
A Sufficient Condition for Detection of XOR-Logic

Tomas Bengtsson Elena Dubrova
School of Engineering Dept. of Microelectronic and Information Technology
Jönköping University Royal Institute of Technology
Jönköping, Sweden Stockholm, Sweden

beto@ing.hj.se elena@ele.kth.se

Abstract

In this paper we formulate a sufficient condition for Boolean functions to have a de-
composition of type , with the total number of product-terms in , and

smaller than the number of product-terms in . This condition is used to develop an al-
gorithm for deciding whether a given function is likely to benefit from XOR minimization.

1 Introduction

In many cases, functions with embedded XOR logic have very large expressions in terms
of AND, OR and NOT operations. For example, an -variable parity function needs
product-terms consisting of literals each if expressed using AND, OR and NOT. Contrary,
it needs only single-literal product-terms if expressed using AND, XOR and NOT. Vice
versa, functions which do not have embedded XOR logic might have larger representation if
expressed using AND, XOR and NOT. Since both, AND-OR and AND-XOR, minimization
algorithms are quite time-consuming for large functions, it would be attractive to know a
priori which of them to use for a given function. We address this problem in this paper.
We study what kind of structure a function should have to benefit from XOR minimization,
and prove a theorem characterizing one such structure. This theorem formulates a sufficient
condition for a given function , , to have a decomposition of type

with the total number of product-terms in , and smaller
than the number of product-terms in . It is interesting to note that we put no restrictions on
the support sets of and , i.e. they can be equal, overlapping or disjoint. This differs our
method from the existing methods for algebraic and Boolean decomposition. For example,
the algebraic division method [1] requests the intersection of the support sets of and to be
disjoint. The generalized algebraic division method [2] requests the support sets of and to
have at least one disjoint variable. In the classical Boolean decomposition theory [3], [4], the
case when and have the same support set is classified as trivial non-disjoint decomposition,
and is omitted from consideration. Since our approach is more general, it has a potential
of finding decomposition for functions which cannot be optimized by algebraic and Boolean
algorithms. For example, the function shown in Figure 1 does not pose any non-trivial Boolean

This work was supported in part by IBM Faculty Award.



00 01 11 10
00 0 1 0 1
01 1 1 1 0
11 0 1 0 1
10 1 0 1 1

Figure 1: An example function.

disjoint or non-disjoint decomposition. However, it has a trivial Boolean decomposition of
type , namely:

allowing to reduce the number of product-terms twice compared to the product-terms in the
minimal sum-of-product-terms form of this function.

One possible application of the theoretical result of this paper is detecting XOR-type logic.
We present a heuristic which use our sufficient condition to quickly estimate whether a given
function is likely to benefit from XOR-minimization or not. Note, that the purpose of the
heuristic is not to find an optimal XOR cover, but rather to quickly decide whether an XOR
cover with a number of product-terms smaller than the one in two-level AND-OR form exists.

The paper is organized as follows. Section 2 describes the basic notation and definitions
used in the sequel. Section 3 presents the theorem formulating the sufficient condition. Section
4 describes the heuristic for detecting XOR-logic. Section 5 shows the experimental results. In
the final section, some conclusions are drawn and directions for further research are proposed.

2 Notation

Let be an incompletely specified Boolean function of type
, of the variables , where “ ” denotes a don’t care value. We use ,

and to denote on-set, off-set and don’t-care-set of a function , respectively.
A product-term is a Boolean product (AND) of one or more variables or their

complements. A convenient representation for a product-term is cube [6]. We use the terms
cube and product-term interchangeably.

The size of a set , denoted by , is the number of cubes in it. The complement of a set
, denoted by , is the intersection of the complements for each cube of . The intersection

of two sets and , denoted by , is the union of the pairwise intersection of the cubes
from and . The union of two sets and , denoted by , is the union of the cubes
from and .

A supercube of two cubes and , denoted by , is the smallest cube containing
both and .

3 Sufficient condition

In this section we examine what kind of structure a function should have to benefit from XOR
minimization, and prove a theorem characterizing one such structure.



To optimize a Boolean expression according to some optimization criteria, one normally
looks for some property reducing the ”cost” of the expression. For example, the number of
product-terms in the two-level AND-OR (sum-of-product-terms) expression can be reduced
by applying the rule , where is a variable and is a product-term.

We would like to formulate a rule which could be applied to a two-level AND-OR ex-
pression to transform it to an expression of type , with the total number of
product-terms in , and smaller than the number of product-terms in . First, we prove the
following Lemma.

Lemma 1 Let , , be cubes from the on-set of a Boolean function
and let the intersection of with the off-set be a non-

empty set of cubes , for some . If for each cube we can
find a cube such that as well as ,
then

(1)

Proof: To prove the Lemma, we first show that the following two properties hold. Let ,
and be sets of cubes.

Property 1 If , then .

Proof:
. Clearly, since .

Property 2 If , and , then .

Proof: On one hand, , since
for . On the other hand,

, since for ,
for , similarly for an thus .

