |1\ o]} 00 [o 1) o]
or ¢ J[1 [175 o1 {0] D] 0
o flifoft o [\ o /1)
o £ \o/[1] 10| D] o |G D

(a ()

Figure 1: Karnaugh map of the function from the example.

3

An Algorithm for Minimizing AND-OR-XOR
Expansions

The problem of finding a minimal AND-OR-XOR expansion can be formulated as

follows:
Given a function f = (T, D, F), find two functions g1 and gy in sum-of-products
form such that g1 & g, realizes f whenever [is defined and the total number of

product-terms in g; and gy is minimized.

The basic steps of our algorithm for solving this problem are as follows:

Algorithm for minimizing AND-OR-XOR expansions (AOXMIN)
input: f=(7,D,F), an integer N,

output: sum-of-product expressions for ¢g; and g, such that g; & ¢, realizes f and

10.
11.

the total number of product-terms of ¢; and ¢y is minimized.

. Use Espresso to minimize f.
. Fill ON _list and OF F _list with the T'and F' cubes from the resulting function.

. Initialize g1 _best and ¢2_best.

Using DivideEqClasses(), divide the cubes from ON_list into equivalence
classes.

Using SelectPartitioning(), group the resulting equivalence classes into two
sets, T and T5.

Construct glanit = (Th, F,Ty) and g2nit = (Ty, F, TY).

Starting from g1_init, invoke SpecifyBoth() to determine which don’t cares
in gl_nit and ¢g2_nit should be specified to 1 so that the total number of
product-terms in both functions is minimized.

Choose which of the pairs of functions (g1, g2). (¢1. ¢3). (91, g2) or (g1, ¢g5) has
the smallest number of product-terms, and save it.

Repeat steps 7 and 8 starting from ¢2_inat.
Repeat steps 5 - 9 for Ny, partitionings.

Repeat steps 4 - 10 starting from the OF F _list.

The implementation of the algorithm uses well-known programming methods.

Functions are represented dynamically by lists of cubes. Each cube is represented

by a structure declared as follows:

typedef struct ListofCubes {

long int min; /* minimum minterm value */
long int max; /* maximum minterm value */
int class; /* equival. class to which the cube belongs */

struct ListofCubes *next; /# pointer to the next cube %/

}

This approach gives very fast performance of the basic operations. required in the

algorithm. Our current implementation only accommodates functions up to 32 vari-

ables. However, it can be modified to handle larger functions, by storing each of the

min and mazx values in two (or more) full words (32 bits), instead of in just one.
In the subsequent sections we explain the basic steps in more detail.

3.1 Dividing the cubes into equivalence classes

Our heuristic is based on the observation that product-terms of a minimal sum-
of-products form of a function may give some information about how to partition
its on-set T' into two sets. To explain this intuition, consider the Boolean function
from the previous example (Figure 1(a)). The minimal sum-of-products form of this
function consists of 8 product-terms, namely:

f(:l;l, RN .1:4) = l’/l.fgl’é—|—l’/1l’2$4—|-l’/11’él’4—|—l’2$él’4—|-$1l'/2$£1—|—J?1$/2$3—|-$1$3$£1—|-l’/2$3l’£1
These product-terms are shown in Figure 1(b).

Suppose that we want to represent this function as f = g; & ¢g2 and we put an
additional constraint that each of the 8 product-terms from the sum-of-products
form is entirely contained in either g; or g;. Then we can easily see that if two
product-terms, p; and p; intersect, i.e. if p; N p; # 0, then they both have to
belong to either g; or gy, since otherwise g; & ¢go = 0 for the minterms in which
p; and p; intersect. For example, py = zjzex} and py = zizxizys overlap, since
Zhaary N xiahey = izsataes. I pr C g1 and py C ga, when zizoates € g1 © g2,
and therefore g1 @& go # f. This constraint allows us to reduce the search-space for
possible partitionings.

Since the algorithm performs partitionings of product-terms, not single minterms,
its first step is obtaining a minimal sum-of-products f realizing f. The minimiza-
tion is carried out with Espresso [1]. After minimization, two lists, ON _list and
OF F _list, are formed from the T' and F' cubes of f

The next step is to initialize gl_best and ¢2_best. If the number of cubes in
ON _list is less than the number of cubes in OF F list, then gl_best is initialized
to f and ¢2_best is initialized to the constant zero function, otherwise gl_best = f’
and g2_best = 1. In this way, for a single-output problem, the number of products
generated by AOXMIN is never larger than the one that is produced by Espresso.

