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Abstract

In this paper we formulate a sufficient condition for Boolean functions to have a de-
composition of type f = (g & h) + r, with the total number of product-termsin g, h and
r smaller than the number of product-termsin f. This conditionis used to develop an al-
gorithmfor deciding whether a given function islikely to benefit from XOR minimization.

1 Introduction

In many cases, functions with embedded XOR logic have very large expressions in terms
of AND, OR and NOT operations. For example, an n-variable parity function needs 2!
product-terms consisting of n literals each if expressed using AND, OR and NOT. Contrary,
it needs only n single-literal product-terms if expressed using AND, XOR and NOT. Vice
versa, functions which do not have embedded XOR logic might have larger representation if
expressed using AND, XOR and NOT. Since both, AND-OR and AND-XOR, minimization
algorithms are quite time-consuming for large functions, it would be attractive to know a
priori which of them to use for a given function. We address this problem in this paper.
We study what kind of structure a function should have to benefit from XOR minimization,
and prove a theorem characterizing one such structure. This theorem formulates a sufficient
condition for a given function f(X), X = {z1,2.,...,z,}, to have adecomposition of type
f(X) = (9(X) ® h(X)) + r(X) with the total number of product-termsin g, » and r smaller
than the number of product-termsin f. It isinteresting to note that we put no restrictions on
the support sets of g and A, i.e. they can be equal, overlapping or digoint. This differs our
method from the existing methods for algebraic and Boolean decomposition. For example,
the algebraic division method [1] requests the intersection of the support sets of ¢ and A to be
digoint. The generalized algebraic division method [2] requests the support sets of g and A to
have at |east one digoint variable. In the classical Boolean decomposition theory [3], [4], the
casewhen g and h have the same support set is classified astrivial non-disjoint decomposition,
and is omitted from consideration. Since our approach is more genera, it has a potential
of finding decomposition for functions which cannot be optimized by algebraic and Boolean
algorithms. For example, the function shown in Figure 1 does not pose any non-trivial Boolean
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Figure 1: An example function.

digoint or non-digoint decomposition. However, it has a trivial Boolean decomposition of
type f(X) = g(X) & h(X), namely:

f(z1, T2, 23, 23) = (T122 + T3T4) B (21T + T3T4)

allowing to reduce the number of product-terms twice compared to the product-termsin the
minimal sum-of-product-termsform of this function.

One possible application of the theoretical result of this paper is detecting XOR-typelogic.
We present a heuristic which use our sufficient condition to quickly estimate whether a given
function is likely to benefit from XOR-minimization or not. Note, that the purpose of the
heuristic is not to find an optimal XOR cover, but rather to quickly decide whether an XOR
cover with anumber of product-terms smaller than the one in two-level AND-OR form exists.

The paper is organized as follows. Section 2 describes the basic notation and definitions
used inthe sequel. Section 3 presents the theorem formulating the sufficient condition. Section
4 describesthe heuristic for detecting XOR-logic. Section 5 showsthe experimental results. In
the final section, some conclusions are drawn and directions for further research are proposed.

2 Notation

Let f(z1,2o,...,2,) be an incompletely specified Boolean function of type f : {0,1}" —
{0,1,—}, of the variables z1, . . ., z,,, where “—" denotes a don’'t care value. We use F}, Ry
and D, to denote on-set, off-set and don't-care-set of afunction f, respectively.

A product-termis a Boolean product (AND) of one or more variables z+, . . ., z,, or their
complements. A convenient representation for a product-term is cube [6]. We use the terms
cube and product-term interchangeably.

The size of aset A, denoted by | A|, is the number of cubesin it. The complement of a set
A, denoted by A, is the intersection of the complements for each cube of A. The intersection
of two sets A and B, denoted by A N B, isthe union of the pairwise intersection of the cubes
from A and B. The union of two sets A and B, denoted by A U B, is the union of the cubes
from A and B.

A supercube of two cubes ¢; and ¢,, denoted by sup(c;, ¢;), isthe smallest cube containing
both C1 and Cy.

3 Sufficient condition

In this section we examine what kind of structure a function should have to benefit from XOR
minimization, and prove a theorem characterizing one such structure.



To optimize a Boolean expression according to some optimization criteria, one normally
looks for some property reducing the ”cost” of the expression. For example, the number of
product-terms in the two-level AND-OR (sum-of-product-terms) expression can be reduced
by applyingtherulez - Y +7-Y =Y, where x isavariableand Y is a product-term.

