
Circuit-based Evaluation of the Arithmetic Transform of Boolean Functions

René Krenz1� Elena Dubrova1 Andreas Kuehlmann2

1 Royal Institute of Technology, IMIT/KTH, 164 46 Kista, Sweden
2 Cadence Berkeley Labs, Berkeley, CA 94704, USA

Abstract

In this paper we present a fast algorithm for evaluating the
arithmetic transform of a Boolean function based on its circuit
representation. The arithmetic transform has multiple applica-
tions in CAD, including the computation of signal probabilities
and switching activities of circuit nets and the mapping of Boolean
functions onto probabilistic hash values. Previous algorithms for
evaluating the arithmetic transform required an orthogonal, non-
redundant representation of the function to be transformed in form
of a disjoint function cover or a single BDD. We present a new al-
gorithm that partitions the evaluation based on the dominator re-
lations of the circuit graph. Similar to the application of cut-points
in combinational equivalence checking, the dominators are used to
progressively simplify intermediate evaluation steps. As a result,
the presented algorithm can handle larger circuits than previously
possible. An extensive set of experiments on benchmark and in-
dustrial circuits demonstrate the effectiveness of our approach.

1 Introduction

The arithmetic transform [1] has multiple applications in CAD,
including the computation of signal probabilities for test gen-
eration, switching activities for power and noise analysis, and
function-specific hash values for probabilistic verification.

Thesignal probabilityof a net in a combinational circuit is the
probability that a randomly generated input vector will produce the
value one on this net [2]. Efficient signal probability analysis al-
lows to improve the coverage of test generation for biased random
simulation. The averageswitching activityin a combinational cir-
cuit is the probability of its net values to change from 0 to 1 or vice
versa. It correlates directly with the average power dissipation of
the circuit [3]; thus its analysis is useful for guiding logic optimiza-
tion methods to target low-power dissipation. A third application
of the arithmetic transformhashes Boolean functionsonto single
integer values and is used to probabilistically compare them [4].

Suppose the onset of a Boolean functionf with input variables
fx1; : : : ;xng is given as a set of mintermsfm1;m2; : : : ;mkg, where
eachmj = (x1�α1 j)^ �� �^ (xn�αn j);αi j 2 f0;1g. For a given
input assignmentfa1; : : : ;ang of values chosen from a fieldF , the

�The author carried out this work in part while visiting Cadence Berkeley Labs.

value of the arithmetic transformA[f] is defined by:

A[f](a1; : : : ;an) =
k�1

∑
j=0

[∏
8i:αi j=0

(ai) � ∏
8i:αi j =1

(1�ai)] (1)

where � , +,� are operations over the fieldF .
If the individualai ’s are the independent switching activities at

the inputs, with values between 0 and 1 from a field of real num-
bers, thenA[f] represents the switching activity of a net imple-
menting f . Similarly, if ai represents the uncorrelated probability
that inputxi is one, thenA[f] is the probability that the correspond-
ing net is one. Finally, if theai ’s are independently and uniformly
at random assigned values from an integer fieldZp, p - prime, then
A[f] is the hash value forf .

Note that in the given applications, we are only interested in the
evaluation ofA[f] for specific values of theai ’s. For this we do not
necessarily need to compute the complete transform, for example,
as a monolithic symbolic expression. The challenge for an effec-
tive practical application is to compute the evaluation efficiently in
the common case wheref is given as a circuit without having to
build a normal form as used in definition (1).

A decomposed evaluation based on topologically processing
the circuit gates from inputs to outputs using the transforms of the
gate functions (e.g.A[f ^g] = A[f] �A[g];A[: f] = 1�A[f]) gen-
erally produces incorrect results. For example, if the support sets
of two sub-functionsf andg overlap, thenA[f ^g] 6= A[f] �A[g].
Overlapping support sets cause higher-order exponents, which
need to be suppressed to get correct results [2]. To avoid this
difficulty, previous works on arithmetic transforms require a non-
redundant, orthogonal representation of the function to be trans-
formed.

