

Upper Bound on the Number of Product-Terms in a Sum-of-Products Expansion of Multiple-Valued Functions

E. V. Dubrova*

Electronic System Design Lab
Department of Electronics
Royal Institute of Technology
S-164 40 Kista, Sweden

Abstract

This paper considers the complexity of sum-of-products expansions of multiple-valued functions over a chain-based Post algebra. An upper bound on the number of product-terms in these expansions is derived. Such a bound provides a measure for estimating the maximal size of a Programmable Logic Array needed to implement a function of a fixed number of variables. It can also be used to evaluate the performance of heuristic logic minimizers, by being contrasted to their solutions. To derive this bound, a class of functions which are “worst-case” for the expansion is studied.

Keywords: multiple-valued function, sum-of-products expansion, upper bound.

1 Introduction

In this paper we consider the complexity of sum-of-products expansions of multiple-valued functions over a chain-based Post algebra $\mathcal{P} := \langle M; +, \cdot, J; 0, m-1 \rangle$, where $M := \{0, 1, \dots, m-1\}$ is a set whose elements form a totally ordered chain, “+” and “.” are the binary operations *maximum* (MAX) and *minimum* (MIN) respectively, and $J := \{J_0, J_1, \dots, J_{m-1}\}$ is a set of *literal* operators, such that

$$J_i x := \begin{cases} m-1 & \text{if } x = i \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

*Supported in part by Research Grant No 240-98-101 from the Swedish Research Council for Engineering Sciences and by a fellowship from the Knut and Alice Wallenbergs foundation of Sweden.

where x is a multiple-valued variable and $i \in M$ is a constant. For convenience, we write $J_i x$ as $\overset{i}{x}$. Under the operations “+” and “.” the chain forms a distributive lattice with the least element 0 and the greatest element $m - 1$. This algebra is known to be functionally complete with constants [1], meaning that every multiple-valued function on M can be defined as a composition of its basic operations and constants.

Any m -valued n -variable function has a *canonical sum-of-products expansion* over \mathcal{P} of the form

$$f(x_1, \dots, x_n) = \sum_{i=0}^{m^n-1} c_i \overset{i_1}{x_1} \overset{i_2}{x_2} \dots \overset{i_n}{x_n} \quad (2)$$

where $c_i \in M$ are constants, and $(i_1 i_2 \dots i_n)$ is the m -ary representation of i with i_1 being the least significant digit.

While the canonical sum-of-products expansion of a function is unique, usually more than one non-canonical sum-of-products expansion of a function exists. For example, the 2-variable, 3-valued function shown in Figure 1 can be expressed as $f(x_1, x_2) = 1 \overset{1}{x_1} \overset{0}{x_2} + 1 \overset{1}{x_1} \overset{2}{x_2} + 2 \overset{1}{x_2}$, or as $f(x_1, x_2) = 1 \overset{1}{x_1} + 2 \overset{1}{x_2}$.

$x_2 \setminus x_1$	0	1	2
0	0	1	0
1	2	2	2
2	0	1	0

Figure 1: An example function.

As a measure of complexity of the expansion we use the total number of product-terms. This measure is common for sum-of-products expansions, because usually they are implemented by Programmable Logic Arrays (PLAs) [5]-[8], and the area of a PLA is proportional to the number of product-terms in the sum-of-products expansion [9]. Using this complexity measure, we define a *minimal sum-of-products expansion* as an expansion with the smallest number of product-terms. For example, for the function in Figure 1, the expansion $f(x_1, x_2) = 1 \overset{1}{x_1} + 2 \overset{1}{x_2}$ is the minimal one.

To characterize the “worst-case” among all functions of n variables, we derive an upper bound on the number of product-terms in minimal sum-of-products expansions over \mathcal{P} , which is a novel result. Some work has been done on deriving the upper bounds on the number of product-terms for other types of sum-of-products expansions. The expansion of multiple-valued functions over minimum, truncated sum and window literal has been considered in [17] and [18]. The *window literal* is an extension of the literal, defined by:

$${}^i x^j := \begin{cases} m-1 & \text{if } i \leq x \leq j \\ 0 & \text{otherwise} \end{cases}$$

where $i, j \in M$ and $i \leq j$. The operation *truncated sum* is given by $\text{TSUM}(x_1, x_2) := \text{MIN}(x_1 + x_2, m-1)$, where “+” is the regular arithmetic addition. In [17], the upper bound on the number of product-terms in a minimal expansion of this type has been derived for the cases of 1-variable m -valued functions (for any $m > 1$) and of 2-variable m -valued functions (for $1 < m < 8$). This was extended in [18] to handle the case when output phase optimization is allowed, for 1-variable m -valued functions (for any $m > 1$) and for 2-variable 3-, 4- and 5-valued functions. In [19] an upper bound on the average number of product-terms in a minimal expansion of multiple-valued functions over minimum, maximum and window literal has been derived. In [20] the case of multiple-valued input two-valued output function has been considered. An interesting work, relating the complexity of an expansion over a given set of operations to the properties of the operations is [21].

