
A New Decomposition of Boolean Functions

Elena Dubrova

Electronic System Design Lab
Department of Electronics

Royal Institute of Technology
Kista, Sweden

elena@ele.kth.se

Abstract

This paper introduces a new type of decomposition of Boolean functions, partitioning
the original function into disjoint chains of cubes. We show that using this type of decom-
position as a preprocessing step in logic synthesis algorithms may lead to a considerable
reduction in the run-time thus allowing to process larger functions, which otherwise can-
not be handled due to the time limit.

1 Introduction

Decomposing a graph into its strongly connected components is a classical problem in graph
theory. Many algorithms that work with directed graphs begin with such a decomposition,
which allows the original problem to be divided into subproblems, one for each strongly con-
nected component. This paper shows how a similar type of decomposition can be defined for
logic functiond and demonstrates its application to logic synthesis.

Generally, the problem of functional decomposition can be formulated as follows. Given a
function , express it as a composite function of some set of new functions. Often a composite
expression can be found in which the new functions are significantly simpler than .

Usually, a function can be decomposed in several different ways, depending on the criteria
chosen. For example, a classical type of decomposition is the simple disjunctive decomposi-
tion, where the original function is replaced by two functions, which are disjoint in variables
[1], [2]. We define a different type of disjoint decomposition, in which not the variables, but
the domain space of the the function is partitioned into disjoint areas. Our experimental results
show that using this type of decomposition as a preprocessing steps in logic synthesis algo-
rithms may lead to a considerable reduction in the run-time, thus allowing to process larger
functions, which otherwise cannot be handled due to the time limit.

The paper is organized as follows. Section 2 describes the basic notation and definitions
which are used in the sequel. Section 3 defines the new type of decomposition. In Section 4
demonstrate the application of the new decomposition to logic synthesis. Section 5 concludes
the paper.

Supported in part by Research Grant No 240-98-101 from the Swedish Research Council for Engineering
Sciences and by a fellowship from the Knut and Alice Wallenbergs foundation of Sweden.

2 Notation

We use the standard definitions and notation in the area of logic synthesis ([4]). The most
important notions are briefly summarized in this section.

Let be an completely specified Boolean function of type
, of the variables .

A point in the domain of the function is called a minterm. The on-set and the
off-set of are the sets of minterms that are mapped by to 1 and 0, respectively.

A product-term is a Boolean product (AND) of one or more variables or their
complements. A convenient representation for a product-term is cube [5]. We use the terms
cube and product-term interchangeably. A sum-of-products is a Boolean sum (OR) of product-
terms.

Let be cubes of . The distance between and , denoted by , is
the number of empty fields in the intersection of and . When the distance is zero, the two
cubes intersect, otherwise they are disjoint.

3 Definition of Decomposition

Recall from the graph theory, that a strongly connected component of a graph is a
maximal set of vertices such that for every pair of vertices and in , vertices and

are reachable from each other. There is a linear-time algorithm [6] computing the
strongly connected components of a graph.

Now we show how a similar type of decomposition can be defined for logic functions. Let
be cubes of an -variable Boolean function . Then we define a relation as follows:

if and only if

where .
Let be the transitive closure of . Then is the equivalence relation, dividing

the cubes of into equivalence classes. Thus, the equivalence classes of form a partition
of the set of all cubes into disjoint clusters. Two cubes are in relation either when they
on distance , or they are are reachable from each other through a chain of cubes of distance

. Notice, that we can define such a decomposition with respect to the on-set as well as with
respect to the off-set of the function.

As an example, consider the set of cubes , representing a 3-variable
Boolean function

If , then , since this pairs of cubes are on distance 1.
We also have for all , because .
Computing the transitive closure of , we obtain the following partition of the on-set of
into two disjoint clusters of cubes and .

If , then the only pair of cubes not belonging to is , because
. Computing the transitive closure of , we get that all the cubes fall

into the same equivalence class.
Since is equivalence relation, the above decomposition is unique for a given sum-of-

product expression of a function. However, a Boolean function can normally be represented by
several different sum-of-product expressions, and therefore several different decompositions

Table 1: Number of clusters in some benchmarks functions.