In this paper we present a new algorithm that partitions the
evaluation of the arithmetic transform using the dominator rela-
tions of the circuit graph. Proceeding in topological order, the
algorithm computes a symbolic expression for the transform and
successively simplifies it at dominator points by partially evaluat-
ing its terms. We exploit the fact that the dominators in a circuit
graph provide the earliest points during topological processing at
which expressions can be simplified and that the dominator rela-
tion gives the maximum number of terms that can be evaluated at
these points. Interestingly, about 50% of practical circuit graphs
contain a significant number of internal dominator vertices which
warrants an efficient performance of the presented algorithm. Cor-
responding statistics and results are give in Section 7.

Our main application of the presented work is focused on prob-
abilistic verification. If the arithmetic transform is based on an

1

integer field, its evaluation returns the hash value of a Boolean
function for a given input assignment. For a field of large sizep
(e.g. p = 232� 5, using word-wide processor instructions), the
hash value strongly discriminate Boolean functions; two circuits
with different functions ofn inputs are classified as equivalent with
the low probability of� n

p [4], whereas functionally equivalent cir-
cuits are guaranteed to be identified as equal. Possible applications
include refutation of correctness in equivalence checking [5, Chap-
ter 13] and bounded property checking [6], cutpoint guessing [7],
detecting functional corresponding registers [8], and others. A
particularly notable method that is related to the presented work
is given in [9] where cutpoints are used to progressively abstract a
function representation by quantification. In their work the authors
did not offer a systematic manner to identify good cutpoints for
the abstraction. Although used differently, the dominator-based
method described here could complement their work by providing
the exact points where abstraction is applicable.

A second areas that can benefit from the presented method is
power analysis and optimization. Here an efficient computation of
the circuit’s switching activity is crucial for including the power
analysis in the inner loop of the optimization flow. Besides the
temporal dependencies between signal values, accurate switching
analysis must also take into account their functional correlation
which can be modeled by the arithmetic transform using a field of
real numbers between 0 and 1 [10]. A third possible application
of a fast algorithm for evaluating arithmetic transforms uses them
to compute signal probabilities for measuring and controlling the
coverage in testing or biased random simulation [11]. Here the aim
is to tune the individual input signal probabilities for increasing
particular coverage goals.

2 Previous Work

The arithmetic transform has been researched and re-
discovered in many works. The pioneering publications are from
Aiken [12] and Komamiya [13] where the transformation matrix
for the arithmetic transform was introduced. Later, several tech-
niques for computing the transform were presented using: truth
tables [14], disjoint sum-of-products [15], ROBDDs [16], and var-
ious derivatives of decision diagrams (see [1] and [17, Chapter
3.5] for an overview). The disadvantage of these methods is that
all of them use a representation based on an explicit or implicit
disjoint function cover with its typical excessive memory require-
ments.

It is interesting to observe that similar algorithms were inde-
pendently discovered and applied in the testing and low-power de-
sign community. Parker and McCluskey [2] developed two algo-
rithms for deriving the output signal probability for a combina-
tional circuit in terms of a set of input probabilities. Their first
algorithm requires a canonical sum-of-product form for a Boolean
functions. The second one works directly on a circuit descrip-
tion and uses higher-order exponent suppression to correct erro-
neous terms introduced by re-converging paths. An algorithm for
estimating the average switching activity of combinational logic
circuits based on disjoint sum-of-products was proposed in [10].
Decision diagram-based algorithms were used in [18, 3, 19]. All
these techniques are similar to the ones mentioned before and suf-
fer from the same memory complexity.

One option that was extensively studied in the testing commu-
nity, is trading the quality of the result for speed. In [11], the
cutting algorithm was proposed which computes the signal proba-
bility within certain bounds. This is done by cutting re-convergent
fanout branches and turning the circuit into a tree for which the
complexity of computing signal probabilities is linear [2]. Im-
proved algorithms for computing bounds on signal probabilities
are proposed in [20, 21, 22, 23]. In [24] a Boolean approximation
method is proposed to avoid building a global BDD. It uses the
first term of a Taylor series expansion to compute the signal prob-
abilities. As for the previous methods, the accuracy of the results
is compromised for lowering the computational complexity.

