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Abstract

This paper considers the complexity of sum-of-products expansions of multiple-
valued functions over a chain-based Post algebra. An upper bound on the
number of product-terms in these expansions is derived. Such a bound provides
a measure for estimating the maximal size of a Programmable Logic Array
needed to implement a function of a fixed number of variables. It can also
be used to evaluate the performance of heuristic logic minimizers, by being
contrasted to their solutions. To derive this bound, a class of functions which
are “worst-case” for the expansion is studied.
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1 Introduction

In this paper we consider the complexity of sum-of-products expansions of multiple-
valued functions over a chain-based Post algebra P := (M; +,-,J; 0,m — 1), where
M :={0,1,...,m—1} is a set whose elements form a totally ordered chain, “+” and

“” are the binary operations mazimum (MAX) and minimum (MIN) respectively,

and J := {Jo, J1, ..., Jm—1} is a set of literal operators, such that
m—1 ifz =1
Jiw = { 0 otherwise (1)
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where z is a multiple-valued variable and ¢ € M is a constant. For convenience, we
write J;z as 3 Under the operations “+” and “-” the chain forms a distributive
lattice with the least element 0 and the greatest element m — 1. This algebra is
known to be functionally complete with constants [1], meaning that every multiple-
valued function on M can be defined as a composition of its basic operations and
constants.

Any m-valued n-variable function has a canonical sum-of-products expansion

over P of the form
mrla i
1 2 n
@)= Y ¢ T1Ty... Ty (2)
1=0

where ¢; € M are constants, and (i1is...1,) is the m-ary representation of ¢ with
i1 being the least significant digit.

While the canonical sum-of-products expansion of a function is unique, usually
more than one non-canonical sum-of-products expansion of a function exists. For
example, the 2-variable, 3-valued function shown in Figure 1 can be expressed as

flz1,20) =1 %1%2 +1 %1%2 + 2 %2, or as f(z1,z9) =1 %1 + 2 alvg.
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Figure 1: An example function.

As a measure of complexity of the expansion we use the total number of product-
terms. This measure is common for sum-of-products expansions, because usually
they are implemented by Programmable Logic Arrays (PLAs) [5]-[8], and the area
of a PLA is proportional to the number of product-terms in the sum-of-products
expansion [9]. Using this complexity measure, we define a minimal sum-of-products
expansion as an expansion with the smallest number of product-terms. For example,
for the function in Figure 1, the expansion f(z1,z2) =1 alvl + 2 alvz is the minimal

one.



To characterize the “worst-case” among all functions of n variables, we derive
an upper bound on the number of product-terms in minimal sum-of-products ex-
pansions over P, which is a novel result. Some work has been done on deriving the
upper bounds on the number of product-terms for other types of sum-of-products
expansions. The expansion of multiple-valued functions over minimum, truncated
sum and window literal has been considered in [17] and [18]. The window literal is
an extension of the literal, defined by:

" __{ m—1 ifi<z<j
0 otherwise

where i, 7 € M and i < j. The operation truncated sum is given by TSUM (z1, z2) :=
MIN(z1 4+ z9,m — 1), where “+” is the regular arithmetic addition. In [17], the
upper bound on the number of product-terms in a minimal expansion of this type
has been derived for the cases of 1-variable m-valued functions (for any m > 1) and
of 2-variable m-valued functions (for 1 < m < 8). This was extended in [18] to
handle the case when output phase optimization is allowed, for 1-variable m-valued
functions (for any m > 1) and for 2-variable 3-, 4- and 5-valued functions. In [19]
an upper bound on the average number of product-terms in a minimal expansion
of multiple-valued functions over minimum, maximum and window literal has been
derived. In [20] the case of multiple-valued input two-valued output function has
been considered. An interesting work, relating the complexity of an expansion over
a given set of operations to the properties of the operations is [21].