benchmark size of size of
function on-set of-set

5xp1 65 78 20 20 1 1 1 1
9sym 86 72 1 2 1 2 1 2
alu4 575 599 39 6 1 1 1 1

apex1 206 1234 77 2 2 1 1 1
apex2 1035 518 1 1 1 1 1 1
apex3 280 767 131 5 1 1 1 1
apex4 436 1462 340 7 1 1 1 1
apex5 1088 1622 188 23 1 1 1 1
b12 43 75 4 7 1 1 1 1
bw 22 75 18 3 1 1 1 1
clip 120 151 9 8 1 1 1 1
con1 9 9 3 5 1 1 1 1

cordic 914 1191 2 2 1 1 1 1
cps 163 718 79 3 1 1 1 1

duke2 86 317 38 2 1 1 1 1
ex1010 284 1465 8 51 1 1 1 1

e64 65 262 65 1 1 1 1 1
inc 30 61 16 2 1 1 1 1

misex1 12 28 7 1 2 1 1 1
misex2 28 73 7 1 1 1 1 1
misex3 690 807 34 1 1 1 1 1
misex3c 197 641 30 20 1 1 1 1

pdc 145 550 25 1 1 1 1 1
rd53 31 32 23 6 7 2 1 1
rd73 127 147 81 23 9 9 1 1
rd84 255 260 162 96 11 2 1 1
sao2 58 76 28 1 1 1 1 1
seq 336 1569 122 1 1 1 1 1
spla 260 509 118 2 4 1 1 1

squar5 25 31 18 4 1 1 1 1
t481 481 360 17 8 1 1 1 1

table3 175 1503 137 1 1 1 1 1
table5 158 194 20 1 4 1 1 1
vg2 110 194 20 1 1 1 1 1
xor5 16 16 16 16 16 16 1 1

of the same function may exist. For example, the function realizing OR, may be written as
as well as . If , then in the first case, its

decomposition has only one cluster, while in the second case it has two clusters.
We have implemented a classical algorithm for computing the transitive closure [6] and

tried it on benchmark functions to see how many disjoint clusters we obtain for different
values of . Table 1 shows the results. Columns 2 and 3 give the number of cubes in the
covers for on- and off-set of the benchmark functions, correspondently, computed by the two-
level AND-OR minimizer Espresso [7]. Columns 4-9 show the number of clusters obtained
for the on-set () and for the off-set () of the functions, for different values of distance

between the cubes. One can see that very few benchmarks have more than one cluster for
. Therefore, the decomposition with seems to be the most suitable choice.

4 Application to logic synthesis

To demonstrate the application of the new decomposition to logic synthesis, we take an algo-
rithm for three-level AND-OR-XOR minimization, presented in [3], and added clustering as a
preprocessing step of the algorithm. First, we briefly describe the basic idea of the algorithm,
and then give the experimental results showing the effect of clustering on its run-time and the
quality of its solutions.

4.1 Algorithm AOXMIN-MV

In this section we briefly describe the basic idea of the algorithm for three-level AND-OR-
XOR minimization AOXMIN-MV, presented in [3]. The target of the algorithm is a three-level
logic expression which is an XOR of two sum-of-products. For some practical functions, such
an AND-OR-XOR expression is shown to have up to 27 times less product-terms compared
to the classical sum-of-products form.

The core of AOXMIN-MV is a group migration algorithm [8] which is an extension of
Fiduccia/Mattheyses iterative improvement algorithm [9]. Group migration algorithm repeats
the following: given an initial partitioning of objects into two groups, for each object deter-
mine the decrease in cost if the object is moved to the other group. Then, move the object
that produces the greatest decrease or smallest increase in cost and mark it as moved. After
all objects have been moved once, the lowest-cost partitioning is selected. If this partitioning
has a higher cost then the initial one, then the algorithm stops. Otherwise it iterates taking the
new partitioning for the initial partitioning.

Obviously, the run-time of the group migration algorithm depends on the number of the
input objects. Without clustering, the objects are cubes from the cover of the on-set of the
function. If clustering is added as a preprocessing step (with distance), then the ob-
jects are equivalence classes of the on-set of the function, determined by the algorithm for
computing the transitive closure. As shown in Table 1, clustering greatly reduces the number
of objects to consider. In the next section we demonstrate that this leads to a considerable
reduction in the run-time of AOXMIN-MV algorithm.

4.2 Effect of clustering on AOXMIN-MV

We have applied the algorithm AOXMIN-MV with and without clustering to a set of bench-
mark functions. Table 2 shows the results of the comparison in terms of the total number of

Table 2: Comparison of AOXMIN-MV with and without clustering stage; x indicates timeout
(50 hours).