Since , , and , , the intersection of the
sets and is empty. Therefore, by applying Property 1, we can write:

Making union with on both sides, we get:

Since , and
, we can to apply Property 2 and get:



Lemma 1 gives us a condition for substituting a subset of the on-set of a function
by two functions and of type so that and the

total number of cubes in and is smaller that in . Next, we prove that this condition
is sufficient, meaning that, whenever it holds, the number of cubes in can be reduced by
representing it as .

Theorem 1 (Sufficient condition) If a Boolean function satisfies Lemma 1 for some set
of cubes , , , then it can be represented as

with the total number of cubes in smaller than in .

Proof: Suppose a function satisfies Lemma 1. Then, there exist some cubes
, , and satisfying eq.(1). All the cubes

from the set belong to either on-set or to don’t care set . Also,
for each , the set includes at least one cube from the on-set , namely .
So, cubes from the left hand side of the equation (1) cover at least , , cubes
from the on-set , given by the right hand side of (1). If we set and

, then , with .
Defining the ”reminder” as , we get a decomposition of of type
with the total number of cubes in smaller than in .

As an example, consider a 4-variable function shown in Figure 2. Let and
. Then we have and

. It is easy to see that satisfies and satisfies
. Since as well as , we get

Thus, can be represented as , with and .

00 01 11 10
00 1 0 1 0
01 0 1 0 0
11 1 0 0 0
10 0 0 0 0

Figure 2: An example function.

4 Detecting XOR-type logic

One possible application of Theorem 1 is detecting XOR-type logic. The larger is the subset
of the on-set of a function , satisfying Lemma 1, the more can benefit from XOR min-
imization. However, there might be several different choices of such a subset. Computing
a best one would require first trying all possible subsets of to find the ones



Check XOR
input: on-set , don’t care set and off-set of
output: ”YES” if function is likely to benefit from XOR-minimization, ”NO” otherwise.

counter = 0;
for every pair of cubes

flag lemma satisfied = 1;
Compute supercube ;
Compute
for each cube

flag found b = 0;
for each cube

Compute supercube ;
if

if
flag found b = 1; /* found for this */
break; /* break for-loop */

if flag found b /* failed to find for some */
flag lemma satisfied = 0;
break;

if flag lemma satisfied /* Lemma is satisfied for */
counter++;

if
return YES ;

else
return NO ;

Figure 3: Pseudocode of the algorithm.

satisfying Lemma 1, and then solving the covering problem to find which combination of the
subsets results in the best XOR-cover for . Both steps would require exponential time, and
therefore the exact algorithm would be too slow for large functions. Instead, we developed a
simple heuristic, which gives quickly estimates whether a given function is likely to benefit
from XOR-minimization or not.

The pseudocode of our heuristic is shown in Figure 3. The input is the on-set , don’t
care-set and off-set of . The output is ”YES” if function is likely to benefit from
XOR-minimization, ”NO” otherwise. The algorithm repeats the following basic steps:

1. Choose a pair of cubes, and , and compute their supercube ;

2. Compute the intersection ;

3. For each cube , try to find a cube such that the supercube satisfy
conditions and of Lemma 1.

4. Repeat 1, 2 and 3 for all pairs of and , updating the number of pairs satisfying
Lemma 1 (counter) after each iteration.



5. If some of the pairs satisfy Lemma 1, return ”YES” together with the number of pairs.
Otherwise, return ”NO”.

The main saving in time comes from checking Lemma 1 for only pairs of cubes
instead of all possible subsets , . This reduces the number of choices
to try from to . Another essential saving in time is due to the fact that we
are not computing the XOR cover for at all. Instead, we simply count the number of pairs

satisfying Lemma 1. This doesn’t cause any problem, because our purpose in not to
find the minimal XOR cover, but rather to decide whether such a cover is likely to be smaller
than the OR cover. Since the condition given by Lemma 1 is sufficient, any time we found
a pair satisfying Lemma 1, we know that can be represented as
with the total number of cubes in smaller than in . The more pairs satisfy Lemma, the
more flexibility we have to select a good XOR cover out of them. However, since Theorem 1
proves only the sufficiency of the condition, not its necessity, there might be cases when the
condition is not satisfied, but the number of cubes in can still be reduced by representing it
as . So, in general, our heuristic might be too pessimistic. To check how often
this is the case we have conducted a set of experiment, which are described in the next section.

5 Experimental results

We performed a set of experiments, targeting to determine how pessimistic is our heuristic,
i.e. how often it gives the answer ”NO” when the right answers is ”YES”. Table 1 summarizes
the results. Columns 2 and 3 give the number of inputs and the number of outputs of the
function. Column 4 refers to the number of cubes in the cover computed by Espresso [5].
Column 5 gives the total number, , of pairs , satisfying Lemma 1.

The condition given by Lemma 1 is sufficient, so we would expect the functions which
satisfy with large to benefit from XOR minimization. This seems to be confirmed by the
experiments. Functions with large , like 9sym, alu4, b9, ex7, life, rd53, rd73, rd83, sym10,
xor5, are known to have a smaller XOR cover compared to OR cover [7]-[11]. However, since
the condition is not sufficient, there is a case, t481, when it is not satisfied, but the function can
substantially benefit from XOR minimization. t481 can be represented as

with only 16 products in and in total [7]. We are currently studying the possibilities
to relax Lemma 1.