Our result is important in several respects. First, it provides a measure for estimating the maximal size of a PLA needed to implement a function of a fixed number of variables. Second, the upper bound can be contrasted to the solutions computed by heuristic logic minimizers [10]-[16] in order to evaluate their performance. This is of special significance for multiple-valued functions for which the exact methods for minimization are few and inefficient.

To derive an upper bound, we identify a special class of m -valued n -variable functions and prove that, for the case $n \leq m-1$, they are “worst-case” for the sum-of-products expansion over \mathcal{P} . Therefore, the number of product-terms in minimal

sum-of-products expansions of these functions gives the exact upper bound for $n \leq m - 1$. Using this result, we derive an approximate upper bound for $n > m - 1$. Finding the exact upper bound for $n > m - 1$ seems to be a very hard combinatorial problem which remains open.

The paper is organized as follows. Section 2 gives the notation and definitions used in the sequel. In Section 3, a special type of multiple-valued functions is defined and studied. In Section 4, the number of product-terms in a minimal expansion of these functions is computed. In Section 5, these functions are used to derive an upper bound on the number of product-terms at the minimal sum-of-products expansions over \mathcal{P} . In the final section, some conclusions are drawn and a direction for further research is proposed.

2 Notation and definitions

We use the standard definitions and notation in the area of multiple-valued logic ([2]). The most important notions are briefly summarized in this section.

Let $M := \{0, 1, \dots, m - 1\}$ be a finite set of values. An *m-valued n-variable function* $f(x_1, \dots, x_n)$ is a mapping $f : M^n \rightarrow M$. M^n is the *domain* of f and M is the *codomain*. A point in the domain of the function is called a *minterm*.

A *product-term* is MIN of one or more literals \dot{x}_j , $i \in M, j \in \{1, \dots, n\}$. A *sum-of-products expansion* of f is MAX of product-terms. We denote by $E^c(f)$ the canonical sum-of-products expansion (2) of f , and by $E^{\min}(f)$ the minimal sum-of-products expansion of f . We use $N(E^c(f))$ and $N(E^{\min}(f))$ to denote the number of product-terms in $E^c(f)$ and $E^{\min}(f)$, respectively.

Let $\Omega_M(n)$ be the set of all n -variable functions on M . The exact upper bound on the number of product-terms in $E^{\min}(f)$ for $f \in \Omega_M(n)$ is defined by [21]:

$$UB(n) := \max_{f \in \Omega_M(n)} N(E^{\min}(f)). \quad (3)$$

Let p_1 and p_2 be two product-terms of at most n variables and $c_1, c_2 \in M$ be constants such that $c_1 < c_2$. Since $c_1 + c_2 = c_2$ if $c_1 < c_2$ for any $c_1, c_2 \in M$,

therefore

$$c_1 \cdot p_1 + c_2 \cdot p_2 = c_1 \cdot (p_1 + p_2) + c_2 \cdot p_2. \quad (4)$$

The following rule is a special case of (4). It will often be used further in the proofs. Let $(a_1, \dots, a_{j-1}, a_{j-1}, \dots, a_n) \in M^{n-1}$ be some fixed $(n-1)$ -tuple in M^{n-1} , $c_i \in M$ be constants such that $c_0 \leq c_i$, for all $i \in \{1, 2, \dots, m-1\}$ and x_j be some variable, $j \in \{1, 2, \dots, n\}$. Then:

$$\begin{aligned} \sum_{i \in M} c_i \ x_1^{a_1} \dots x_{j-1}^{a_{j-1}} x_j^i x_{j+1}^{a_{j+1}} \dots x_n^{a_n} &= c_0 \ x_1^{a_1} \dots x_{j-1}^{a_{j-1}} x_{j+1}^{a_{j+1}} \dots x_n^{a_n} + \\ &+ \sum_{\substack{\forall k \in M \\ \text{such that} \\ c_k > c_0}} c_k \ x_1^{a_1} \dots x_{j-1}^{a_{j-1}} x_j^k x_{j+1}^{a_{j+1}} \dots x_n^{a_n} \end{aligned} \quad (5)$$

All product-terms with $c_i = c_0$, $i \in \{1, 2, \dots, m-1\}$ get absorbed in the product-term $c_0 \ x_1^{a_1} \dots x_{j-1}^{a_{j-1}} x_{j+1}^{a_{j+1}} \dots x_n^{a_n}$.