In [25] a method based on “supergates” is proposed. The out-
put net of a supergate is required to dominate all the primary inputs
in its support set. Thus, all re-converging paths are completely en-
closed within supergates. The switching probability is first com-
puted for all supergates and then composed for the entire circuit.
This idea is further extended in [26] by introducing the concept of
“active nodes” at which two (or more) re-convergent paths begin.
These nodes are kept active until the paths meet at a dominator
node where the corresponding expressions are simplified. This
work is the closest to the approach presented in this paper. The
main difference is that the algorithm in [26] is path-based and thus
can handle only small regions of re-converging paths. For larger
regions the results are estimated which is not acceptable for many
applications, e.g. functional hashing.

In the verification community, arithmetic transforms were used
by Jain et al in [27, 4] for comparing Boolean function proba-
bilistically. They suggest the concept ofSeminumeric Decision
Diagramsto decompose a function into disjoint subfunctions. The
subfunctions are then hashed and the obtained results are used to
compute the hash code for the entire function. Seminumeric Deci-
sion Diagrams allow integer-valued terminal nodes, integer-valued
weights on edges and functional nodes for field operations of ad-
dition, subtraction and multiplication. Although its is shown that
Seminumeric Decision Diagrams can handle some complex cir-
cuits, they do not offer a systematic manner to analyze and exploit
structural circuit properties such as the dominator-based algorithm
presented in this paper.

3 Preliminaries

Unless otherwise specified, throughout the paper, we denote by
f ;g Boolean functions of typef0;1gn ! f0;1g and byA[f], A[g]
arithmetic functions over a fieldF , of typeFn ! F . We use the
symbols_, ^, and: for Boolean operations AND, OR, and NOT,
respectively and denote by� , +, and� the arithmetic opera-
tion over the fieldF . The indexed variablesx1;x2; : : : or xa;xb; : : :

are used for both, Boolean and arithmetic variables. For exam-
ple, x1^x2 stands for a Boolean expression representing an AND

of two Boolean variables;x1 � x2 stands for an arithmetic expres-
sion (polynomial) representing a multiplication of two arithmetic
variables.

Every arithmetic functionA[f] can be decomposed with respect
to a variablexi , i 2 f1; : : : ;ng, in the following manner [27]:

A[f] = (1�xi) �A[f jxi=0]+xi �A[f jxi=1]: (2)

It is easy to prove (by induction onn) that if the decomposition (2)

2

e
e

b

d h

f

c

j

i

k

a

(a) (b)

g

a

g

i

d

j

c

h

f

b

k

Figure 1: Example: (a) circuit diagram; (b) corresponding domi-
nator tree.

is successively applied for all input variables we get the following
normal form forA[f]:

A[f] =
2n
�1

∑
j=0

f j � [∏
8i: ji=1

(xi) � ∏
8i: ji=0

(1�xi)] (3)

where f j = f (j1; j2; : : : ; jn) with (j1 j2 : : : jn) being the binary
expansion of j . Clearly, (3) reduces to (1) for(x1; : : : ;xn) =
(a1; : : : ;an).

4 Illustrative Example

Our goal is to evaluateA[f] for a given input assign-
ment (a1; : : : ;an) 2 Fn. A brute-force algorithm to compute
A[f] directly from the circuit description first builds the com-
plete arithmetic expression forA[f] based on symbolic variables
x1;x2; : : : ;xn for the inputs. Next, the higher-order exponents
x< j>

i ; j � 2; are suppressed and then all symbolic variables inA[f]
are substituted by their corresponding valuesa1;a2; : : : ;an 2 F .
Clearly, such an algorithm is of exponential complexity inn. For
example a cascade of two-input OR gates implementing ann-input
OR function would produce 2n�1 terms.

Our approach is to avoid computing the complete expression
for A[f]. For this we can use the known fact that in a tree-like
circuit structure with no re-convergent fanouts all signals are in-
dependent and, for any gate in the circuit, the support sets of the
input functions are disjoint [2]. As a consequence, no higher-order
coefficients are produced and the value forA[f] can be computed
directly, by starting from the input valuesa1;a2; : : : ;an 2 F and
instantaneously evaluating the expression at each gate.