Espresso AOXMIN-MV AOXMIN-MV
Example [7] with clustering without clustering
function cubes ,sec cubes ,sec cubes ,sec

5xp1 7 10 65 0.04 36 40.1 46 104
alu4 14 8 575 3.75 219 243 - x
amd 14 24 66 0.22 68 1.13 68 7543
b9 16 5 119 0.07 43 118 73 1880

clip 9 5 120 0.18 82 17.2 93 854
dist 8 5 123 0.17 92 23.5 99 3656
in2 19 10 136 0.12 120 1053 133 21956
in5 24 14 62 0.05 62 2.24 62 29929
ex7 16 5 119 0.08 43 119 73 1883

exam 10 10 67 1.25 59 2.64 59 6288
f51m 8 8 77 0.12 33 55.2 63 130
life 9 1 84 0.13 60 200 66 316
p1 8 18 55 0.34 48 1.15 48 2580

radd 8 5 75 0.03 20 15.3 34 247
rd53 5 3 31 0.02 17 13.2 15 71.4
rd73 7 3 127 0.06 62 494 62 323
rd84 8 4 225 0.19 130 1566 127 3653
root 8 5 57 0.09 52 3.31 49 405
sao2 10 4 58 0.03 38 0.83 37 508

t1 21 23 102 0.33 83 101 89 3109
t2 17 16 53 0.06 53 0.87 53 525

t481 16 1 481 0.36 18 218 179 48954
tial 14 8 581 3.21 302 406 328 166142

x9dn 27 7 120 0.06 113 179 120 3106
xor5 5 1 16 0.001 6 7.31 6 7.08
z4 7 4 59 0.03 18 9.34 21 140

adder 2-bit 4 3 11 0.005 7 0.75 6 3.32
adder 3-bit 6 4 31 0.01 11 0.91 15 38.4
adder 4-bit 8 5 75 0.06 20 2.52 38 255
adder 5-bit 10 6 167 0.49 39 13.4 87 1470
mlp. 2-bit 4 4 7 0.007 6 0.63 6 1.12
mlp. 3-bit 6 6 32 0.03 26 1.74 26 68.3
mlp. 4-bit 8 8 128 0.19 103 9.12 107 6371
mlp. 5-bit 10 10 490 3.67 436 141 - x

cubes in the resulting expressions (columns 6 and 8), and the time taken in seconds (columns
7 and 9). The time is user time measured using the UNIX system command time. The time
limit was set to 50 hours. The experiments were run on a Sun Ultra 60 operating two 360 MHz
CPU and 768 Mb memory.

The table also shows the number of cubes in the cover obtained by the two-level AND-OR
minimizer Espresso [7] and the time to compute it (columns 4 and 5, respectively). Columns
2 and 3 give the number of inputs and the outputs of the benchmark functions.

The experiments show that, for most benchmarks, the clustering improves both the quality
of the solutions and the run-time of the algorithm.

5 Conclusion

This paper introduces a new type of decomposition of Boolean functions, similar to decom-
position of graphs into strongly connected components. Our experiments show that using this
type of decomposition as a preprocessing step may considerably reduce the run-time of the
algorithm for three-level AND-OR-XOR minimization AOXMIN-MV [3], as well as improve
the quality of its solutions.

In the future we plan to investigate which other logic synthesis algorithms could benefit
from clustering.

References

[1] R. L. Ashenhurst, ”The decomposition of switching functions”, Proc. International
Symp. Theory of Switching Part I vol. 29, 1959, pp. 74-116.

[2] H. A. Curtis, A New Approach to the Design of Switching Circuits, Van Nostrand, Prince-
ton, 1962.

[3] E. V. Dubrova, D. M. Miller, J. C. Muzio, ”AOXMIN-MV: A Heuristic Algorithm for
AND-OR-XOR Minimization”, Proc. 4th International Workshop on the Applications of
the Reed-Muller Expansion in Circuit Design, 1999.

[4] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

[5] Y. H. Su, P. T. Cheung, ”Computer minimization of multi-valued switching functions”,
IEEE Trans. Comput., vol. C-21, 1972, pp. 995-1003.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, The MIT Press,
Cambridge, England, 1997.

[7] R.K. Brayton, G. Hachtel, C. McMullen, A. Sangiovanni-Vincentelli, Logic Minimiza-
tion Algorithms for VLSI Synthesis, Kluwer, 1984.

[8] D. Gajski, N. Dutt, A. Wu, S. Lin, High Level Synthesis: Introduction to Chip and System
Design, Kluwer, 1992.

[9] C. M. Fiduccia, R. M. Mattheyses, ”A linear time heuristic for improving network parti-
tions”, Proc. 19th ACM/IEEE Design Automation Conference, 1982, pp. 175-181.

