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Abstract

The relation between disjunctive decomposition of func-
tions and a variable ordering minimizing the size of a
ROBDD, is considered. We show that a best ordering for
a function with a disjunctive decomposition cannot always
be directly determined from the best orderings for the com-
ponent functions. We also demonstrate that keeping the
variables from a bound set of the function adjacent does not
always guarantee obtaining the ROBDD for the function
with a minimal number of nodes.

1. Intreduction

This paper considers the problem of finding a variable
ordering which minimizes the size of a Reduced Ordered
Binary Decision Diagram (ROBDD) for functions possess-
ing disjunctive decompositions of the type

(X)) = g(h(Y), 2)

with Y and 7 being sets of variables forming a partition of
theset X = {1, 22,. .., %0}

A Reduced Ordered Binary Decision Diagram (ROBDD)
is a graphical data structure for the efficient representation of
a Boolean function. Functions are represented by directed,
acyclic graphs, which are built for some chosen ordering of
the function variables. Although a function may require, in
the worst case, a graph of size exponential in the number
of variables, many practical functions have a representation
which is linear in the number of variables.

For functions with disjunctive decompositions, stor-
age can be saved by expressing them as a composition
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f(X) = g(h(Y), Z) of two functions g and h, and storing
the ROBDDs of g and h [1]. When needed, the ROBDD for
f can be expanded in a straightforward fashion by replacing
the composition variable in the ROBDD of g with the graph
for h, and then reducing the resulting diagram. If (), is an
upper bound on the number of nodes in a ROBDD for func-
tion of n variables, then the total number of nodes in ROB-
DDS for g and A is bounded above by Cp, + Cy4n_p, Where
p 1s the number of variables in h. Because the bound C, in-
creases nearly exponentially with n [8], the discovery of any
nontrivial decomposition of the form f(X) = g(h(Y), Z)
might greatly save storage space for f.

Normally, the size of the ROBDD varies for different
variable orderings and, for some functions, it is highly sen-
sitive to the ordering. Findinga best ordering that minimizes
the size of the graph requires, in the worst case, time expo-
nential in the number of variables. Therefore, computing
the best orderings for two functions of n; and n; variables
respectively, is usually much faster than computing a best or-
dering for one function of ny + n, variables. Thus, a natural
question to ask for functions with disjunctive decomposi-
tions is whether a best ordering for f = g(h(Y),Z) can
always be determined from the best orderings for h and g.
Intuitively, one is tempted to say that it should be so, but
in [5] we gave a counterexample showing that forn > 5
an ordering generated from the best orderings of ¢ and h is
sometimes not a best one for f.

In this paper we analyze the result from {5] in more detail.
We also study whether one can use a bound set of a function
as a criterion for grouping the variables to obtain a best
ordering for the ROBDD for this function. It seems right to
suggest that the variables from a bound set should be kept
adjacent to guarantee obtaining the ROBDD with a minimal
number of nodes. One wouldn’t expect that dispersing the
variables from a bound set, can lead to the reduction of
the number of nodes in the ROBDD. However, we show a



counterexample to this intuition.

The paper is organized as follows. In Section 2 back-
ground on disjunctive decomposition and ROBDD’s or-
derings is given. Section 3 considers the problem of de-
termining the best ordering for a decomposable function
[ = g(h(Y), Z) from the best orderings for g and h. Sec-
tion 4 shows that grouping the variables from a bound set
doesn’t always guarantee obtaining the ROBDD with a mini-
mal number of nodes. The paper concludes with suggestions
for work following from this research.

2 Background

Let f(z1, 22, ..., 2,) be a completely specified Boolean
function of type f : B® — Bon B = {0, 1}. We denote by
X the set of the variables of f,ie. X = {z,22,...,2,}.

Let Y denote a proper subset of X, andlet 7 = X — Y.
The operation functional substitution of a function h into a
variable of another function g is defined if h : B'Y! — B,
g : B x Bl%l _5 B, resulting in the function f : B!Y! x
Bl?l 5 B given by

(X)) =g(h(Y), 2) ¢y

Conversely, (1) is a decomposition of f for a suitably chosen
set of variables Y. Any set Y of variables for which a
representation f(X) = g(h(Y'), Z) is possible is called a
bound set for f. For Boolean functions, bound sets have
been first studied by Ashenhurst [2]. A decomposition (1)
always exists for Y given by any singleton set {z; } or the
all-set {z, 2, ..., z,}. Such sets are called ¢rivial bound
sets. A function f that has only trivial bound sets is called
undecomposable.