6 Conclusion

In this paper we have formulated a sufficient condition for a function to have decomposition
of type , with the total number of product-terms in , and smaller than
the number of product-terms in . Using this condition, we have designed an algorithm for
deciding whether a function is likely to benefit from XOR-minimization.

Our current research includes designing an algorithm with the algorithm for finding a
good decomposition of type , based on Lemma 1. We plan to use the heuristic
developed in this paper as a pre-processing step, deciding whether it worth to continue the
XOR-minimization or not. Once a decomposition of type is found, there
are several choices: (1) decompose or , resulting is an iterative decomposition of type

; (2) decompose , resulting is a multiple decomposition of



type ; (3) or decompose both or and , resulting in a
general tree-like decomposition.

We also looking into the ways to relax the Lemma 1 and, if possible, to formulate a neces-
sary condition.

References

[1] R.K. Brayton, C. McMullen, ”The Decomposition and factorization of Boolean Func-
tions”, Proc. ISCAS-82, 1982, pp. 49-54.

[2] T. Stanion, C. Sechen, ”Quasi-algebraic decomposition of switching functions”, Proc.
Int. Conf. Advanced Research in VLSI, 1995, pp. 358-367.

[3] R. L. Ashenhurst, ”The decomposition of switching functions”, Proc. International
Symp. Theory of Switching Part I 29, 1959, pp. 74-116.

[4] H. A. Curtis, A New Approach to the Design of Switching Circuits, Van Nostrand, Prince-
ton, 1962.

[5] R.K. Brayton, G. Hachtel, C. McMullen, A. Sangiovanni-Vincentelli, Logic Minimiza-
tion Algorithms for VLSI Synthesis, Kluwer Academic Publisher, 1984.

[6] Y. H. Su, P. T. Cheung, ”Computer minimization of multi-valued switching functions”,
IEEE Trans. Comput., vol. C-21, 1972, pp. 995-1003.

[7] E. V. Dubrova, D. M. Miller, J. C. Muzio, ”AOXMIN-MV: A Heuristic Algorithm for
AND-OR-XOR Minimization”, Proc. 4th International Workshop on the Applications
of the Reed-Muller Expansion in Circuit Design, Victoria, B.C., Canada, August 20-21,
1999, pp. 37-53.

[8] T. Sasao, ”A design method for AND-OR-EXOR three-level networks”, Notes of Int.
Workshop on Logic Synthesis, May 1995, pp. 8:11-8:20.

[9] D. Debnath, T. Sasao, ”A heuristic algorithm to design AND-OR-EXOR three-level net-
works”, Proc. Asia and South Pacific Design Automation Conf., 1998.

[10] S. Chattopadhyay, S. Roy, P. P. Chaudhuri, KGPMIN: An efficient multilevel multioutput
AND-OR-XOR minimizer, IEEE Trans. on CAD of ICs and Systems, 16 No. 3 (1997),
257-265.

[11] A. Jabir, J. Saul, ”A Heuristic decomposition Algorithm for AND-OR-EXOR Thre-level
Minimization of Boolean Functions”, Proc. 4th International Workshop on the Applica-
tions of the Reed-Muller Expansion in Circuit Design, Victoria, B.C., Canada, August
20-21, 1999, pp. 55-74.



Table 1: Number of pairs satisfying Lemma 1.

Example
5xp1 7 10 65 27
9sym 9 1 86 301
alu2 10 8 68 1
alu3 10 8 66 0
alu4 14 8 575 114
amd 14 24 66 7
b2 16 17 106 2
b9 16 5 119 111

b10 15 11 100 3
b12 15 9 43 2
bc0 26 11 179 41
bw 5 28 22 2
clip 9 5 120 28
con1 7 2 9 1

cordic 23 2 155 96
dist 8 5 123 60

duke2 22 29 86 9
ex7 16 5 119 111

exam 10 10 67 0
ex1010 10 10 284 1
f51m 8 8 77 44
gary 15 11 107 11
in0 15 11 107 11
in1 16 17 62 2
in2 19 10 136 11
in5 24 14 62 0
inc 7 9 30 3
life 9 1 84 724

misex1 8 7 12 0
misex2 25 18 28 0
misex3 14 14 690 161
misex3c 14 14 197 86

mlp4 8 8 128 52
newapla2 6 7 7 0
newbyte 5 8 8 0
newcpla1 9 16 38 0
newtpla 15 5 23 0

p1 8 18 55 1
radd 8 5 75 73
rd53 5 3 31 198
rd73 7 3 127 1304
rd84 8 4 255 7590
root 8 5 57 15
ryy6 16 1 112 0
sao2 10 4 58 53
shift 19 16 100 0

squar5 5 8 25 6
sqn 7 3 38 3

sym10 10 1 210 1918
t481 16 1 481 0