If $c_i = c_k, \forall i, k \in M$, then the rule (5) merges m product-terms of n variables into a single product-term of $n-1$ variables. We say that the simplification is carried of *with respect to* the variable x_j . E.g. if $m = 3$, then we can perform the following simplification with respect to x_1 : $1 \ x_1^0 x_2 + 1 \ x_1^1 x_2 + 1 \ x_1^2 x_2 = 1 \ x_2$.

3 Generalized parity functions

It is well-known that the exact upper bound on the number of product-terms in a minimal sum-of-products expansion of an n -variable Boolean function in Boolean algebra over $\{0, 1\}$ is 2^{n-1} . For any n , there are two functions which have exactly 2^{n-1} product-terms in their minimal sum-of-products expansions, called *even-parity* and *odd-parity*. The even-parity (odd-parity) function has value 1 when an even (odd) number of its variables have value 1.

While it is easy to see that parity functions are the “worst-case” for the sum-of-products expansions of Boolean functions, it is much harder to recognize which m -valued functions are the “worst-case” for the sum-of-products expansions of multiple-valued functions over chain-based Post algebra.

In this section we identify n -variable m -valued functions which, as will be proved later, are “worst-case” for the sum-of-products expansion for $n \leq m - 1$. The definition below shows the construction scheme. The number of product-terms in their minimal expansions will give us the exact upper bound for $n \leq m - 1$. This bound will be used as base for deriving an approximate upper bound for $n > m - 1$. Finding a general construction scheme for the “worst-case” function for $n > m - 1$ seems to be a very hard combinatorial problem which remains open.

We use the notation h_n instead of the conventional $h(x_1, \dots, x_n)$ to denote an n -variable function h . Such an abbreviation simplifies the proofs and doesn’t cause any confusion, because in our case it is the number of variables that matters, and not the variables themselves. A function h_n^r is defined inductively through the subfunctions h_{n-1}^r of $n - 1$ variables.

Definition 1 For a fixed $j \in M$, the function h_n^r is defined inductively by:

1. $h_0^r := r$
2. $h_n^r := h_{n-1}^{r \ominus 1} \dot{x}_n + \sum_{i \in M - \{j\}} h_{n-1}^r \dot{x}_n$

where $r \in M$ and “ \ominus ” denotes subtraction modulo m .

As an example, consider the case of $m = 3$ and $n = 2$, and let $r = m - 1$. Then, the defining tables for the functions h_2^2 for $j \in \{0, 1, 2\}$ are shown in Figure 2.

	0	1	2		0	1	2		0	1	2
0	0	1	1	0	2	1	2	0	2	2	1
1	1	2	2	1	1	0	1	1	2	2	1
2	1	2	2	2	2	1	2	2	1	1	0
$j = 0$			$j = 1$			$j = 2$			$j = 2$		

Figure 2: The functions h_2^2 , for a fixed $j \in \{0, 1, 2\}$ and $m = 3$.

For $m = 2$, h_n^1 corresponds to the odd-parity function when $j = 0$, and to the even-parity function when $j = 1$.

Now we prove a useful property of h_n^r functions which will be used further in the proofs.

Property 1 Let $n \geq 0$ and $r \in M$. Then

$$h_n^{r \ominus 1} = h_n^r \ominus \mathbf{1}$$

where “ \ominus ” denotes subtraction modulo m , extended to functions as usual.

Proof: By induction on n .

1) Obvious for $n = 0$.

2) Hypothesis: Assume the result holds for n . For a fixed $j \in M$ we have:

$$\begin{aligned}
h_{n+1}^{r \ominus 1} &= \sum_{i \in M - \{j\}} h_n^{r \ominus 1} \dot{x}_{n+1}^i + h_n^{r \ominus 1 \ominus 1} \dot{x}_{n+1}^j \\
&\quad \{ \text{Definition 1} \} \\
&= \sum_{i \in M - \{j\}} (h_n^r \ominus \mathbf{1}) \dot{x}_{n+1}^i + (h_n^{r \ominus 1} \ominus \mathbf{1}) \dot{x}_{n+1}^j \\
&\quad \{ \text{by ind. hypothesis} \} \\
&= \sum_{i \in M - \{j\}} (h_n^r \dot{x}_{n+1}^i \ominus \mathbf{1} \dot{x}_{n+1}^i) + (h_n^{r \ominus 1} \dot{x}_{n+1}^j \ominus \mathbf{1} \dot{x}_{n+1}^j) \\
&\quad \{ \text{distributivity of “.” over “ \ominus ”} \} \\
&= \left(\sum_{i \in M - \{j\}} h_n^r \dot{x}_{n+1}^i + h_n^{r \ominus 1} \dot{x}_{n+1}^j \right) \ominus \mathbf{1} \cdot \left(\sum_{i \in M - \{j\}} \dot{x}_{n+1}^i + \dot{x}_{n+1}^j \right) \\
&\quad \{ \text{distributivity of “ \ominus ” over “+”} \} \\
&= \left(\sum_{i \in M - \{j\}} h_n^r \dot{x}_{n+1}^i + h_n^{r \ominus 1} \dot{x}_{n+1}^j \right) \ominus \mathbf{1} \\
&\quad \{ \text{by (1), sum of literals over } M \text{ is } \mathbf{1} \} \\
&= h_{n+1}^r \ominus \mathbf{1} \\
&\quad \{ \text{Definition 1} \}
\end{aligned}$$