An ordering of the variables in a ROBDD for f is a
vector, describing the variables in order from top to bottom
of the ROBDD. A best ordering is the ordering resulting in
the ROBDD with a minimal number of nodes.

The operation ordering substitution of an ordering <
Y > into a variable h of another ordering < 7, h, Z; > is
definedif Z, U 2, = Z,h ¢ Z and 7, N Z> = @, resulting
in the ordering < X > given by

<X >=<721,<Y >,72,>.

Note, that without any confusion we are using A to also
denote the substituted variable of g.

3 Obtaining a best ordering for / from best
orderings for g and £.

We are interested as to whether the set of best or-
derings for a function with a disjunctive decomposition
f(X) = g(h(Y),Z) can always be composed from the

best orderings of ¢ and £, i.e. be calculated by performing
ordering substitution on the sets of best orderings for h and
g. In more formal terms, this question can be expressed as
follows.

Let S be the set of all non-degenerate (i.e. depending
on all their input variables) functions of n variables or less.
Let S, be the set of all sets, which are best orderings of the
functions from S;. Let o : S; — S5, be defined as the
mapping assigning to any function f € .S the set of best
orderings for f from S;. If o denotes functional substitu-
tion, and e denotes ordering substitution, then, we check
the existence of a homomorphism between two structures
(S1,0) and (Sz, o).

These two structures are homomorphic if, and only if,
there exists a mapping « : S; — S assigning to any func-
tion f € S the set of best orderings for f from S5, such
that

algoh) = a(g) e alh)

for all g,h € S; for which the operation o is defined.
Here a(g o h) is the set of all best orderings for f(X) =
g(h(Y), Z), and «(g)  a(h} is the set obtained after per-
forming ordering substitution on the sets of best orderings
for h and g.

The following theorem shows, however, that this is not
the case forn > 5.

Theorem 1 /5] Let o : S| — S; be the mapping assigning
to any function | € S| the set of best orderings for [ from
S>. Then for n > 5 « is not a homomorphism between
(S1,0) and (53, ).

Proof: By example. Consider the following function of 5
variables:

,5) =z (za®as) +25(24Dus) o3+ 2l 2oy

fley, ...

It can be decomposed as f = g(h(z4, 5), 21, 2, £3), where

g=xh + 2bh+ zix; + 2iaaxy and h =24 @ zs

The ordering < z2, 3, h, 1 > is the only best ordering for
g, resulting in a ROBDD with 8 nodes. Therefore a(g) =
{< z3,23,h,z; >}. Since h is totally symmetric, all its
orderings give ROBDDs with the same number of nodes,
and therefore a(h) = {< x4, 25 >, < x5, 24 >}. Soa(g) ®
a(h) = {< T, 23,24, %5, 21 >, < ¥2,L3,L5,T4,%] >}.
Both of these two orderings result in ROBDDs for f with
12 nodes. For example, the ROBDD for the ordering <
Z3, %3, %4, Ts, 1 > is shown on Figure 1(a).

However, there exist orderings for f yielding a
ROBDD with 11 nodes, as for example the ordering <
r4, 25,22, %3, ¢ > (Figure 1(b)), and therefore (g o ) #
a(g) e a(h) forn = 5.
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(a) (b)

Figure 1. ROBDDs for f for the orderings (a) <
£y, 23, 24, 25, ¢1 > and (b) < x4, z5, 22, 3, 21 >.

The phenomenon demonstrated by the above example
holds for any h, as long as h is a function of two or more
variables, because in the ROBDD for g for the ordering
< x3, %3, h, £y > the variable h is represented by two nodes,
while in the ROBDD for the ordering < h, 3, z3, 2y > the
variable h is represented by just one node. Thus the theorem
holds forn > 5.

=i

The above example, and hence the theorem, are also
applicable for the case where output edge negation [9] is
allowed in the ROBDD.

Theorem 1 gives a negative answer to the question
whether a best ordering for a function of 5 or more variables
with a disjunctive decomposition f(X) = g(2(Y), Z) can
always be determined from the best orderings of h and g.
We believe that for n < 5 the answer is positive.