We would like to formulate a rule which could be applied to a two-level AND-OR ex-
pression to transform it to an expression of type f = (¢ & h) + r, with the total number of
product-termsin g, h and r smaller than the number of product-termsin f. First, we provethe
following Lemma.

Lemmal Let ay,a9,...,ax, k > 1, be cubes from the on-set F'; of a Boolean function f :
{0,1}* — {0,1, —} and let the intersection of sup(a, ..., a;) with the off-set Ry be a non-
empty set of cubes sup(a, ..., ax) N Ry = Uj_,¢;, for somep > 1. If for each cube ¢; we can
findacubeb; € F; suchthat sup(b;, c;) Ry = ¢; aswell assup(ay, . . ., ax) Nsup(b;, ¢;) = ¢;,

then
k

p p
sup(ay, ..., a) B Usup(b,-, ¢) = Uaj U U(sup(bi, ¢) — G) D
i=1 j=1 i=1
Proof: To prove the Lemma, we first show that the following two propertieshold. Let X, Y
and Z be sets of cubes.

Property 1 If X NY =@, then(XUY)aY = X.

Proof: (XUY)®Y = ((XUY)NY)u((XuY)nY”’)

= ((X'NY'NY)U((XNnYHu(YnY")) =
XNnY'.Clearly, XNnY'=XsnceXNY =0. O

Property2 If XNZ=0,YNZ=0andY C X,then(X®Y)UZ=Xd (Y UZ).

Proof: Ononehand, ( X @ Y)UZ = (XNY)UuX'NnY)UZ = (XNY')U Z, since
X'NY =@forY C X.Ontheotherhand, X (YUZ) = (X'N(YUZ))u(XN(YUuZ)) =
(X'MY)U(X'NZ)U(XNY'NZ") = (XNY")UZ,sinceX'NY =QforY C X, X'NZ =7
forXNZ=0,gmilaly XNZ'=XfooXNZ=0PanthusXNnY'NnZ'=XnNnY'. O

Sincea; € Fy, Vi € {1,2,...,k},and¢; € Rs,Vj € {1,...,p}, theintersection of the
setsUX_ a; and Uj_c; isempty. Therefore, by applying Property 1, we can write:

k k p p P
Uej=(Ua;UlJe) & Ja = suplar, ..., ar) & (Je
j=1 j=1 i=1 =1 i=1

Making union with U2_; (sup(b;, ¢;) — ¢;) on both sides, we get:

k p

Ua; U U sup(b;, ¢;) — ¢;) = (sup(aq, ..., a) & UcZ U (sup(bs, c;) — ).

j=1 i=1 i=1

Since sup(ai, - . ., ax) VU, (sup(bi, ¢;) — ¢;) = O, U_, (sup(b;, ¢;) — ¢;) NU_,¢; = @ and
U_e; C sup(al, ..., ag), we can to apply Property 2 and get:

k P

Uaj U U(sup(bi,ci) —¢) = sup(a,... UcZ U sup(b;, ¢;) — ¢;))

j=1 i=1 i=1

= Sup(ala R a’k) & Usup(bza Ci)'
=1



O

Lemma 1 gives us a condition for substituting a subset F; of the on-set F; of afunction
f by two functions g and & of type g, h : {0,1}" — {0,1} so that F}} = F, & F}, and the
total number of cubesin Fy and F}, is smaller that in F';. Next, we prove that this condition
is sufficient, meaning that, whenever it holds, the number of cubesin f can be reduced by
representingitas f = (g ® h) +r.

Theorem 1 (Sufficient condition) If a Boolean function f satisfies Lemma 1 for some set
of cubes {a1,as,...,ax}, a; € Fy, Vi € {1,2,...,k}, then it can be represented as f =
(9 ® h) + r with the total number of cubesin g, h, r smaller thanin f.

Proof: Supposeafunction f = (Fy, Dr, Ry) satisfiesLemmal. Then, there exist some cubes
a;,b; € Fr,i e {1,2,...,k},5 € {1,...,p}, and ¢; € R, satisfying eq.(1). All the cubes
from the set UY_, (sup(b;, ¢;) — ¢;) belong to either on-set F or to don’t care set D;. Also,
for each i, the set sup(b;, ¢;) — ¢; includes at least one cube from the on-set F'y, namely b;.
So, p + 1 cubes from the left hand side of the equation (1) cover at least p + &, k£ > 1, cubes
from the on-set F';, given by the right hand side of (1). If we set F, = sup(ai, ..., ax) and
Fy = Ul sup(bs, ¢;), then | Fy| + |F,| < |F7|, with Ff = (Us_ a;) U (U=, (sup(bi, ¢;) — ;).
Defining the”reminder” as F,, = Fy— F;, we get adecomposition of f of type f = (g9 h)+r
with the total number of cubesin g, h, r smaller thanin f.