Usually however, circuits do have re-convergent paths. The ba-
sic idea of our algorithm is to distinguish between the nets which
have re-converging structures and the ones which do not. The ex-
pressions feeding nets that do not re-converge can be evaluated
immediately. However, for nets that have re-convergences this
processing must be postponed until full convergence is achieved.

A key observation that led to our algorithm is that a re-
converging structure always starts with a multi-fanout net and ends
at a dominator net. A netv dominates another netw in the cir-
cuit cone if every path fromw to the output containsv [28]. As
an example, consider the circuit in Figure 1(a). In this circuit,d
dominatesfag (but notfbg), h dominatesfa;d;e;g; i; jg, and f
dominates all circuit nets. The dominator tree, reflecting the non-
transitive dominator relations, is shown in Figure 1(b).

The idea of the presented algorithm is to process the circuit in
topological order from inputs toward outputs and to successively
compute the arithmetic transformA[fv] for each netv. Whenever

a re-converging path begins, a temporal symbolic variable is in-
troduced which is then eliminated at the end of the re-converging
structure by partially evaluatingA[fv].

The algorithm starts by assigning the input field values to the
primary input nets (A[fv] = av). For the given example, the val-
ues for primary inputsa, c, e and g can directly be used in the
following gate computations, because their fanout is one and thus
do not cause re-converging paths. However, the transform forb
must be kept as a symbolic variable, sayxb, until its dominator is
reached. Then higher-order exponents can be suppressed andxb is
substituted by its value.

To further illustrate the interaction between variable introduc-
tion and its elimination, consider netd. It is a starting point of a
re-converging fanout which ends at its dominatorh. The connec-
tion from b to the gate drivingd causes higher-order exponents of
xb at h. However, it would not be valid to only keepxb symbolic
and suppress its higher-order exponents ath. For example, sup-
poseF = Zp, p-prime, and values 3, 5, and 1 are assigned to nets
a, e andg, respectively. The evaluation results inA[fd] = 1�3xb,
A[fi] = 1�5(1�3xb) =�4+15xb, A[f j] = 1�1(1�3xb) = 3xb,
and finally A[fh] = 1� (�4+ 15xb)(3xb) = 1+ 12xb � 45x2

b =
1� 33xb. This result is incorrect since the proper value forh is
A[fh] = 1�3xb.

The reason for this problem is that the primary input variable
xa has been substituted too early. As a result, the higher-order
powers of its value caused by the multiple fanout atd were not
properly suppressed ath. To get the correct result, a temporary
variable must be introduced for netd which is then substituted
by its expressionA[fd] = 1�3xb at neth. Then the higher-order
exponents are suppressed correctly and, furthermore, the correla-
tion with the value of netb is preserved. Letxd be the variable
introduced atd, then we getA[fi] = 1�5xd, A[f j] = 1� xd, and
A[fh] = 1� (1�5xd)(1�xd) = 6xd�5x2

d = xd. Replacingxd by
A[fd] = 1�3xb, we obtain the correct expressionA[fh] = 1�3xb.

To complete the computation ofA[f f], suppose the values 2
and 4 are assigned to the primary inputsc and b, respectively.
From A[fk] = 1� 2xb and A[fh] = 1� 3xb, we getA[f f] = 1�
(1�2xb)(1�3xb) = xb. By replacingxb with A[fb] = 4, we ob-
tainA[f f] = 4, which is the correct value for the input assignment
(xa;xb;xc;xe;xg) = (3;4;2;5;1).

The algorithm TRANSFORM presented in the next section is
based on the intuitive idea described above.

5 Transformation Algorithm

In this section we describe a new algorithm that partitions the
evaluation process of the arithmetic transform using the dominator
relations of the circuit graph [29, 28, 30].

