
Formal Verification using Probabilistic Techniques

René Krenz Elena Dubrova
Department of Microelectronic and Information Technology

Royal Institute of Technology
Stockholm, Sweden

rene,elena @ele.kth.se

Abstract

Formal verification is of importance in many phases of the design of digital systems.
In spite of the inherent complexity of the problem, the state-of-the-art in the area has
been significantly advanced by BDD-based tools. However, the growing complexity of the
verification instances keeps motivating the exploration of alternative approaches. This
paper considers probabilistic equivalence checking techniques. Probabilistic methods
decide equivalence of two circuits by hashing them and comparing the resulting hash
codes. We design an algorithm which takes time to compute the hash code for
an -variable Boolean function given as a disjoint sum-of-products with products.

1 Introduction

Combinational equivalence checking is one of the key techniques of the current verification
methodology for digital systems. Given two combinational netlists of the same number of
inputs and outputs, the goal is to determine whether for every possible input assignment, each
pair of corresponding outputs evaluates to the same value. Although this problem is known to
be coNP-hard, many practical instances are tractable.

Most of the current successful equivalence checkers use Binary Decision Diagrams (BDDs)
[1] or their derivatives as a core of the equivalence deduction engine. The circuits to be veri-
fied are converted into BDDs which are then structurally compared. This type of equivalence
checking is fast and independent of the actual circuit structure. However, if the BDD represen-
tation grows too large, its storage and manipulation becomes infeasible. Various techniques
have been proposed to reduce the memory complexity of BDDs by exploiting the structural
and functional similarities of the circuits [2]-[5]. Some alternative to BDD-based equivalence
checkers use Boolean Satisfiability (SAT) [6], [7] or SAT-like methods (ATPG [8], recursive
learning [9]) as a principal engine.

In spite of the considerable advances in the area, the growing complexity of the verifica-
tion instances motivates exploring the alternative approaches. We study the properties of the
transform which is used in the probabilistic method [11] for transforming Boolean functions
into polynomials and derive several rules for speeding-up the computation of hash codes. The
main goal is to avoid generating the entire polynomial for a function , but instead to derive

This work was supported in part by the Research Grant No 64700 from the SSF INTELECT program.

the polynomials only for very small subfunctions of , hash them and combine the results to
compute the hash code for . We show that if the input function is given as a disjoint sum-of-
products, our rules allow to shrink the size of the subfunctions for which the polynomial has
to be generated to 1-variable subfunctions (and). The polynomials for and are and

, correspondently, so on practice we do not generate polynomials at all but simply symbol-
ically replace. Using these rules, we design an algorithm which takes time to compute
the hash code for an -variable function if the function is given as a disjoint sum-of-products
with products. Our experimental results show that it takes less than sec to compute and
compare hash codes for disjoint sum-of-products of size . Furthermore, this time is
smaller than the time for building can comparing BDDs for the corresponding functions.

The paper is organized as follows. In Section 2 gives a brief overview of the arithmetic
transform and describes the new algorithm for computing hash codes from disjoint sum-of-
products. Section 3 shows the experimental results. Section 4 concludes the paper.

2 Probabilistic verification method

2.1 Notation

Throughout the paper, we denote by Boolean functions of type and by
, the functions over the field , - prime, of type . We use the symbols

, and for Boolean operations AND, OR and NOT, correspondently. We denote by ,
and the arithmetic operation over the field (all modulo). We use for
both, Boolean and field variables. For example, stands for a Boolean expression rep-
resenting an AND of two Boolean variables; stands for a field expression (polynomial)
representing a multiplication mod of two field variables.

A product-term is a Boolean product (AND) of one or more variables or their
complements. A sum-of-products is a Boolean sum (OR) of one or more product-terms. A
sum-of-products is disjoint if for any .

By we denote the support set of a Boolean function , which is the set of variables
on which the function actually depends, i.e. .