Our result is important in several respects. First, it provides a measure for esti-
mating the maximal size of a PLA needed to implement a function of a fixed number
of variables. Second, the upper bound can be contrasted to the solutions computed
by heuristic logic minimizers [10]-[16] in order to evaluate their performance. This
is of special significance for multiple-valued functions for which the exact methods
for minimization are few and inefficient.

To derive an upper bound, we identify a special class of m-valued n-variable
functions and prove that, for the case n < m — 1, they are “worst-case” for the sum-

of-products expansion over P. Therefore, the number of product-terms in minimal



sum-of-products expansions of these functions gives the exact upper bound for n <
m — 1. Using this result, we derive an approximate upper bound for n > m — 1.
Finding the exact upper bound for n > m —1 seems to be a very hard combinatorial
problem which remains open.

The paper is organized as follows. Section 2 gives the notation and definitions
used in the sequel. In Section 3, a special type of multiple-valued functions is defined
and studied. In Section 4, the number of product-terms in a minimal expansion of
these functions is computed. In Section 5, these functions are used to derive an upper
bound on the number of product-terms at the minimal sum-of-products expansions
over P. In the final section, some conclusions are drawn and a direction for further

research is proposed.

2 Notation and definitions

We use the standard definitions and notation in the area of multiple-valued logic
([2])- The most important notions are briefly summarized in this section.

Let M := {0,1,...,m — 1} be a finite set of values. An m-valued n-variable
function f(x1,...,z,) is a mapping f : M™ — M. M" is the domain of f and M is
the codomain. A point in the domain of the function is called a minterm.

A product-term is MIN of one or more literals aicj, i€ M,je{l...,n}. A
sum-of-products ezpansion of f is MAX of product-terms. We denote by E°(f) the
canonical sum-of-products expansion (2) of f, and by E™™"(f) the minimal sum-of-
products expansion of f. We use N(E(f)) and N(E™™"(f)) to denote the number
of product-terms in E¢(f) and E™"(f), respectively.

Let Qar(n) be the set of all n-variable functions on M. The exact upper bound

on the number of product-terms in E™"(f) for f € Qs(n) is defined by [21]:

UBE) = iy ) ®)

Let p; and ps be two product-terms of at most n variables and ¢1,co € M be

constants such that ¢; < co. Since ¢y + ¢c2 = ¢3 if ¢1 < ¢ for any c¢1,c0 € M,



therefore

ci-prte-pr=c -(p1+p2)+c2-po (4)

The following rule is a special case of (4). It will often be used further in the
proofs. Let (a1,...,a;-1,aj_1,...,an) € M" ! be some fixed (n—1)-tuple in M" 1,
¢; € M be constants such that ¢y < ¢;, for alli € {1,2,...,m — 1} and z; be some

variable, j € {1,2,...,n}. Then:

a1 aj—1 i Q41 an ai aj—1  Qj41 an
Zci T1... Tj—1Tj ZTj41 --- Ty = € T1... Tj—1 Tj41 --- Tp +
1EM
ai 4j-1 k841 an
+ Z Ck L1... Tj—1Tj Tj41 --- Tq
VkeM
such that
Cp>Co

(5)
All product-terms with ¢; = ¢p, @ € {1,2,...,m — 1} get absorbed in the product-
a1 aj—1  Gj41 an
termcy T1... Tj1 Tjp1 --- Tho
If ¢; = ¢, Vi, k € M, then the rule (5) merges m product-terms of n variables
into a single product-term of n—1 variables. We say that the simplification is carried
of with respect to the variable z;. E.g. if m = 3, then we can perform the following

. . . . 01 11 2 1 1
simplification with respect to z1: 1 122 +1 £122 +1 T129= 1 Z9.

3 Generalized parity functions

It is well-known that the exact upper bound on the number of product-terms in a
minimal sum-of-products expansion of an n-variable Boolean function in Boolean
algebra over {0,1} is 2"~!. For any n, there are two functions which have exactly
2"~! product-terms in their minimal sum-of-products expansions, called even-parity
and odd-parity. The even-parity (odd-parity) function has value 1 when an even
(odd) number of its variables have value 1.