O

As an example, consider a 4-variable function f shown in Figure 2. Let ¢; = 0000 and
a, = 0101. Then we have sup(a,as) = 0—0— and sup(a1, az) N Ry = {0100,0001} =
{Cl, 62}. It iseasyto seethat by = 1100 SaIISfleSsup(bl, 01) ﬂRf =C and by = 0011 satisfies
sup(bs, c2) N Ry = ¢co. Since sup(by, c1) — ¢1 = by aswell as sup(be, c3) — o = by, We get

sup(ay, ag) @ (sup(by, 1) U sup(by,c1)) = ag Uag U by Uby

Thus, f can berepresented as f = g ® h, with g = 7173 and h = 12T3T4 + T1T2T4.
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Figure 2: An example function.

4 Detecting XOR-typelogic

One possible application of Theorem 1 is detecting XOR-type logic. The larger is the subset
of the on-set of a function f, satisfying Lemma 1, the more f can benefit from XOR min-
imization. However, there might be severa different choices of such a subset. Computing
a best one would require first trying all possible subsets a., as, . .., a, of f to find the ones



Check_XOR(Ff, Df, Rf)
input: on-set Fy, don't care set Dy and off-set Ry of f
output: "YES” if functionislikely to benefit from X OR-minimization, "NO” otherwise.

counter = 0;
for (every pair of cubes (a1,a2) € Fy x Fy) {
flag_lemma_satisfied = 1;
Compute supercube sup(az, az);
Compute sup(ai,a2) N Ry = UY_ ¢;
for (eachcubec; € UY_;) {
flag_found_b = 0;
for (each cubeb; € Fy) {
Compute supercube sup(b;, ¢;);
if(sup(bj, c;) N Ry = ci) {
if(sup(ar, az) N sup(by, ;) = ;) {
flag_found_b = 1; /* found b; for thisc; */
break; /* break for-loop */
}
}

}

if(flag_-found_b = 0) { /* failed to find b; for somec; */
flag_lemma_satisfied = O;
break;

}
}

if (flag_lemma_satisfied = 1) /* Lemma is satisfied for (a1, az) */
counter++;
}

if(0 > 0)

return(YES, counter);
else

return(NO);

Figure 3: Pseudocode of the algorithm.

satisfying Lemma 1, and then solving the covering problem to find which combination of the
subsets results in the best XOR-cover for f. Both steps would require exponential time, and
therefore the exact algorithm would be too slow for large functions. Instead, we developed a
simple heuristic, which gives quickly estimates whether a given function is likely to benefit
from X OR-minimization or not.

The pseudocode of our heuristic is shown in Figure 3. The input is the on-set F, don’t
care-set Dy and off-set Ry of f. The output is "YES’ if function is likely to benefit from
XOR-minimization, "NO” otherwise. The algorithm repeats the following basic steps:

1. Choose apair of cubes, a; and as, and compute their supercube sup(a1, as);
2. Compute the intersection sup(ai, a2) N Ry = U_ ¢;;

3. For each cube ¢;, try to find acube b; € F such that the supercube sup(b;, ¢;) satisfy
conditions (sup(b;, c;) N Ry = ¢;) and (sup(a1, az) N sup(b;, ¢;) = ¢;) of Lemma 1.

4. Repeat 1, 2 and 3 for al pairs of a; and a,, updating the number of pairs satisfying
Lemmal (counter) after each iteration.



5. If some of the pairs satisfy Lemma 1, return ”YES’ together with the number of pairs.
Otherwise, return "NO”.

The main saving in time comes from checking Lemma 1 for only pairs of cubes (a1, as)
instead of all possible subsets (a4, as, . . ., ax), n > k > 1. Thisreducesthe number of choices
to try from O(2/¥7) to O(|F;|?). Another essential saving in time is due to the fact that we
are not computing the XOR cover for f at al. Instead, we simply count the number of pairs
(a1, ay) satisfying Lemma 1. This doesn’t cause any problem, because our purpose in not to
find the minimal XOR cover, but rather to decide whether such a cover islikely to be smaller
than the OR cover. Since the condition given by Lemma 1 is sufficient, any time we found
apair (ay,ay) satisfying Lemma 1, we know that f can be represented as f = (¢ ® h) +r
with the total number of cubesin g, h, » smaller thanin f. The more pairs satisfy Lemma, the
more flexibility we have to select a good XOR cover out of them. However, since Theorem 1
proves only the sufficiency of the condition, not its necessity, there might be cases when the
condition is not satisfied, but the number of cubesin f can still be reduced by representing it
asf=(g®h)+r. So,ingeneral, our heuristic might be too pessimistic. To check how often
thisisthe case we have conducted a set of experiment, which are described in the next section.