2.2 Basic idea of the probabilistic method

The probabilistic method based on arithmetic transform has been developed in [11] for Boolean
functions an extended in [12] to the multiple-valued case

, - positive integer greater than 2. In both cases, the combinational
logic circuits and to be compared are transformed to the integer-valued polynomials

and . These polynomials are functions of type over a finite field of inte-
gers with being a prime. To compute hash codes, and are evaluated for the
values of variables taken independently and uniformly at random from . The resulting hash
codes, and , are compared and the following conclusions are drawn:

1. If , then .
2. If , then with a probability of error .
Conclusion (1) can be made because a polynomial is unique for a given function. Note

that in this case the correctness of the conclusion is 100% guaranteed. This makes this method
particularly attractive for applications where the expectation to get the answer no is high, e.g.
in detection of bugs. If , then the decision is taken with a quantified probability,

because an error may result from collision between non-equivalent functions. It was shown in
[11] that, for any -variable Boolean function, the error probability is at most

, for , where is the size of the field . For example, if and is a 32-bit
integer, then . The error probability can be made even smaller by using a larger
.

The formal definition of arithmetic transform is made by associating a
key polynomial with each of the input assignments of a function . The key
polynomials of assignments producing the non-zero output value of are then summed up
to producing the output value of . This sum is interpreted as an integer-valued polynomial

over .
The key polynomial for a given row of the truth table is a product of terms, where each

term is associated with a particular input variable , . If represents the
value of in a given row of the truth table, then the corresponding term in the key
polynomial is defined as . Parameter acts as a selector
between and .

For a more detailed description of arithmetic transform the reader is referred to [12].

2.3 An new algorithm for computing hash codes

Polynomials are not efficient as a data structure. Often, it takes more memory to store
than to store . Therefore, we would like to avoid computing and storing a complete

representation of . Instead, we would rather derive the polynomial only for very small
subfunctions of , hash them and then combine to compute the hash code for . This would
be very easy to perform incrementally if the following property was satisfied:

(1)

where is some Boolean operation and is some operation over the field . If (1) holds,
then, for any assignment ,

and thus . So, we can first compute and , and
then apply to them to get the .

Unfortunately, the equation (1) does not hold for all the operations and all the functions.
We can identify the following special cases for which (1) is satisfied. Lemma 1 is a special
case of Theorem 9 [11, p. 72] and Lemma 2 is a special case of Theorem 3 [11, p. 69]. Let
and be Boolean functions.

Lemma 1 If , then .

Lemma 2 If , then .

Lemmata 1 and 2 allow us to perform the computation of hash codes incrementally when
the conditions and are satisfied. For example,

since

since

since and

Suppose we evaluate the polynomial for the values , then
.

HashFromDisjoint
input: a disjoint sum-of-products for
output: the hash code for

Generate random values for variables ;
Compute for all , ;
hash = 0;
for

hash tmp = 1;
for

if is complemented
hash tmp = hash tmp ;

else
if is not complemented

hash tmp = hash tmp ;
hash = hash + hash tmp;

return hash ;

Figure 1: Pseudocode of the algorithm for computing the hash code.

Next we show that if a Boolean function is given by a disjoint sum-of-products, then
Lemmata 1 and 2 can be subsequently applied to break down the to the polynomials
of 1-variable subfunctions (and ,). Since the polynomials for and
are and , correspondently, to compute the hash code we can
simply replace by the value and by . This technique is implemented in the
algorithm for computing hash codes HashFromDisjoint shown in Figure 1.

Theorem 1 The algorithm HashFromDisjoint computes the hash code for a Boolean func-
tion given by a disjoint sum-of-products in steps.

The proof is available from the authors.

3 Experimental results

The purpose of experiments was to compare the time it takes HashFromDisjoint to com-
pute and compare hash codes for two functions with the time it takes to build and compare
BDDs for these functions. In both cases the input functions are given by disjoint sum-of-
products. Our program has been implemented in C and uses the CUDD package [13] the for
the BDD manipulations. All results are reported on a Sun Ultra 60 workstation operating with
a 440 MHz CPU and with 128 MB RAM main memory. Time was measured using the Unix
command time.