While it is easy to see that parity functions are the “worst-case” for the sum-
of-products expansions of Boolean functions, it is much harder to recognize which m-
valued functions are the “worst-case” for the sum-of-products expansions of multiple-

valued functions over chain-based Post algebra.



In this section we identify n-variable m-valued functions which, as will be proved
later, are “worst-case” for the sum-of-products expansion for n < m — 1. The
definition below shows the construction scheme. The number of product-terms in
their minimal expansions will give us the exact upper bound for n < m — 1. This
bound will used as base for deriving an approximate upper bound for n > m — 1.
Finding a general construction scheme for the “worst-case” function for n > m — 1
seems to be a very hard combinatorial problem which remains open.

We use the notation h,, instead of the conventional h(z1,...,z,) to denote an n-
variable function h. Such an abbreviation simplifies the proofs and doesn’t cause any
confusion, because in our case it is the number of variables that matters, and not the
variables themselves. A function h; is defined inductively through the subfunctions

h;_, of n — 1 variables.

Definition 1 For a fized j € M, the function h;, is defined inductively by:
1. hy:=r

J i
=h2 T+ Y R 7,
ieM—{j}

2. h

S

where 7 € M and “©” denotes subtraction modulo m.

As an example, consider the case of m = 3 and n = 2, and let r = m — 1. Then,

the defining tables for the functions h3 for j € {0,1,2} are shown in Figure 2.

|0 1 2 |0 1 2 |0 1 2
0/0 1 1 02 1 2 02 2 1
1|1 2 2 1{1 0 1 112 2 1
2|11 2 2 2 1 2 201 10

j=0 j=1 j=2

Figure 2: The functions h2, for a fixed j € {0,1,2} and m = 3.

For m = 2, h) corresponds to the odd-parity function when j = 0, and to the
even-parity function when 7 = 1.
Now we prove a useful property of h], functions which will be used further in the

proofs.



Property 1 Letn >0 andr € M. Then
1
Rt =hr 61
where “©” denotes subtraction modulo m, extended to functions as usual.

Proof: By induction on n.
1) Obvious for n = 0.

2) Hypothesis: Assume the result holds for n. For a fixed j € M we have:

WL = S ROl 4 el g,
ieM—{j}
{Definition 1}

= Y (el zun+ (M e1) Ty,
iEM—{j5}
{by ind. hypothesis}

i ' J J
= Z (R, ‘%VH—I o1 %n+1) + (hﬁel Tpy1 © 1pq1)
ieM—{j}
{distributivity of “” over “©”}

. ; _ ;
= Z hn %nﬂ + 0Pt Zpp) © 1 ( Z %n+1 + Tpt1)
{distributivity of “©” over “+”}

= (Y b Tpg +HEO! Zni1) ©1
iEM—{j}
{by (1), sum of literals over M is 1}

= b 01

{Definition 1}
a

As an example, consider the defining tables for the functions 3 for j € {0, 1,2},
shown in Figure 2. The ith row in the defining table, i € {0, 1, 2}, corresponds to the
subfunction h%. The value of j determines which row is decremented by 1 (modulo
m) as compared to the other rows. E.g., for j = 0, the coefficients of the Oth row

of the defining table are decremented by 1. Next, we prove a fundamental theorem



showing that for the case of r = m — 1 a minimal sum-of-products expansion of h;,
has the same number of product-terms as its canonical sum-of-products expansion.

Theorem 1
N(E™™(hr=t)) = N(E(h™h).

Proof: By induction on n.
1) Obvious for n = 0.