□

As an example, consider the defining tables for the functions h_2^j for $j \in \{0, 1, 2\}$, shown in Figure 2. The i th row in the defining table, $i \in \{0, 1, 2\}$, corresponds to the subfunction h_1^i . The value of j determines which row is decremented by 1 (modulo m) as compared to the other rows. E.g., for $j = 0$, the coefficients of the 0th row of the defining table are decremented by 1. Next, we prove a fundamental theorem

showing that for the case of $r = m - 1$ a minimal sum-of-products expansion of h_n^r has the same number of product-terms as its canonical sum-of-products expansion.

Theorem 1

$$N(E^{min}(h_n^{m-1})) = N(E^c(h_n^{m-1})).$$

Proof: By induction on n .

1) Obvious for $n = 0$.

2) Hypothesis: Assume the result holds for n . No simplification, reducing the number of product-terms, can be carried out with respect to the variables x_1, \dots, x_n , or otherwise $N(E^c(h_n^{m-1})) > N(E^{min}(h_n^{m-1}))$, which contradicts the hypothesis.

Consider the structure of the function h_{n+1}^r . By Property 1, it consists of $m - 1$ identical subfunctions h_n^r and one subfunction $h_n^{r \ominus 1}$, which is different from h_n^r . Therefore, for all n -tuples $(a_1, \dots, a_n) \in M^n$, we have $h_{n+1}^r(a_1, a_2, \dots, a_n, i) = c$ for $i \in M - \{j\}$ and $h_{n+1}^r(a_1, a_2, \dots, a_n, j) = c \ominus 1$ for some $j \in M$ and for some $c \in M$. The only simplification which can be applied to the canonical sum-of-product-term expansion of h_{n+1}^r with respect to the variable x_{n+1} is, by (5):

$$\begin{aligned} & (c \ominus 1) \cdot \overset{a_1}{x_1} \dots \overset{a_n}{x_n} \overset{j}{x_{n+1}} + \sum_{i \in M - \{j\}} c \cdot \overset{a_1}{x_1} \dots \overset{a_n}{x_n} \overset{i}{x_{n+1}} = \\ &= (c \ominus 1) \cdot \overset{a_1}{x_1} \dots \overset{a_n}{x_n} + \sum_{i \in M - \{j\}} c \cdot \overset{a_1}{x_1} \dots \overset{a_n}{x_n} \overset{i}{x_{n+1}} \end{aligned}$$

which eliminates the variable x_{n+1} from the first product-term, but does not reduce the number of product-terms in the expansion. No further simplification can be carried out with respect to x_{n+1} , so $N(E^{min}(h_{n+1}^{m-1})) = N(E^c(h_{n+1}^{m-1}))$.

□

4 The number of product-terms in the functions h_n^r

In this section, we derive the number of product-terms in a minimal sum-of-products expansion of a function h_n^r . In order to simplify the derivations below, we first introduce the following notation.

Definition 2 In an m -valued system, P_n^r is defined inductively by:

$$\begin{aligned} 1. \quad P_0^r &:= \begin{cases} 1 & \text{if } r \neq 0 \\ 0 & \text{otherwise} \end{cases} \\ 2. \quad P_n^r &:= (m-1) \times P_{n-1}^r + P_{n-1}^{r \ominus 1} \end{aligned}$$

where $r \in M$, $n > 0$, “ \ominus ” denotes subtraction modulo m , and “-”, “+” and “ \times ” denote the regular arithmetic operations of subtraction, addition and multiplication, correspondently.

Notice that, for notational convenience, during this and next section, we use “+” to denote arithmetic addition. In the previous sections we used “+” for MAX.

Let $r \in M$ and $n \geq 0$. The following property shows that P_n^r gives the number of product-terms in the canonical sum-of-products expansion of h_n^r .

Property 2

$$N(E^c(h_n^r)) = P_n^r$$

Proof: Follows directly from Definitions 1 and 2.