In the next step, the procedure Divide FqClasses() is called to divide the ON _list
cubes into equivalence classes. A sketch of the code is shown in Figure 2. Two cubes
p; and p; are in the same class if, and only if,

DivideEqClasses(list name)

input: a list of cubes

output: for each cube the field "class” is filled with the number of the equivalence
class to which it belongs

for (each cube a from the first to the last in the list list_name)
for (each cube b from the next after a to the last in the list list_name)
if (a and b intersect)
if (b.class is not labeled)
b.class = a.class
else
find all cubes with the same class as b and set them to a.class

Figure 2: Implementation of the subroutine DivideEqClasses().

(a) pinp #0
or (b) (piNpigr #0) and (pig1 N pipa # 0) and ... and (pigr N p; # 0)

(a) states that p; and p; intersects, while (b) states that p; and p; are connected
through a chain of intersecting cubes. Since our algorithm requires a cube to be
entirely included in either g; or g¢o. it follows that each equivalence class of cubes
must be entirely contained in either g; or gs.

The procedure DivideEqClasses() takes a list of cubes as its input, computes
which cubes are connected, and, for each cube, fills the field " class” with the number
of the equivalence class to which it belongs. In the main program. it is run twice -
first starting from ON _list and then starting from OF F _list.

3.2 Obtaining 77 and 75

If the result of DivideEqClasses() is in more than two equivalence classes, then
they should be grouped into two sets to get T} and T5, which are the initial on-sets
for g; and gy. This is done by a procedure SelectPartitioning().

The number of possible ways to group k classes into two sets is N, = 271 —
1. If k is large, trying all possible partitionings may result in an unreasonably
long computational time. To avoid this, our program takes as a parameter an
integer Ny, indicating the number of partitionings we are willing to try. If Ny,
is larger than or equals to N,;, then SelectPartitioning() successively tries all
possible partitionings. Otherwise, it generates N, number of randomly chosen
partitionings. As the experimental results section shows. for most practical functions
20 or less iterations are sufficient to obtain good results.

The procedure SelectPartitioning() is called only if the number of equivalence
classes, obtained by DivideEqClasses(), is more than one. Otherwise, AOXMIN
returns the functions gl_best and ¢g2_best as initialized in step 3 of the algorithm. It
is our experience that for the functions with just one equivalence class introducing
XOR doesn’t bring any advantage in terms of the number of products.

3.3 Constructing g1 _init and ¢2_init
After partitioning the set 7' into two subsets T} and T, the functions gl_init =
(Ty, Dy, F1) and g2_init = (T3, Dy, Fy) are constructed, so that:

e 77 and T, are the on-sets obtained after partitioning of the on-set T' of f.

e D = Fand D, = F are the don’t care sets, i.e. the off-set of function f is
the don’t care-set for g; and g,.

o [=T, and Fy, = T) are the off-sets, i.e. the on-set of ¢y is the off-set of gy,
and wvice versa.

Figure 3 shows gl_init and g2_init for the function from Figure 1. Here the
number of equivalence classes equals two, and therefore there is just one way to

choose T} and 75.

X X2 £ tinit X, X2 & 2init

e\ 00 01 11 10 xxN\00 01 11 10
00 | * 1 *10 0| *]10 | *|1
01| 1 1 1 * 01101010 *
11| * 1 * 0 11| * 0| * 1
wjof*]101]0 w1 *]1]1

Figure 3: Functions gl_init and g2_init for the function from Figure 1.

3.4 Determining common don’t cares in ¢l _init and ¢2_init

After gl_mit and g2_init are obtained, the next step is to determine which don’t
cares should be specified to be 1 so that the total number of product-terms in both
functions is minimized. For this, we invoke the subroutine SpecifyBoth(). shown
in Figure 4.

First, the function gl_init = (11, D1, F1) is minimized using Espresso, giving ¢;.
Then, it is determined which don’t cares from ¢l _init were specified to 1 in g; by
computing the difference T* = g; —T}. These don’t cares are specified to 1 in g2_init
and all other don’t cares in g2_in:it are set to 0. The resulting function is minimized
using Espresso.

In the main program, the procedure SpecifyBoth() is run twice - first, starting
from gl_init and next starting from g2_init. Each time the result with the smaller
number of product-terms in the pairs of functions (g1, g2). (91, ¢3), (g1, g2) or (g1,
g5) is compared to the "best” result obtained so far, and is saved in case it is less
than the "best”.

SpeCifyBOth(TI: Dl: Fl: TQ: DQ: FQ)

input: two incompletely specified functions gl_init = (74, Dy, Fi) and g2_init =
(T27 DQ: FQ)

output: two sum-of-products ¢; and g,, realizing gl_init and g2_init. correspon-
dently.

g1 = Espresso (11, D1, F1):
17 = g1 — Ty

Fy = F,U(Dy —TY):;

g2 = Espresso (Ty, Dq, Fy):
return (g, g2):

Figure 4: Implementation of the subroutine SpecifyBoth().