2) Hypothesis: Assume the result holds for n. No simplification, reducing the
number of product-terms, can be carried out with respect to the variables z1,...,z,,
or otherwise N (E¢(h™ 1)) > N(E™"(h™ 1)), which contradicts the hypothesis.
Consider the structure of the function hj,, ;. By Property 1, it consists of m — 1
identical subfunctions h? and one subfunction A7°', which is different from AZ.
Therefore, for all n-tuples (a1, ...,a,) € M™, we have hy, (a1, a2,...,an,%) = c for
i €M —{j}and h},_ (a1,a2,...,a,,j) = c©1 for some j € M and for some ¢ € M.
The only simplification which can be applied to the canonical sum-of-product-term

expansion of h” . ; with respect to the variable z,1 is, by (5):
p n+1 P +

ay ap J ay an @
(cOl)-Z1... Ty Ty + Z C Ty ... Ty Tyypq =
ieM—{j}
a1 an al anp 1
= (col)-Z1...Z,+ Z C Ty ... Ty Tyt
ieM—{j}

which eliminates the variable 1 from the first product-term, but does not reduce
the number of product-terms in the expansion. No further simplification can be

carried out with respect to 41, so N(E™" (R 1)) = N(ES(R ).

4 The number of product-terms in the functions h]

In this section, we derive the number of product-terms in a minimal sum-of-products
expansion of a function h]. In order to simplify the derivations below, we first

introduce the following notation.



Definition 2 In an m-valued system, P} is defined inductively by:

1 ifr#£0
T
1. Fg= 0 otherwise

2. Pr:=(m-1)xP._, + P}
where v € M, n > 0, “©” denotes subtraction modulo m, and “7, “+”7 and “x”
denote the regular arithmetic operations of subtraction, addition and multiplication,

correspondently.

Notice that, for notational convenience, during this and next section, we use “+”
to denote arithmetic addition. In the previous sections we used “+” for MAX.
Let r € M and n > 0. The following property shows that P gives the number

of product-terms in the canonical sum-of-products expansion of hJ.

Property 2

N(E(hy)) = P,
Proof: Follows directly from Definitions 1 and 2.
O

As an example, consider the case n = 3 and m = 3. We can compute the number

of product-terms in the canonical sum-of-products expansion of h3 as follows:
)n=0: P§=1,P} =1,P =0.

2)n=1: P2 =2P}+ P} =3,Pl =2P} + P{ =2,P) =2P0 + P2 = 1.
3)n=2: P?=2P?+ P} =8,P; =2P + P? =5,P) =2P) + P? = 5.

4)n=3: P}=2P} + P} =21.

Although it is possible to compute P} directly from its definition, a more conve-

nient way exists. Next, we prove a property showing that P/ can be obtained using
n

k
for non-negative integers n and k as follows [22, p. 101]:

the binomial coefficients C* (or ). Recall, that these coefficients are defined



k!'(n—k)!

M for0<k<m
0 for 0 <n<k.

Property 3
Py =3 Cix(m—-1)""x Py,
where r € M, n >0 and “x” denotes arithmetic multiplication.

Proof: By induction on n. We omit “x” where obvious.

1) Let n = 1. Then
Pl = (m—1)P} + P;! {Definition 2}
= O (m—1) Pf+Cf Bj® {C) =0 =1by (6)}

1
= ZC{ (m — )"t Pyt {reordering}
=0

2) Hypothesis: Assume the result holds for n. Then we have
T = (m—1) PL+ PO
{Definition 2}
n . . . n - . .
= (m—=1))_ Ci (m—-1)"" Pro% 43" Ci (m—1)"¢ proil
=0 =0
{by ind. hypothesis}

= (m—1)CY (m—1)" P, +(m—1) > Ci (m—1)"" P+
=1

n—1 ‘
+ Z C’}; (m — 1) P£9(1+1) +C (m— 1)° Pg@(nJrl)
i=0
{reordering, r©iS1=ro (i +1)}
n
= (m—1)"t! pry Z Ci (m — 1)»—i+! préig
i=1

n
+ Z Ci7L (m — 1)n—i+1 proj +P£e(n+1)
j=1

{CY = C" = 1, substituting j =i + 1 in the third term}

10



= (m-1)" Pry+ Z (Ci 4+ i1y (m — 1)r—i+1 proi 4 prom+D)
i=1

{Cr=Cr=1}

n
= (m _ 1)n+1 P;; 4+ Z C}:H—l (m _ 1)n—i—|—1 Pﬁ@i + Pﬁe("ﬂ)
i=1
{(6)}
n
= O, (m—1)nH1=0 pre0 L N @i (m — 1)n-itl préiy
i=1
+ an_—ll (m _ 1)n+1—(n—|—1) Pg@(n—f—l)
n