Table 1 shows the results for the IWLS93 benchmark set. The original functions in this
benchmark set are given by regular sum-or-products in .pla format. For our experiments, we
first transformed all the benchmarks to disjoint sum-of-products in .pla format. The disjoint
sum-of-products were generated using Espresso with -Ddisjont option [14]. Then, we verified
every function against its copy with a random number of introduced faults. The faults were
introduced by flipping a bit to a complemented value. Columns 2 and 3 give the number of
inputs and the number of outputs of the benchmarks functions. Columns 4 and 5 show the
number of product-terms in the original and disjoint sum-of-products (SOP), correspondently.
Column 6 gives the time it took HashFromDisjoint to compute and compare hash codes

starting from the disjoint sum-of-products. 0.00 stands for the times smaller that 0.01 sec.
Note, that the numbers shown do not include the time it took Espresso to compute the disjoint
SOPs. Columns 7 shows the time for building and comparing two BDDs starting from the
disjoint SOPs using CUDD BDD package [13]. For a comparison, we also show in column
8 the time for building and comparing two BDDs starting from the original SOPs. The sign
”—” stands for the cases when the BDD package aborted with a ”problem during garbage
collection” error message.

Our experimental results show that, if a disjoint SOP is given on the input, then the run-
time of HashFrom Disjoint is always faster than the BDD time. If the size of a disjoint
SOP does not exceed 5000 product-terms, then the run-time of HashFrom Disjoint is even
faster than the BDD-building time from the original, non-disjoint SOP. However, representing
functions by disjoint sum-of-products in infeasible for larger input instances. In the next
section discuss our current work towards overcoming this problem.

Table 1: Hash code computation versus BDD building time.

time to compute time to build time to build
number of products 2 hash codes from 2 BDD from 2 BDD from

disjoint covers disjoint covers original covers
name original disjoint and compare and compare and compare

cover cover (sec) (sec) (sec)
Con1 7 2 9 11 0.01 0.15 0.13
Xor5 5 1 16 16 0.00 0.09 0.12

Misex2 25 18 29 29 0.01 0.17 0.11
Squar5 5 8 32 30 0.00 0.13 0.13
Misex1 8 7 32 32 0.01 0.14 0.17
Rd53 5 3 32 32 0.00 0.12 0.16
Inc 7 9 34 34 0.00 0.17 0.15

Sqrt8 8 4 40 44 0.00 0.13 0.12
E64 65 65 65 65 0.00 0.20 0.14
5xp1 7 10 75 75 0.08 0.13 0.14
Bw 5 28 87 96 0.00 0.11 0.14

Rd73 7 3 141 141 0.01 0.19 0.13
Sao2 10 4 58 152 0.00 0.11 0.1
Clip 9 5 167 185 0.00 0.19 0.11
9sym 9 1 87 189 0.00 0.14 0.14

Duke2 22 29 87 226 0.01 0.19 0.13
Table3 14 14 175 232 0.01 0.18 0.17
Rd84 8 4 256 255 0.00 0.14 0.16
Ex5p 8 63 256 256 0.01 0.17 0.19
B12 15 9 431 302 0.01 0.12 0.15

Table5 17 15 158 315 0.01 0.19 0.15
Apex4 9 19 438 537 0.01 0.17 0.20
Ex1010 10 10 1024 810 0.01 0.16 0.14

Cps 24 109 654 945 0.08 0.28 0.20
Vg2 25 8 958 958 0.03 0.34 0.14
Ex4p 128 28 621 1004 0.09 0.33 0.24
T481 16 1 481 1547 0.02 0.21 0.12
Pdc 16 40 276 1800 0.07 0.43 0.41
Spla 16 46 2307 2194 0.09 — —
Seq 41 35 1459 2274 0.12 0.36 0.26