5 Experimental results

We performed a set of experiments, targeting to determine how pessimistic is our heuristic,
i.e. how often it givesthe answer " NO” when theright answersis”YES’. Table 1 summarizes
the results. Columns 2 and 3 give the number of inputs » and the number of outputs m of the
function. Column 4 refers to the number F; of cubes in the cover computed by Espresso [5].
Column 5 gives the total number, N, of pairs (a1, as), satisfying Lemma 1,

The condition given by Lemma 1 is sufficient, so we would expect the functions which
satisfy with large N to benefit from XOR minimization. This seems to be confirmed by the
experiments. Functions with large N, like 9sym, alu4, b9, ex7, life, rd53, rd73, rd83, sym10,
xor5, are known to have asmaller XOR cover compared to OR cover [7]-[11]. However, since
the condition is not sufficient, thereisacase, 1481, when it is not satisfied, but the function can
substantially benefit from XOR minimization. t481 can be represented as f(X) = g(X) @
h(X) with only 16 productsin g and h in total [7]. We are currently studying the possibilities
torelax Lemmal.

6 Conclusion

In this paper we have formulated a sufficient condition for afunction f to have decomposition
of type f = (g & h) + r, with the total number of product-termsin g, » and r smaller than
the number of product-termsin f. Using this condition, we have designed an algorithm for
deciding whether afunction is likely to benefit from X OR-minimization.

Our current research includes designing an algorithm with the algorithm for finding a
good decomposition of type f = (¢ & h) + r, based on Lemma 1. We plan to use the heuristic
developed in this paper as a pre-processing step, deciding whether it worth to continue the
XOR-minimization or not. Once a decomposition of type f = (g1 @ hy) + r; isfound, there
are severa choices: (1) decompose g; or h, resulting is an iterative decomposition of type
F=(((g2® ha) +12) ® hy) + r1; (2) decompose 1, resulting is a multiple decomposition of



type f = (g1 @ h1) + (92 ® ho) + 72; (3) or decompose both g; or h; and r4, resulting in a
genera tree-like decomposition.

We also looking into the ways to relax the Lemma 1 and, if possible, to formulate a neces-
sary condition.
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Table 1: Number of pairs satisfying Lemma 1.

Example | n | m | |Fy| N
5xpl 7 10| 65 27
9sym 9 | 1| 86 301
alu2 10| 8 | 68 1
alu3 10| 8 | 66 0
alu4 14| 8 | 575 || 114
amd 14 | 24 | 66 7

b2 16 | 17 | 106 2
b9 16| 5 | 119 || 111
b10 15| 11 | 100 3
b12 15| 9 | 43 2
bcO 26 | 11| 179 41
bw 5 128 | 22 2
clip 9 | 5| 120 28
conl 7| 2 9 1
cordic | 23| 2 | 155 96
dist 8 | 5| 123 60
duke2 22|29 | 86 9
ex7 16| 5 | 119 || 111
exam 10| 10 | 67 0

ex1010 | 10 | 10 | 284 1
f51m 8 | 8| 77 44
gary 15| 11 | 107 11

in0 15| 11 | 107 11
inl 16 | 17 | 62 2
in2 19| 10 | 136 11
in5 24 | 14| 62 0
inc 719 | 30 3
life 9| 1| &4 724

misex1 8 | 7| 12 0

misex2 | 25| 18 | 28 0

misex3 | 14 | 14 | 690 || 161

misex3c | 14 | 14 | 197 86
mip4 8 | 8| 128 52

newapla2 | 6 | 7 7 0

newbyte | 5 | 8 8 0

newcplal | 9 | 16 | 38 0

newtpla | 15| 5 | 23 0

pl 8 | 18| 55 1
radd 8 | 5| 75 73
rd53 51 3| 31 198
rd73 7 | 3| 127 || 1304
rds4 8 | 4 | 255 || 7590
root 8|5 57 15
ryy6 16| 1 | 112 0
saon2 10| 4 | 58 53
shift 19 | 16 | 100 0

squars 5| 8 25 6
sgn 7| 3 38 3

syml0 | 10| 1 | 210 || 1918
t481 16| 1 | 481 0