{C2+1 = 07?3:11 =1}

n+1 ) ) )
— Z C:H-l (m_ 1)n—z+1 P;;Gz
=0
{reordering}
O

5 Upper bound on the number of product-terms in sum-
of-products expansions over P

In this section we use the functions A™ ! to derive an upper bound on the number
of product-terms in sum-of-products expansions over P. First, we show that, for
the case n < m—1, h™~! are “worst-case” functions, giving the exact upper bound.
Using this result, we then derive an approximate upper bound for the case n > m—1.
Finding the exact upper bound for n > m —1 seems to be a very hard combinatorial

problem which remains open.

Theorem 2 For any f € Qpr(n), the upper bound on the number of product-terms

in a minimal sum-of-products expansion of f over P is:
1. UB(n) =m", forn <m — 1.
2. UB(n) =m™—1, forn=m— 1.

3. UB(n) < (m™ ' =1)xm" (™D forn>m—1.

11



where n > 0, and “” and “x” denote arithmetic subtraction and multiplication,

correspondently.

Proof: 1) Let n < m — 1. Obviously, no n-variable m-valued function can have
more than m™ product-terms. We show that there exists a function which has m"
product-terms in its minimal sum-of-products expansion and that h™ ! is such a
function.

On one hand, from Theorem 1 and Property 2, we can conclude that N (E™" (™~ 1))
= P™=1. On the other hand:

n .
Byt =3 "Ch x (m = 1" x B " {Property 3}
=0

n .

=Y Cix(m—-1)" {Df. 2,V 0<i<m—1:P™ V% =1}
=0

=) Cix(m—-1)"tx1 {vi>0:1" =1}
1=0

=((m-1)+1)" {binomial expansion [22, p. 101]}

= mn

So, for n < m — 1, there exist f € Qps(n) such that N(E™"(f)) = m".

2) Let n = m — 1. We first prove that N(E™"(h™~ 1)) = m™ — 1 and then show
that Vf € Qur(n) : N(E™"(f)) < N(Emi"(h’n"_l)).

Similarly to the case 1, N(E™"(h™~1)) = P™~1. By Definition 2, for all 0 <

o pymietm=l — po — o,

1 < m—2 we have Po(m_1 =1, and for s = m —1 we have

Thus, we can conclude that:
n . .
Pl = (3 °CHx (m—1)""%) — O x (m — 1)(m-D-n
i=0

= m"—1 {C?=1and (m—1)™m D" =1 for n=m—1}

So, for n = m — 1, there exists f € Qas(n) such that N(E™"(f)) = m™ — 1. We
also know that N(E™"(hm~1)) = N(E¢(h™1)), therefore if there exists a function
f € Qum(n) with more than m™ — 1 product-terms in its minimal sum-of-products

form, then N(E°(f)) > N(ES(h™1)), i.e. N(ES(f)) = m™

12



Let f be any function in Qps(n) with N(E¢(f)) = m™. We will prove that
N(E*(f)) = m™ implies N(E™(f)) < N(E*(f)).