3.5 Multiple-output problems

Most digital systems contain multiple outputs. In our current implementation, to
handle an m-output problem, we first run AOXMIN for each of the output functions
to get its gl_best and g2_best., and then apply Espresso to the resulting multiple-
output problem consisting of 2m functions. This exploits common products at
least to some degree. Clearly. treating m-outputs simultaneously throughout the
algorithm would lead to better results.

4 Experimental Results

We have implemented the algorithm described in the previous section and have
applied it to a set of benchmark functions. The benchmark functions are taken
from http://www.cbl.ncsu.edu/pub/benchmark_dirs/LGSynth91/twolexamples/. We
have compared the results of our program with the performance of the two-level
AND-OR minimizer Espresso [1] (with and without output phase optimization) as
well as with the results reported in [5]. AOXMIN and Espresso were run on a Sun
SPARC 20 operating at 50 MHz with 64 MB RAM main storage.

Table 1 shows the number of products in the resulting functions and the time
taken in seconds in columns pr. and ¢, respectively. The time is user time measured
using the UNIX system command time. Column 8 shows the number of products
obtained by the AND-OR-XOR minimizer from [5] for the benchmarks, reported
in [5]. Unfortunately, the running times are not given in [5], so we cannot make
a comparison with AOXMIN in terms of time. Columns 2 and 3 give the number
of inputs n and the number of outputs m of the functions. The last column N.,
refers to the number of iterations. performed by our algorithm. For each function,
we tried 1, 10 and 20 iterations and we show the lowest number of iterations for
achieving the best result.

In terms of the number of products, for 15 of the 25 benchmarks AOXMIN gives
a smaller result than Espresso without output phase optimization. On average the

Table 1: Benchmark results.

Example Espresso [1] Alg. AOXMIN
function | n | m || without -Dopo || with -Dopo || [5]
pr. t.sec pr. | t.sec pr. pr. | t.sec | Nier
dxpl 7 110 | 65 0.28 64 1.85 47 42 | 14.8 10
9sym 1| 86 0.51 86 | 1.21 30 73| 1.7 1
alud 14 | 8 || 575 29.39 359 | 204.50 - 447 1 131.9 1
b12 1519 | 43 0.69 29 2.72 - 31 9.1 10
bw 5 |28 | 22 0.62 22 2.01 - 24 | 254 10
clip 9 | 5| 120 1.50 120 | 8.09 92 || 95 | 10.5 | 10
conl 7] 2 9 0.1 8 0.04 - 9 1.0 1
cordic | 23| 2 | 914 | 123.34 155 | 371.74 - 156 | 231.8 1
duke2 |22 |29 | 86 0.93 86 28.1 - 87 | 20.2 1
ex1010 | 10 | 10 || 284 42.24 279 | 202.82 - 725 | 109.7 1
inc 719 30 0.18 28 | 0.65 - 33 | 6.5 1
misex] | 8 | 7 12 0.04 12 0.15 - 13 | 11.5 10
misex2 | 25 | 18 || 28 0.07 28 6.18 - 28 6.0 1
misex3 | 14 | 14 || 690 41.86 189 | 343.79 - 191 | 112.0 1
misex3c | 14 | 14 || 197 13.00 199 | 108.48 - 197 | 75.1 10
rd53 513 | 31 0.05 22 | 0.08 - 19 | 15.7 | 20
rd73 T3 127 0.44 93 | 1.05 83 || 83 | 25.5 | 10
rd84 8 | 4 | 255 1.65 186 | 3.87 - 192 | 61.1 10
sa02 10| 4 | 58 0.22 37 | 1.03 33 || 38 | 3.7 1
squard 5 | 8 25 0.07 23 0.44 - 22 4.4 1
t481 16 | 1 || 481 2.86 481 | 9.42 364 || 113 | 557.2 | 20
table3 | 14 | 14 || 175 3.81 175 | 124.50 - 176 | 79.3 1
table5 | 17 | 15 || 158 2.52 158 | 179.02 - 158 | 100.7 1
vg?2 25| 8 || 110 0.58 110 | 71.70 - 102 | 434 10
xorH 5 11 16 0.02 16 | 0.03 - 10 | 10.3 | 20

number of products obtained by Espresso is 2.13 times larger than the number of
products obtained by our algorithm. However, in terms of time, Espresso without
output phase optimization is on average 5.27 times faster than AOXMIN.

When compared to Espresso with output phase optimization (using -Dopo op-
tion), for 10 of the 25 benchmarks AOXMIN obtains a result with less products.
On average the number of products obtained by our algorithm is 1.21 times smaller,
and it 1s 1.17 times faster.

