
Minimization of Multiple-Valued Functions in Post Algebra

Elena Dubrova Yunjian Jiang Robert Brayton
Department of Electronics Dept. of Electrical Engineering and Computer Sciences

Royal Institute of Technology University of California
Stockholm, Sweden Berkeley, USA

elena@ele.kth.se wjiang,brayton @eecs.berkeley.edu

Abstract

The relation between minimum sum-of-products ex-
pressions for multiple-valued input, binary-valued
output functions and minimum sum-of-products ex-
pressions in Post algebra for multiple-valued input,
multiple-valued output functions is made precise. We
give an algorithm for minimizing Post expressions and
discuss a method for their factorization. Experiments
are given to demonstrate the effectiveness of the algo-
rithm.

1 Introduction

Multiple-valued logic is a generalization of classical
Boolean logic. At higher levels of abstraction, where
the variables often range over a set of symbolic val-
ues, use of multiple-valued logic can make the design
task more intuitive [2]. For example, a traffic light con-
troller with a signal light red, yellow, green is con-
ceptually easier than encoding
etc. The designer can first manipulate and optimize
a multiple-valued network, and then, when no fur-
ther optimization is possible in the multiple-valued
domain, perform a suitable encoding and derive a
Boolean network. This allows a better exploration of
the design space, since the binary encoding is post-
poned and multiple-valued optimization is not influ-
enced by such decisions. At the final stage, several
binary encodings might be tried to select a good one.

Multiple-valued functions were studied originally
to provide support for designing -valued logic cir-
cuits, which employ discrete signals, .
Attempts to build multiple-valued integrated circuits
(ICs) can be traced back to 1970, starting from early
work on 3-valued designs [15]. Applying multiple-
valued logic can enhance circuit performance in terms
of chip area, operation speed and power consumption
[1], [6]. Multiple-valued circuits have matured to the
point where four-valued flash and DRAM memories

are commercially available [13].
Techniques for manipulating multiple-valued func-

tions have been used to design binary-valued circuits
that implement some encoding of the multiple values.
Examples are synthesis of PLAs with input encoders
[16], optimization of finite state machines [8], identi-
fication of Boolean factors [7].

The best way to benefit from multiple-valued logic
is to manipulate a multiple-valued representation di-
rectly. When no further optimization is possible, a
suitable binary encoding can be applied. This ap-
proach is not used due to the lack of mature pack-
ages for representation, manipulation, synthesis, op-
timization and verification of multiple-valued func-
tions. To gain popularity, these packages must be
competitive with other efficient logic packages, like
CUDD [18] and VIS [19]. Such multiple-valued pack-
ages are not developed yet mainly because a com-
plete suite of associated algorithms is still not avail-
able. Although some techniques are generalized to the
multiple-valued case, many essential ones are either
missing or inefficient.

In this paper we address two fundamental problems
in multiple-valued theory: minimization and factoriza-
tion. We clarify the relation between minimum sum-
of-products expressions for multiple-valued input,
binary-valued output functions and minimum sum-
of-products expressions in Post algebra for multiple-
valued input, multiple-valued output functions. We
give an algorithm for minimizing Post expressions and
discuss a method for their factorization. Experiments
are given to demonstrate the effectiveness of the algo-
rithm.

2 Multiple-valued functions

A multiple-valued function is a discrete function
whose input and output variables take two or more val-
ues. Formally, an -variable multiple-valued function

is a mapping

1



, with the variables taking values from the sets
, , ,

and the function taking its value from the set
, .

As an algebraic system for manipulation of
multiple-valued functions focus on chain based Post
algebra, corresponding to the first multiple-valued
logic developed by Emil Post in 1921 [12]. This is
based on a totally ordered set of elements and the op-
erations maximum (MAX), minimum (MIN) and lit-
eral. It is a special case of more general Post algebras,
based on lattices [11]. In our case, the set is the union
of the input domains of the variables and the output
domain of the function, i.e . Maximum
MAX , , is a binary oper-
ation of type , whose output is the
larger of the two values of its arguments. Minimum
MIN outputs the smaller of the two values.
The literal is a unary operation of type ,
defined by

if
otherwise

where is a multiple-valued variable and
is a set. Throughout the paper, we omit brackets

when is a single-element set, i.e. we write instead

of .
Cube is a product of literals of type

, where is a constant and product ” ” is
MIN. A sum-of-products expression over Post algebra
is a sum of cubes, with sum being MAX. For example,
the function shown in Figure 1 can be written as:

with ”+” = MAX and ” ” = MIN.