Since N(E¢(f)) = m™, f has only non-zero values in its codomain. Let ¢ €
M — {0} be the smallest value in the codomain of f. Suppose f evaluates to c for
the minterm (a11,a19,...,01,) € M™, ie. that f(a11,a12,...,a1,) = ¢. Then, for
all other minterms, the value of f should be strictly larger then c, or otherwise we
can subsequently apply the rule (5) and merge all minterms mapped by f to ¢ into
a single product-term (constant-c). This would reduce the number of product-terms
in E™"(f). So, in order to have N(E™"(f)) = N(E(f)), the following should
hold:

flai1,a12,...,a1,) < f(b1,bay ..., by)

for all (by,b9,...,b,) € M™ — {(a11,012,-..,01n)}-

Next, consider any (n — 1)-variable subfunction of f which doesn’t have the
value ¢ in its codomain. If ay; # ajj,a21 € M, then f(as,zo,...,z,) is one
such subfunction. By making similar considerations as above, we can see that
f(a91,22,...,zy,) can evaluate to the minimal value only for a single (n — 1)-tuple,
say, (ago,...,as,) € M™ ! or otherwise we can apply the rule (5) and reduce the
number of product-terms in E™"(f). So, to have N(E™"(f)) = N(E°(f)), the
following should hold:

f(an,alg, ... ,aln) < f(agl,agg, ... ,GQn) < f(azl,bg, .. .,bn)

for all (bg, - ,bn) e M — {(GQQ, een ,agn)}.
Continuing for (n — 2)-variable subfunctions of f(a91,z2,...,z,), and succes-
sively further down to the subfunctions of 0-variables, we finally get a necessary

condition for N(E™"(f)) = N(E*(f)) in the form:

f(an, 12, ..., aln) < f(a21, agg, ... ,agn) < f(a,gl, aso, ... ,G,3n) <...
. < fla21,a32, - - - n(n_1), @nn) < flaz1,as2,- .., nn-1), a(ns1yn)
az1 # 411,032 # 22, -, An(n—1) 7 Gn-1)(n—1), Yn+1)n 7 Gnn- Obviously, we need

to have at least n + 1 different non-zero values in the codomain of f to satisfy this

13



condition. On the other hand, since n = m — 1, we have only n non-zero values
in M. Thus the necessary condition will be violated and some product-terms will

merge. Therefore N(E¢(f)) = m" implies N(E™"(f)) < N(E*(f).

3) Let n > m — 1. By [2], any n variable function can be decomposed as:

mnr—(m—=1)_1 . .
i1 tn—(m—1)

flxy,...,zp) = Z T1. Tp(m=1) SO in_(m=1)» Tne(m=1)+1s- - »Tn)
i=0

where (41 ...4,_(m—1)) is the m-ary representation of i and f(i1,...,i_(m-1),

Ty (m—1)+1, ---+Zn) are subfunctions of f(x1,...,z,) obtained by fixing the first

n—(m—1) variables to the values i1, %2, . .., in—(m—1)- Obviously, there are mn=(m=1)

such subfunctions for any choice of the n — (m — 1) variables. By case 2, each of

these subfunctions has at most m™ ! — 1 product-terms in its minimal form. Thus,

N(Emm(f)) < (mm—l _ 1) x mn—(m—l)_
O

For m = 2, the upper bound given by Theorem 2 reduces to the familiar
UB(n) =2""!forn>1and UB(n) =1 for n < 1.

For the case n > m — 1, the functions A™~! are not the “worst-case” any longer.
E.g., for m = 3 and n = 3, N(E™"(h%)) = 21, however, the functions with more
product-terms in there minimal sum-of-products expansion exist. For example, the
function shown in Figure 3 has 24 product-terms in its minimal sum-of-products
expansion. Notice, that (m™ ! — 1) x m»~(m=1 = 24 for m = 3 and n = 3, and
therefore the upper bound given by the case 3 of Theorem 2 can be exact for some

n and m.

6 Conclusion

In this paper we derive an upper bound on the number of product-terms in sum-of-
products expansions of multiple-valued functions over a chain-based Post algebra.
To obtain this result we identify multiple-valued functions which are the “worst-

case” for the expansion for the case n < m — 1 and compute the number of product-

14
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Figure 3: A function with N(E™"(f)) = 24.

terms in their minimal expansions. It gives the exact upper bound for n < m — 1.
This bound is used to obtain an approximate upper bound for n > m—1. Finding the

exact upper bound for n > m—1 remains a challenging problem for further research.
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