LetC= (V;E; root) denote a single-output circuit graph where
the set of verticesV represents the primary inputs and gates. A
particular vertexroot 2V is marked as the circuit output. The set
of edgesE�G�G represents the nets connecting the gates.

A vertex v dominatesanother vertexw 6= v in C if every path
from w to root containsv. Vertexv is theimmediate dominatorof
w, denotedv= idom(w), if v dominatesw and every other domi-
nator ofw dominatesv. It was proved in [29, 30] that every vertex
v in C exceptroot has a unique immediate dominator.

3

The edgesf(idom(w);w) j w 2 V �frootgg form a directed
tree rooted atroot, which is called thedominator treeof C. The
dominator childrenDoms(v) �V of vertexv is the set of vertices
havingv as immediate dominator, i.e.,Doms(v) = fu j idom(u) =
vg. We construct areduced dominator treeby removing all sub-
trees from the dominator tree that do not have primary inputs as
leave vertices. In other words,v belongs to the set of vertices
DR�V of the reduced dominator tree if:

1. v is a primary input or

2. 9u2DR such thatv= idom(u).

Figure 2 shows the pseudo-code of the algorithm to evaluate
the arithmetic transform. For the computation we need two labels
for each vertexv2V: (1) A[v] stores the arithmetic expression of
the vertex, and (2)x[v] represents the expression to be used for
the evaluation at all fanout vertices ofv. If v is the beginning of
a new re-converging structure,x[v] is initialized with a temporary
symbolic variable, otherwisex[v] is set toA[v]. FUNCTION (v;X)
is outlined for the basic functions AND and NOT. The evaluation
of other functions can be easily composed from those.

algorithm TRANSFORM(V;E; root;a1; : : : ;an)
DR;Doms= DOMINATOR (V;E; root)
for each v2V in topological orderdo

if v2 Inputs then
A[v] = av

else
A[v] = FUNCTION(v;Xv); Xv = fxu j u2 Fanin(v)g

if v2DR then
for each u2Doms(v) in reverse topological orderdo

if x[u] 6= A[u] then
A[v] = COMPOSE(A[v];A[u];x[u])

if v2DR ^ jFanout(v)j> 1 then
x[v] = CREATE FRESH VARIABLE

else
x[v] = A[v]

return A[root];
end

algorithm FUNCTION (v;x1;x2; : : :)
/* rules are only shown for AND and NOT functions */
if v is AND then return result= ∏i xi
if v is NOT then return result= 1�x1

end

algorithm COMPOSE(A[f];A[g];x)
return result= A[f jx=0]+(A[f jx=1]�A[f jx=0]) �A[g]

end

Figure 2: Pseudo-code of the algorithm TRANSFORM to evaluate
the arithmetic transformA[f].

The algorithm processes the circuit from the inputs toward the
output in topological order. At the primary inputs theA[v] are
initialized by their corresponding valuesav 2 F . Then, at each
vertex, the new function is computed based on thex values of its
fanin vertices. If vertexv is part of the reduced dominator tree,
the variablesx[u] of the dominated verticesu are substituted in

A[v] by their corresponding valuesA[u] using the function COM-
POSE. This must be done in reverse topological order, otherwise
dependencies between theA[u] expressions may not get resolved
properly.

If a vertex is part of the reduced dominator tree and has multi-
ple fanouts, an auxiliary variable is introduced forx[v] which will
be substituted at vertexidom(v). For reduced dominator tree ver-
tices with single fanout, these two steps are omitted because in that
caseidom(v) is the only successor ofv.

6 Implementation Details

For computing the dominator tree in a circuit graph we im-
plemented the Lengauer-Tarjan [31] algorithm which works effi-
ciently for large circuits. We use multi-terminal BDDs (MTB-
DDs) [32] (also called ADDs [33]) to represent and manipulate
the arithmetic expressionsA[f]. The ordering and reduction rules
for MTBDDss are identical to the ones for BDDs. The arithmetic
functionA[fv] : Fn ! F associated with a MTBDD with rootv is
defined recursively as follows:

1. If v is a terminal node with valueai 2 F , thenA[fv] = ai .

2. If v is a non-terminal branching node withindex(v)= i, then
A[fv] is the function:

A[fv] = (1�xi) �A[f jxi=0]+xi �A[f jxi=1]

where ”+ ” ; ” � ” and ” � ” denote the operations overF .