□

As an example, consider the case $n = 3$ and $m = 3$. We can compute the number of product-terms in the canonical sum-of-products expansion of h_3^2 as follows:

- 1) $n = 0$: $P_0^2 = 1, P_0^1 = 1, P_0^0 = 0$.
- 2) $n = 1$: $P_1^2 = 2P_0^2 + P_0^1 = 3, P_1^1 = 2P_0^1 + P_0^0 = 2, P_1^0 = 2P_0^0 + P_0^2 = 1$.
- 3) $n = 2$: $P_2^2 = 2P_1^2 + P_1^1 = 8, P_2^1 = 2P_1^1 + P_1^0 = 5, P_2^0 = 2P_1^0 + P_1^2 = 5$.
- 4) $n = 3$: $P_3^2 = 2P_2^2 + P_2^1 = 21$.

Although it is possible to compute P_n^r directly from its definition, a more convenient way exists. Next, we prove a property showing that P_n^r can be obtained using the binomial coefficients C_n^k (or $\binom{n}{k}$). Recall, that these coefficients are defined for non-negative integers n and k as follows [22, p. 101]:

$$C_n^k := \begin{cases} \frac{n!}{k!(n-k)!} & \text{for } 0 \leq k \leq n \\ 0 & \text{for } 0 \leq n < k. \end{cases} \quad (6)$$

Property 3

$$P_n^r = \sum_{i=0}^n C_n^i \times (m-1)^{n-i} \times P_0^{r \ominus i}.$$

where $r \in M$, $n \geq 0$ and “ \times ” denotes arithmetic multiplication.

Proof: By induction on n . We omit “ \times ” where obvious.

1) Let $n = 1$. Then

$$\begin{aligned} P_1^r &= (m-1)P_0^r + P_0^{r \ominus 1} && \{\text{Definition 2}\} \\ &= C_1^0 (m-1) P_0^r + C_1^1 P_0^{r \ominus 1} && \{C_1^0 = C_1^1 = 1 \text{ by (6)}\} \\ &= \sum_{i=0}^1 C_1^i (m-1)^{n-i} P_0^{r \ominus i} && \{\text{reordering}\} \end{aligned}$$

2) Hypothesis: Assume the result holds for n . Then we have

$$\begin{aligned} P_{n+1}^r &= (m-1) P_n^r + P_n^{r \ominus 1} && \{\text{Definition 2}\} \\ &= (m-1) \sum_{i=0}^n C_n^i (m-1)^{n-i} P_n^{r \ominus i} + \sum_{i=0}^n C_n^i (m-1)^{n-i} P_n^{r \ominus i \ominus 1} && \{\text{by ind. hypothesis}\} \\ &= (m-1) C_n^0 (m-1)^n P_n^r + (m-1) \sum_{i=1}^n C_n^i (m-1)^{n-i} P_n^{r \ominus i} + \\ &\quad + \sum_{i=0}^{n-1} C_n^i (m-1)^{n-i} P_n^{r \ominus (i+1)} + C_n^n (m-1)^0 P_n^{r \ominus (n+1)} \\ &\quad \{\text{reordering, } r \ominus i \ominus 1 = r \ominus (i+1)\} \\ &= (m-1)^{n+1} P_n^r + \sum_{i=1}^n C_n^i (m-1)^{n-i+1} P_n^{r \ominus i} + \\ &\quad + \sum_{j=1}^n C_n^{j-1} (m-1)^{n-j+1} P_n^{r \ominus j} + P_n^{r \ominus (n+1)} \\ &\quad \{C_n^0 = C_n^n = 1, \text{ substituting } j = i+1 \text{ in the third term}\} \end{aligned}$$

$$\begin{aligned}
&= (m-1)^{n+1} P_n^r + \sum_{i=1}^n (C_n^i + C_n^{i-1}) (m-1)^{n-i+1} P_n^{r \ominus i} + P_n^{r \ominus (n+1)} \\
&\quad \{C_n^0 = C_n^n = 1\} \\
&= (m-1)^{n+1} P_n^r + \sum_{i=1}^n C_{n+1}^i (m-1)^{n-i+1} P_n^{r \ominus i} + P_n^{r \ominus (n+1)} \\
&\quad \{(6)\} \\
&= C_{n+1}^0 (m-1)^{n+1-0} P_n^{r \ominus 0} + \sum_{i=1}^n C_{n+1}^i (m-1)^{n-i+1} P_n^{r \ominus i} + \\
&\quad + C_{n+1}^{n+1} (m-1)^{n+1-(n+1)} P_n^{r \ominus (n+1)} \\
&\quad \{C_{n+1}^0 = C_{n+1}^{n+1} = 1\} \\
&= \sum_{i=0}^{n+1} C_{n+1}^i (m-1)^{n-i+1} P_n^{r \ominus i} \\
&\quad \{\text{reordering}\}
\end{aligned}$$

□

5 Upper bound on the number of product-terms in sum-of-products expansions over \mathcal{P}

In this section we use the functions h_n^{m-1} to derive an upper bound on the number of product-terms in sum-of-products expansions over \mathcal{P} . First, we show that, for the case $n \leq m-1$, h_n^{m-1} are “worst-case” functions, giving the exact upper bound. Using this result, we then derive an approximate upper bound for the case $n > m-1$. Finding the exact upper bound for $n > m-1$ seems to be a very hard combinatorial problem which remains open.