Apex3 54 50 280 2331 0.15 0.48 0.12
Misex3 14 14 1848 2349 0.05 0.27 0.25
Misex3c 14 14 305 2401 0.08 0.31 0.13

Alu4 14 8 1028 3605 0.06 0.44 0.19
Apex5 117 88 1227 5029 0.63 1.10 0.33
Apex1 45 45 206 12307 0.70 — 0.28
Cordic 23 2 1206 22228 0.53 2.19 0.27

4 Conclusion

This paper considers the application of probabilistic techniques to equivalence checking. We
design an algorithm which takes time to compute the hash code for an -variable
function if the function is given as a disjoint SOP with product-terms.

A clear shortcoming of our current algorithm is the requirement that the input functions
are available in the disjoint SOP format. This make it infeasible for large input instances.
To avoid this problem, we are presently working on the development of a pre-processing
algorithm, which takes a netlist description of the circuit to be verified and partitions it into a
network of nodes, with each node representing a disjoint SOP of a reasonable size.

References
[1] R. E. Bryant, ”Graph-based algorithm for Boolean function manipulation”, IEEE Trans-

actions on Computers C-35, pp. 677-691, 1986.

[2] Matsunaga Y., ”An efficient equivalence checker for combinational circuits” Proc. of
Design Automation Conference, 1996.

[3] Kuehlmann A., Krohm F., ”Equivalence checking using cuts and heaps” Proc. of Design
Automation Conference, pp. 263-268, 1997.

[4] Burch J. R., Singhal V., ”Tight integration of combinational verification methods” Proc.
of IEEE/ACM International Conference on Computer-Aided Design, pp. 570-576, 1998.

[5] Paruthi V., Kuehlmann A., ”Equivalence checking using cuts a structural SAT-solver,
BDDs and simulation” Proc. of International Conference on Computer Design, 2000.

[6] E. Goldberg, M. R. Parasad, R. K. Brayton, ”Using SAT for Combinational Equivalence
Checking”, IEEE/ACM Design, Automation and Test in Europe, Conference and Exhibi-
tion 2001, pp. 114-121.

[7] J.Marques-Silva, T.Glass, ”Combinational Equivalence Checking Using Satisfiability
and Recursive Learning”, IEEE/ACM Design, Automation and Test in Europe, pp. 145-
149, 1999.

[8] D. Brand, ”Verification of large synthesized designs”, IEEE/ACM International Confer-
ence on Computer-Aided Design, pp. 534-537, 1993.

[9] W.Kunz, ”HANNIBAL: An Efficient Tool for Logic Verification Based on Recursive
Learning”, IEEE/ACM International Conference on Computer-Aided Design, pp. 538-
543, November 1993.

[10] P.Tafertshofer, A.Ganz, M.Henftling, ”A SAT-Based Implication Engine for Efficient
ATPG, Equivalence Checking and Optimization of Netlists”, IEEE/ACM International
Conference on Computer-Aided Design, pp. 648-657, 1997.

[11] J. Jain, J. Bitner, D. S. Fussell, J. A. Abraham, ”Probabilistic verification of Boolean
functions”, Formal Methods in System Design, Kluwer Academic Publishers, 1, pp. 63-
117, 1992.

[12] E. Dubrova, H.Sack, ”Probabilistic Verification of Multiple-Valued Functions”, 30th In-
ternational Symposium on Multiple-Valued Logic, pp. 461-466, 2000.

[13] Somenzi F. CUDD: CU Decision Diagram Package, Release 2.3.0 University of Col-
orado at Boulder, 1998.

[14] R.K. Brayton, G. Hachtel, C. McMullen, A. Sangiovanni-Vincentelli, Logic Minimiza-
tion Algorithms for VLSI Synthesis, Kluwer Academic Publisher, 1984.