We have proved that the operations on arithmetic functions
can be performed by equivalent operations on MTBDDs, i.e.
A[f] +A[g] and A[f] �A[g] can be implemented by the MTBDD
ADD and MULTIPLY operation. The compose operation of a vari-
ablexi of A[f] by functionA[g] is implemented asA[f]jxi=A[g] =
A[f jxi=0] + (A[f jxi=1]�A[f jxi=0]) �A[g]. The correctness follows
directly from (2).

The presented algorithm can be applied to any fieldF . In our
current implementation, we chooseF to be a field of integersZp,
p–prime, because our work is primarily targeted at probabilistic
verification methods. However, it can easily be adopted to com-
pute signal probabilities or average switching activities of logic
circuits by changingZp to the field of real numbers, where the
input variables are assigned values between 0 and 1.

7 Experiments

In this section we provide a set of experimental results for eval-
uating the arithmetic transform based on the presented algorithm.
All experiments were performed on a PC with a 1.4 GHz Pen-
tium4 CPU and 1 GByte main memory, running Linux RedHat
7.2. The runtime and memory consumption of algorithm TRANS-
FORM was compared to the performance of our own implemen-
tation of a BDD-based evaluation scheme similar to [34, 18, 3]
based on building a global BDD. The CUDD-package [35] ver-
sion 2.3.1 was used for the BDD and MTBDD manipulations. We
have modified the MTBDD part to support integer field operations
and added the COMPOSE operator described in the previous sec-
tion.

4

10 10 10 10 10 10 10 10 10−4 −3 −2 −1 0 1 2 3 4

Number of dominators per input

N
um

be
r

of
 o

ut
pu

ts

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 3: Histogram of the number of internal dominators per in-
put.

For the comparison we used 253 circuits from standard bench-
mark and industrial circuits which comprise a total of 99,618 out-
puts. 48,047 of these outputs (48%) have internal dominator nets
which can be used in the presented algorithm. Figure 3 shows the

10 10 10 10 10 101010

10

10

10

10

10

10

10

10

6543210−1

−1

0

1

2

3

4

5

6

BDD−based algorithm

Maximum number of DD nodes

D
om

in
at

or
−b

as
ed

 a
lg

or
ith

m

Figure 4: Comparison of the memory usage based on the maxi-
mum number of DD nodes to process an output.

number of internal dominators relatively to the number of inputs
for these outputs. Predominantly the amount of dominators per
input lies between 5 and 0.5. This statistic demonstrates that prac-
tical circuits contain a significant amount of internal dominators
which can be exploited by the presented approach.

To compare the performance of the dominator-based algorithm
with the BDD-based algorithm, we evaluated the arithmetic trans-
forms for random input assignment for all outputs that have at least
one internal dominator (48,047). For both algorithms we applied
a MTBDD (BDD) node limitation of 1 million alive DD nodes per
output. The dominator-based and BDD-based algorithm exceeded
that limit in 1,538 and 1,630 cases, respectively.

Figure 4 compares the memory usage of both algorithms in
terms of the maximal number of BDD/MTBDD nodes. Each en-
try in the diagram represents one output and gives the maximum
number of alive DD nodes for each approach. For the majority
of the test cases the new algorithm requires a significantly smaller
amount of nodes. However, in a number of cases the dominator-
based algorithm requires more nodes. This can be explained by the
fact that the BDD representation can take advantage of comple-
mented edges whereas MTBDDs do not provide that mechanism.

Figure 5 summarizes the runtime comparison for both algo-
rithms. Here the difference between the dominator-based and
BDD-based algorithm is not as significant as for the memory com-
parison. This can be explained with the additional computing ef-
fort needed by the current implementation of the COMPOSE op-
erations which is particularly notable for larger circuits. Part of
our future work is to implement this operation more efficiently for
eliminating this overhead.