Compared to the AND-OR-XOR minimizer from [5], AOXMIN generates almost
the same results in terms of number of products, with the exception of #1481 function,
for which our algorithm considerably reduces the number of products. We found
out that, using AOXMIN. the number of products in ¢481 can be further reduced if
more iterations of the algorithm are performed (see Table 2). For 50 iterations the
number of products for 481 is 18, but the program needs 24.4 min to compute it.

e resulting sum of products expressions for the functions gl_best and ¢2_best are:
! ! ! ! ! ! ! ! ! ! !
gl best = x\xoxsr) + xirrag + TEXeTs + T5T7Ty + TETETL + X125 + X1 Tg + 25T + X524
9 b t _ ! ! ! ! ! ! ! ! !
g2 0€sl = 1314015 T g+ X1gT11 019 + L9117 + TgT10212 + TgT10T71 T T14T16 + T13%16
! ! !
T T14T15 1 T13T55

Notice that the functions have disjoint variable sets and interesting symmetry prop-
erties.

Table 2: AOXMIN results for ¢481.

products | time.sec | Ny,
228 47.4 1
134 295.7 10
113 557.2 20
18 1461.5 50

The experimental results indicate that our algorithm works quite well for func-
tions with embedded XOR logic (like 5xpl, clip, rd53,rd73, sao2,t481). On the
other hand, for benchmarks without embedded XOR logic, like misexl. misex2
and ex1010, introducing XOR doesn’t bring any advantage. The "hardest” function
for our program is ex1010, for which the program is unable to find a result with less
than 725 products for up to 100 iterations.

As can be seen. in general, the time required for AOXMIN to find a solution is
quite reasonable, especially taking into account the complexity of the problem. The
most time-consuming are the calls to Espresso. We hope in the future to improve
the time-performance of AOXMIN by making it an integrated program. Presently
the problem is treated in several stages. by first computing minimal AND-OR-XOR
expansions for each output functions separately. and then finding common subterms
for the resulting functions.

5 Conclusion

This paper presents a new heuristic algorithm for minimizing AND-OR-XOR ex-
pansions of incompletely specified Boolean functions. As with any heuristic algo-
rithm, ours doesn’t guarantee that a minimal solution is found, but usually obtains
a nearly-minimal one. However, as the experimental results show, the algorithm has
a satisfactory performance for a class of benchmark functions.

Two major facets of our method require further research. First, as noted above,
we use a very simple approach to multiple-output problems with the individual
functions treated separately until the final minimization step. As in conventional
two-level minimization, we expect to achieve much better results if a method can
be found to treat the functions together throughout the complete process. The
difficulty is how to extend the notion of product term chains to the multiple-output
case.

The second area requiring further work is the selection of partitionings. At
present, we select these pseudo-randomly. We need to examine which functional
properties can be used to guide the choice of partitionings and also to investigate
which search techniques are applicable to this problem.

A further drawback of our algorithm is that it is only capable of finding the
AND-OR-XOR expansions which obey the constraint that each product-term from
a minimal sum-of-products form of the function is entirely contained in either ¢; or
ga2, which is, of course, not necessary in general. Since the minimal sum-of-products
form of a function is not unique. the performance of our algorithm could be improved
by trying several minimal sum-of-products forms as starting points. But this still
doesn’t guarantee that the resulting solution is a minimal one.

Since our algorithm is heuristic, it is useful to have a measure for asserting the
minimality of the resulting expansion. Previously, an upper bound of 5-2"7%, on
the number of product-terms in the AND-OR-XOR expansion has been reported in
[3]. This result was later improved to 9-2"75, in [2]. We hypothesize that the upper
bound on the number of product-terms in the minimal AND-OR-XOR expansion is
2772 4 1, n > 1, but we haven’t succeeded yet in proving this conjecture.

References

[1] R.K. Brayton, G. Hachtel, C. McMullen, A. Sangiovanni-Vincentelli, Logic Min-
imization Algorithms for VLSI Synthesis, Kluwer Academic Publisher, 1984.

[2] D. Debnath, T. Sasao, Minimization of AND-OR-EXOR three-level networks
with AND gate sharing, The Sizth Workshop on Synthesis and System Integra-
tion of Mized Technologies (SASIMI "96), Fukuoka, Japan, Nov. 1996.

[3] Dubrova, E.V., Miller, D.M., Muzio, J.C., Upper bound on number of product-
terms in AND-OR-XOR expansion of logic functions. Flectronics Letters 31
(1995), 541-542.

[4] A. A. Malik, D. Harrison, R.K. Brayton, Three-level decomposition with appli-
cation to PLDs, IEEFE Int. Conference on Computer Design (1991), 628-633.

[5] T. Sasao, A design method for AND-OR-EXOR three-level networks, Proc. Int.
Workshop on Logic Synthesis, Lake Tahoe, 1995.