Theorem 2 *For any $f \in \Omega_M(n)$, the upper bound on the number of product-terms in a minimal sum-of-products expansion of f over \mathcal{P} is:*

1. $UB(n) = m^n$, for $n < m-1$.
2. $UB(n) = m^n - 1$, for $n = m-1$.
3. $UB(n) \leq (m^{m-1} - 1) \times m^{n-(m-1)}$, for $n > m-1$.

where $n \geq 0$, and “-” and “ \times ” denote arithmetic subtraction and multiplication, correspondently.

Proof: 1) Let $n < m - 1$. Obviously, no n -variable m -valued function can have more than m^n product-terms. We show that there exists a function which has m^n product-terms in its minimal sum-of-products expansion and that h_n^{m-1} is such a function.

On one hand, from Theorem 1 and Property 2, we can conclude that $N(E^{\min}(h_n^{m-1})) = P_n^{m-1}$. On the other hand:

$$\begin{aligned}
P_n^{m-1} &= \sum_{i=0}^n C_n^i \times (m-1)^{n-i} \times P_0^{(m-1)\ominus i} \quad \{\text{Property 3}\} \\
&= \sum_{i=0}^n C_n^i \times (m-1)^{n-i} \quad \{\text{Df. 2, } \forall 0 \leq i < m-1 : P_0^{(m-1)\ominus i} = 1\} \\
&= \sum_{i=0}^n C_n^i \times (m-1)^{n-i} \times 1^i \quad \{\forall i \geq 0 : 1^i = 1\} \\
&= ((m-1) + 1)^n \quad \{\text{binomial expansion [22, p. 101]}\} \\
&= m^n
\end{aligned}$$

So, for $n < m - 1$, there exist $f \in \Omega_M(n)$ such that $N(E^{\min}(f)) = m^n$.

2) Let $n = m - 1$. We first prove that $N(E^{\min}(h_n^{m-1})) = m^n - 1$ and then show that $\forall f \in \Omega_M(n) : N(E^{\min}(f)) \leq N(E^{\min}(h_n^{m-1}))$.

Similarly to the case 1, $N(E^{\min}(h_n^{m-1})) = P_n^{m-1}$. By Definition 2, for all $0 \leq i < m-2$ we have $P_0^{(m-1)\ominus i} = 1$, and for $i = m-1$ we have $P_0^{(m-1)\ominus(m-1)} = P_0^0 = 0$.

Thus, we can conclude that:

$$\begin{aligned}
P_n^{m-1} &= \left(\sum_{i=0}^n C_n^i \times (m-1)^{n-i} \right) - C_n^n \times (m-1)^{(m-1)-n} \\
&= m^n - 1 \quad \{C_n^n = 1 \text{ and } (m-1)^{(m-1)-n} = 1 \text{ for } n = m-1\}
\end{aligned}$$

So, for $n = m - 1$, there exists $f \in \Omega_M(n)$ such that $N(E^{\min}(f)) = m^n - 1$. We also know that $N(E^{\min}(h_n^{m-1})) = N(E^c(h_n^{m-1}))$, therefore if there exists a function $f \in \Omega_M(n)$ with more than $m^n - 1$ product-terms in its minimal sum-of-products form, then $N(E^c(f)) > N(E^c(h_n^{m-1}))$, i.e. $N(E^c(f)) = m^n$.

Let f be any function in $\Omega_M(n)$ with $N(E^c(f)) = m^n$. We will prove that $N(E^c(f)) = m^n$ implies $N(E^{min}(f)) < N(E^c(f))$.

Since $N(E^c(f)) = m^n$, f has only non-zero values in its codomain. Let $c \in M - \{0\}$ be the smallest value in the codomain of f . Suppose f evaluates to c for the minterm $(a_{11}, a_{12}, \dots, a_{1n}) \in M^n$, i.e. that $f(a_{11}, a_{12}, \dots, a_{1n}) = c$. Then, for all other minterms, the value of f should be strictly larger than c , or otherwise we can subsequently apply the rule (5) and merge all minterms mapped by f to c into a single product-term (constant- c). This would reduce the number of product-terms in $E^{min}(f)$. So, in order to have $N(E^{min}(f)) = N(E^c(f))$, the following should hold:

$$f(a_{11}, a_{12}, \dots, a_{1n}) < f(b_1, b_2, \dots, b_n)$$

for all $(b_1, b_2, \dots, b_n) \in M^n - \{(a_{11}, a_{12}, \dots, a_{1n})\}$.