−410

10−3

10−2

10−1

100

101

102

10−5

10−2 10−1 100 101 10210−310−410−5

Time in seconds

BDD−based algorithm

D
om

in
at

or
−b

as
ed

 a
lg

or
ith

m

Figure 5: Runtime comparison.

5

8 Conclusions and Future Work

This paper presents an algorithm for evaluating the arithmetic
transform of a Boolean function based on its circuit representa-
tion. Two distinct features make our algorithm feasible for large
circuits. First, we use MTBDDs to represent intermediate re-
sults and to perform all arithmetic operations. Second, we use
the dominator tree of the circuit to analyze and efficiently process
re-convergent paths structures. The latter allows us to perform a
stepwise evaluation of the arithmetic transform which keeps the
size of the MTBDD at a minimum. This early reduction is not
possible with previous approaches based on the construction of
global BDDs.

Future work includes further improvements of the algorithms
and exploring new applications in power analysis and functional
verification. In particular we work on a more efficient algorithm
for the COMPOSE operation by adapting the path-based approach
used for BDD evaluation.

Acknowledgment

This work was supported in part by the Research Grant No 64700
from the SSF INTELECT program.

References

[1] R. Stankovic and T. Sasao, “A discussion on the history of research in arith-
metic and reed-muller expressions,”Transactions on Computer-Aided Design,
vol. 20, pp. 446–455, September 2001.

[2] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general combina-
tional networks,”Transactions on Computers, pp. 668–670, June 1975.

[3] F. Najm, “Transition density: A new measure of activity in digital circuits,”
Transactions on Computer-Aided Design, vol. 12, pp. 310–323, February 1993.

[4] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham, “Probabilistic verification
of Boolean functions,”Formal Methods in System Design, vol. 1, pp. 63–117,
1992.

[5] S. Hassoun and T. Sasao, eds.,Logic Synthesis and Verification. Boston, MA:
Kluwer Academic Publishers, 2002.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS’99), (Amsterdam, The Nether-
lands), pp. 193–207, March 1999.

[7] C. L. Berman and L. H. Trevillyan, “Functional comparison of logic designs
for VLSI circuits,” in Digest of Technical Papers of the IEEE International
Conference on Computer-Aided Design, pp. 456–459, November 1989.

[8] T. Filkorn, Symbolische Methoden f¨ur die Verifikation endlicher Zustandssys-
teme. Dissertation, Technische Universit¨at München, 1992.

[9] J. Moondanos, C. H. Seger, Z. Hanna, and D. Kaiss, “CLEVER: Divide and
conquer combinational logic equivalence verification with false negative elimi-
nation,” inComputer Aided Verification (CAV’01), (Paris, France), pp. 131–143,
July 2001.

[10] A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of average switch-
ing activity in combinational and sequential circuits,” inProceedings of the 29th
ACM/IEEE Design Automation Conference, (Anaheim, CA), pp. 253–259, June
1992.

[11] J. Savir, G. S. Ditlow, and P. H. Bardell, “Random pattern testability,”Transac-
tions on Computers, vol. C-33, no. 1, pp. 79–90, 1984.

[12] H. H. Aiken, “Synthesis of electronic computing and control circuits,”The an-
nals of computational laboratory of Harward University, vol. XXVII, 1951.

[13] Y. Komamiya, “Theory or relay networks for the transformation between the
decimal and binary system,”Bull. Electrotech. Lab., vol. 15, no. 8, pp. 188–
197, 1951.

[14] V. L. Artykhov, V. N. Kondratiev, and A. A. Shalyto, “Generating Boolean
functions via arithmetic polynomials,”Automation and remote control, vol. 49,
pp. 508–515, April 1988.

[15] B. Falkowski and C.-H. Chang, “Generation of multi-polarity arithmetic trans-
form from reduced representation of Boolean functions,” in1995 IEEE Inter-
national Symposium on Circuits and Systems, vol. 3, pp. 2168–2171, 1995.