The example, given in the proof, shows that forn > 5
sometimes an ordering generated from the best orderings of
¢ and h is not a best one for f. Furthermore, it demonstrates
that it is possible that none of the orderings generated this
way are best for f. Such examples, however, are quite rare,
and are hard to find. In most of the cases, the ordering
obtained by performing ordering substitution on the sets of
best orderings for h and g is a best one. In the rare cases it
is not a best, it is still very close to a best. Furthermore if
f 1s a practical function of a large number of variables, one
wouldn’t be able to compute a best ordering for f anyway,
since the existing exact algorithms for finding best orderings
are feasible only for functions of a smali number of variables.
Therefore, using a decomposition for partitioning the prob-
lem of finding a best variable ordering into several smaller
ones is valuable and useful, in spite of the counterexample

shown.

4. Using a bound set as a criterion for finding a
best ordering.

Since the problem of computing a best variable ordering
is NP-complete [6], the exact algorithms for its solution are
feasible only for functions of a small number of variables. A
number of heuristic procedures have been developed, using
various strategies to produce a "good" ordering within a
reasonable time.

A key to developing an efficient heuristic procedure for
computing a good variable ordering lies in formulating a de-
pendable criterion for grouping the variables. For example,
it was empirically observed in [7], that symmetric variables
tend to be adjacent in the best ordering for ROBDDs with-
out complemented edges. Since then, keeping symmetric
variables together has been considered a good criterion and
a number of heuristic procedures for computing a variable
orderings were developed, based on this criterion, including
whose in [10] and [11]. However, later a counterexample
was found in [11], showing a function for which no sym-
metric order is optimal.

Keeping variables from a bound set of a function f ad-
jacent seems to be another intuitive criterion for grouping
variables to guarantee obtaining the ROBDD with a minimal
number of nodes. One wouldn’t expect that dispersing the
variables from a bound set-apart, can lead to a reduction of
the number of nodes in the ROBDD. Below, however, we
show an example for one such case.

LetY be aproper subset of X. We say that in the ordering
< X > the variables from Y are adjacent, if < X > can
be represented as < X >=<« Z;,< Y >,7; >, where
WUy =Z,Z21N7Zy =@ and Z = X — Y. Otherwise
we say that in the ordering < X > the variables from Y are
dispersed.

Theorem 2 There exists a decomposable function f =
g(h(Y'), Z) such that the number of nodes in its ROBDD for
an ordering with the variables from Y dispersed is smaller
than the number of nodes in its ROBDD for an ordering with
the variables from Y adjacent.

Proof: By example. Consider the following function of 6
variables f(zi, ..., z6):

f = oy (sl + 25 (2 + 2f)) + (21 + 22) (2324 + @52526)

It can be decomposed as f = g(h(z3, x4, s, 2¢), 21, £2),
where

g=zh+ (z1+z)h and h = z32) + o(zh + xg)

The ROBDD for f has 12 nodes for the order-
ing < x,L3Ts5TeT4x2 >, Which is an ordering where the



(a) (b)

Figure 2. ROBDDs for f for the order-
ings (@) < =z,z3,25 26,224,220 > and (b) <
Z3,T5, 6, L1, L4, T2 >

variables from the bound set {z3,z4,zs,2s} are adja-
cent (Figure 2(a)), and 11 nodes for the ordering <
z3, s, T, L1, L4, £z >, Which is an ordering where the vari-
ables from the bound set are dispersed. (Figure 2(b)).

0

The above example, and hence the theorem, are also
applicable for the case where output edge negation is allowed
in the ROBDD. In this case the ROBDD for f has 11 nodes
for the ordering < z1, £3, s, 6, T4, £2 >, and 10 nodes for
the ordering < &3, zs, x¢, 21, T4, T3 >.

Theorem 2 shows that keeping the variables from a bound
set adjacent doesn’t always guarantee obtaining the ROBDD
with a minimal number of nodes. Such cases, however, are
extremely rare and, on practice, it is almost always a good
idea to keep the variables from the bound set together.

5. Conclusion

This paper considers the problem of finding a variable
ordering which minimizes the size of a Reduced Ordered
Binary Decision Diagram for functions possessing disjunc-
tive decompositions.

The example, given in the proof of the Theorem 1, shows
that for n > 5 sometimes an ordering generated by perform-
ing ordering substitution on the sets of best orderings for h
and g is not a best one for f. The example, given in the proof
of the Theorem 2, shows that keeping the variables from a
bound set adjacent doesn’t always guarantee obtaining the
ROBDD with a minimal number of nodes. Such examples,

however, are quite rare. Their existence doesn’t diminish
the practical value of applying decomposition techniques to
solving the ROBDD variable ordering problem, but should
be noted as a possibility.
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