Next, consider any $(n - 1)$ -variable subfunction of f which doesn't have the value c in its codomain. If $a_{21} \neq a_{11}, a_{21} \in M$, then $f(a_{21}, x_2, \dots, x_n)$ is one such subfunction. By making similar considerations as above, we can see that $f(a_{21}, x_2, \dots, x_n)$ can evaluate to the minimal value only for a single $(n - 1)$ -tuple, say, $(a_{22}, \dots, a_{2n}) \in M^{n-1}$, or otherwise we can apply the rule (5) and reduce the number of product-terms in $E^{min}(f)$. So, to have $N(E^{min}(f)) = N(E^c(f))$, the following should hold:

$$f(a_{11}, a_{12}, \dots, a_{1n}) < f(a_{21}, a_{22}, \dots, a_{2n}) < f(a_{21}, b_2, \dots, b_n)$$

for all $(b_2, \dots, b_n) \in M^{n-1} - \{(a_{22}, \dots, a_{2n})\}$.

Continuing for $(n - 2)$ -variable subfunctions of $f(a_{21}, x_2, \dots, x_n)$, and successively further down to the subfunctions of 0-variables, we finally get a necessary condition for $N(E^{min}(f)) = N(E^c(f))$ in the form:

$$f(a_{11}, a_{12}, \dots, a_{1n}) < f(a_{21}, a_{22}, \dots, a_{2n}) < f(a_{21}, a_{32}, \dots, a_{3n}) < \dots$$

$$\dots < f(a_{21}, a_{32}, \dots, a_{n(n-1)}, a_{nn}) < f(a_{21}, a_{32}, \dots, a_{n(n-1)}, a_{(n+1)n})$$

$a_{21} \neq a_{11}, a_{32} \neq a_{22}, \dots, a_{n(n-1)} \neq a_{(n-1)(n-1)}, a_{(n+1)n} \neq a_{nn}$. Obviously, we need to have at least $n + 1$ different non-zero values in the codomain of f to satisfy this

condition. On the other hand, since $n = m - 1$, we have only n non-zero values in M . Thus the necessary condition will be violated and some product-terms will merge. Therefore $N(E^c(f)) = m^n$ implies $N(E^{min}(f)) < N(E^c(f))$.

3) Let $n > m - 1$. By [2], any n variable function can be decomposed as:

$$f(x_1, \dots, x_n) = \sum_{i=0}^{m^{n-(m-1)}-1} x_1^{i_1} \dots x_{n-(m-1)}^{i_{n-(m-1)}} f(i_1, \dots, i_{n-(m-1)}, x_{n-(m-1)+1}, \dots, x_n)$$

where $(i_1 \dots i_{n-(m-1)})$ is the m -ary representation of i and $f(i_1, \dots, i_{n-(m-1)}, x_{n-(m-1)+1}, \dots, x_n)$ are subfunctions of $f(x_1, \dots, x_n)$ obtained by fixing the first $n - (m - 1)$ variables to the values $i_1, i_2, \dots, i_{n-(m-1)}$. Obviously, there are $m^{n-(m-1)}$ such subfunctions for any choice of the $n - (m - 1)$ variables. By case 2, each of these subfunctions has at most $m^{m-1} - 1$ product-terms in its minimal form. Thus, $N(E^{min}(f)) \leq (m^{m-1} - 1) \times m^{n-(m-1)}$.

□

For $m = 2$, the upper bound given by Theorem 2 reduces to the familiar $UB(n) = 2^{n-1}$ for $n > 1$ and $UB(n) = 1$ for $n \leq 1$.

For the case $n > m - 1$, the functions h_n^{m-1} are not the “worst-case” any longer. E.g., for $m = 3$ and $n = 3$, $N(E^{min}(h_3^2)) = 21$, however, the functions with more product-terms in their minimal sum-of-products expansion exist. For example, the function shown in Figure 3 has 24 product-terms in its minimal sum-of-products expansion. Notice, that $(m^{m-1} - 1) \times m^{n-(m-1)} = 24$, for $m = 3$ and $n = 3$, and therefore the upper bound given by the case 3 of Theorem 2 can be exact for some n and m .

6 Conclusion

In this paper we derive an upper bound on the number of product-terms in sum-of-products expansions of multiple-valued functions over a chain-based Post algebra. To obtain this result we identify multiple-valued functions which are the “worst-case” for the expansion for the case $n \leq m - 1$ and compute the number of product-

0			1			2		
0	1	2	0	1	2	0	1	2
0	0	2	2	2	2	1	2	2
1	2	2	1	2	0	2	1	2
2	2	1	2	1	2	2	2	0

Figure 3: A function with $N(E^{min}(f)) = 24$.

terms in their minimal expansions. It gives the exact upper bound for $n \leq m - 1$. This bound is used to obtain an approximate upper bound for $n > m - 1$. Finding the exact upper bound for $n > m - 1$ remains a challenging problem for further research.