[16] B. Falkowski and C.-H. Chang, “Efficient algorithms for the calculation of
arithmetic spectrum from OBDD and synthesis of OBDD from arithmetic spec-
trum for incompletely specified boolean functions,” in1995 IEEE International
Symposium on Circuits and Systems, vol. 1, pp. 197–200, 1994.

[17] T. Sasao and e. M. Fujita,Representations of discrete functions. Kluwer Aca-
demic Publishers, 1996.

[18] T. Uchino, F. Minami, T. Mitsuhashi, and N. Goto, “On the complexity of using
BDD’s for the synthesis and analysis of Boolean circuits,” inProceedings of
27th Annual Allerton Conference on Communication, Control and Computing,
pp. 730–739, September 1989.

[19] R. Ubar, J. Heinlaid, and L. Raun, “Improved testability calculation for digital
circuits,” in Proceeding of NORCHIP, pp. 264–270, 2001.

[20] M. G., “Bounding signal probabilities in combinational circuits,”Transactions
on Computers, pp. 1247–1251, October 1987.

[21] S. Ercolani, M. Favalli, M. Mamiani, P. Olivo, and B. Ricco, “Estimate of signal
probability in combinational logic networks,” inProceeding of IEEE European
Test Conference, pp. 132–138, 1989.

[22] R. Kapur and M. Mercer, “Bounding signal probabilities for testability mea-
surement using conditional syndromes,”Transactions on Computers, vol. C-36,
pp. 1580–1588, December 1992.

[23] R. Kodavarti and D. Ross, “Signal probability calculations using partial func-
tional manipulation,” inProceedings of Eleventh Annual 1993 IEEE VLSI Test
Symposium, (Atlantic City, NJ, USA), pp. 194 – 200, April 1993.

[24] T. Uchino, F. Minami, M. Murakata, and T. Mitsuhashi, “Switching activity
analysis for sequential circuits using Boolean approximation method,” inInter-
national Symposium on Low Power Electronics and Design, (Monterey, CA),
pp. 79–84, 1996.

[25] S. C. Seth, L. Pan, and V. D. Agrawal, “PREDICT-probabilistic estimation of
digital circuit testability,” inProceeding of International Symposium on Fault-
Tolerant Computing, pp. 220–225, June 1985.

[26] J. Costa, J. Monteiro, and S. Devadas, “Switching activity estimation using
limited depth reconvergent path analysis,” inProceedings of the International
Symposium on Low Power Electronics and Design, pp. 184 –189, 1997.

[27] J. Jain, M. Abadir, J. Bitner, D. Fussell, and J. Abraham, “Probabilistic de-
sign verification,” inDigest of Technical Papers of the IEEE International Con-
ference on Computer-Aided Design, (Santa Clara, California), pp. 468–471,
November 1991.

[28] P. W. Purdom and E. F. Moore, “Immediate predominators in a directed graph,”
Communications of the ACM, vol. 15, pp. 777–778, August 1972.

[29] E. S. Lowry and C. W. Medlock, “Object code optimization,”Communications
of the ACM, vol. 12, pp. 13–22, January 1969.

[30] A. V. Aho and J. D. Ullman,The Theory of Parsing, Translating, and Compil-
ing, Vol. II. Englewood Cliffs, NJ: Prentice-Hall, 1972.

[31] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators in a flow-
graph,”Transactions of Programming Languages and Systems, vol. 1, pp. 121–
141, July 1979.

[32] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. C.-Y. Yang, “Spectral
transforms for large Boolean functions with application to technology map-
ping,” in Proceedings of the 30th ACM/IEEE Design Automation Conference,
(Dallas, TX), pp. 54–60, June 1993.

[33] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi,
“Algebraic decision diagrams and their applications,” inDigest of Technical
Papers of the IEEE/ACM International Conference on Computer-Aided Design,
(San Jose, CA), pp. 188–191, IEEE, November 1993.

[34] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer, and J. White, “Estimation of
average switching activity in combinational logic circuits using symbolic sim-
ulation,” Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, pp. 121–127, January 1997.

[35] F. Somenzi,CUDD: CU Decision Diagram Package, Release 2.3.1. University
of Colorado at Boulder, 2001.

6