Acknowledgment

The author is grateful to Dr. Dilian Gurov and Prof. Michael Miller for carefully reading and commenting on the manuscript.

References

- [1] E. Post, An introduction to a general theory of elementary propositions, *Am. Journal Math.* **43** (1921), 163-185.
- [2] J.C. Muzio, T.C. Wesselkamper, Multiple-Valued Switching Theory, Adam Hilger Ltd. Bristol and Boston, 1986.
- [3] S. L. Hurst, Multiple-valued logic - its status and future, *IEEE Trans. on Comput.* **C-33**, No. 12, (1984), 1160-1179.
- [4] K. C. Smith, Multiple-valued logic: A tutorial and appreciation, *Computer*, **37** No. 4 (1988), 17-27.
- [5] T. Sasao, On the optimal design of multiple-valued PLA's, *IEEE Trans. Comput.* **C-38** No. 4 (1989), 582-592.
- [6] M. A-E-Barr, M. N. Hasen, New MVL-PLA structure based on current-mode CMOS technology, *Proc. 26th Int. Symp. Multiple-Valued Logic*, (1996), 98-103.

- [7] X. Deng, T. Hanyu, M. Kameyama, Design and evaluation of a current-mode multiple-valued PLA based on a resonant tunneling transistor model, *IEE Proc. Circuits Devices Syst.* **141** No. 6 (1994), 445-450.
- [8] T. Utsumi, N. Kamiura, Y. Hata, K. Yamato, Multiple-valued programmable logic array with universal literals, *Proc. 27th Int. Symp. Multiple-Valued Logic*, (1997), 163-169.
- [9] G. De Micheli, *Synthesis and optimization of digital circuits*, McGraw-Hill, 1994.
- [10] G. W. Dueck, D. M. Miller, A direct cover MVL minimization using truncated sum, *Proc. 17th Int. Symp. Multiple-Valued Logic*, (1987), 221-226.
- [11] Y. Hata, K. Hayase, T. Hozumi, N. Kamiura, K. Yamato, Multiple-valued logic minimization by genetic algorithms, *Proc. 27th Int. Symp. Multiple-Valued Logic*, (1997), 97-102.
- [12] P. Tirumalai, J. T. Butler, Analysis of minimization algorithms for multiple-valued programmable arrays, *Proc. 18th Int. Symp. Multiple-Valued Logic*, (1988), 226-236.
- [13] J. Yurchak, J. T. Butler, HAMLET - An expression compiler/optimizer for the implementation of heuristics to minimize multiple-valued programmable logic arrays, *Proc. 20th Int. Symp. Multiple-Valued Logic*, (1990), 144-152.
- [14] G. W. Dueck, R. C. Earle, P. Tirumalai, J. T. Butler, Multiple-valued programmable logic arrays minimization by simulated annealing, *Proc. 22nd Int. Symp. Multiple-Valued Logic*, (1992), 66-74.
- [15] D. M. Miller, J. C. Muzio, On the minimization of many-valued functions, *Proc. 9th Int. Symp. Multiple-Valued Logic*, (1979), 294-299.
- [16] W. R. Smith III, Minimization of multiple-valued functions, in *Computer Science and Multiple-Valued Logic* (ed. D. C. Rine), North Holland, New York (1984), 227-267.

- [17] G. W. Dueck, G. H. J. van Rees, On the maximum number of implicants needed to cover a multiple-valued logic function using window literals, *Proc. 20th Int. Symp. Multiple-Valued Logic* (1990), 144-152.
- [18] Y. Hata, K. Yamato, Output permutation and the maximum number of implicants needed to cover the multiple-valued logic functions, *IEICE Trans. Inf. & Syst. E76-D* No. 5 (1993), 555-561.
- [19] E. A. Bender, J. T. Butler, On the size of PLA's required to realize binary and multiple-valued functions, *IEEE Trans. Comput.* **38** No. 1 (1989), 82-98.
- [20] T. Sasao, H. Terada, On the complexity of shallow logic functions and the estimation of programmable logic array size, *Proc. 10th Int. Symp. Multiple-Valued Logic*, (1980), 65-73.
- [21] G. Pogosyan, Efficiently irreducible bases in multiple-valued logic, *Proc. 26th Int. Symp. Multiple-Valued Logic*, (1996), 296-300.
- [22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, *Introduction to Algorithms*, The MIT Press, Cambridge, England, 1997.