0 1 2
0 0 1 0
1 2 2 2
2 0 1 0

Figure 1: An example of 3-valued function.

Since we use the MAX operation between cubes,
a cube with a higher-valued coefficient may be com-
bined with a cube with a lower-valued coefficient as
shown in the following Lemma.

Lemma 1 Let and be constants in and
be multiple-valued literals. If and

, then where .

Using Lemma 1, a sum-of-product expression for the
function in Figure 1 can be simplified to

We can also omit the constant from product-
terms, since for any .

To generalize the notions of on-set and off-set for
the multiple-valued case, we first extend the operation
literal over a variable to the operation literal over the
function:

if
otherwise

where is a constant. The literal contains
the minterms mapped to by . Since

for any , the input domain
of can be partitioned into

disjoint sets as:

(1)

We use the same notation to denote the set
and call this the i-set of .

In the two-valued case, 0-set corresponds to the off-set
and 1-set corresponds to the on-set of the function.

3 Minimization

3.1 Completely specified functions

Two-level sum-of-products for multiple-valued func-
tions and associated minimization techniques have
been studied since 1970 [9], [10], [17]. The algorithms
for minimization of Boolean sum-of-products expres-
sions, beginning with the generation of all prime im-
plicants followed by the selection of a minimum cover,
can be extended to multiple-valued expressions over
Post algebra, but it is quite inefficient. A more effi-
cient way, which we follow in this paper, is to parti-
tion the function with respect to each of its non-zero
values into -sets, and then apply an
efficient minimizer for multiple-valued input, binary-
valued output functions, like Espresso-MV [14], to
find a minimum cover for each of -sets. These are
called priority don’t cares. More formally, such an al-
gorithm is given as follows.

Algorithm 1: For :

1. Compute -sets for all .

2. For each , find a minimum
cover for the multiple-valued input, binary-
valued output function with the on-set

2



, priority don’t care set

and off-set .

3. The cover for is given by .

In Step 2, the on-set contains all the cubes mapped
to by , the priority don’t care set contains
all the cubes mapped to by , for all
greater than , and the off-set contains all the cubes
mapped to by , for all smaller than
, . Multiple-valued input, binary-valued

output functions are minimized successively for
. Finally, Equation 1 is applied to

merge the minimized covers into a cover for the orig-
inal function. Such an algorithm for minimization of
multiple-valued functions was used for the first time
in [3]. However, no formal proof was given to assure
that the algorithm really computes the minimal cover
for the function. Below we present a formal statement
and proof.

Theorem 1 Algorithm 1 finds a minimum cover for a
multiple-valued function .

Proof: Suppose is not a minimum cover for . Then
there exists another cover, , and an index
such that . From Lemma 1,

. On the other hand, from Step 2
of Algorithm 1,
because the cover is found using all , as
don’t cares. Since is minimum, ,
which contradicts the above assumption. Thus,

and is a minimum cover for .

As an example, consider the 3-valued 2-variable
function shown in Figure
1. Its -sets for are:

First, we simplify to and then minimize us-
ing as a don’t care set. This results in .
Finally, we merge these two functions to get:

3.2 Incompletely specified functions

In this section we show that the problem of minimiza-
tion of incompletely specified functions is equivalent
to the problem of minimization of completely speci-
fied functions with one more value in the output do-
main.

Consider the following algorithm:

Algorithm 2: For :

1. Replace all don’t care values in the output domain
with the value .

2. Compute -sets for all .

2. For each , find a minimum
cover for the multiple-valued input, binary-
valued output function with the on-set

, priority don’t care set

and off-set .

3. The cover for is given by .

Note, that the cover , corresponding to the
don’t care value, is not included in the resulting cover
for the function.

Next, we state that Algorithm 2 computes a mini-
mum cover for the function. The proof is similar to
that of Theorem 1.

Theorem 2 Algorithm 2 finds a minimum cover for
an incompletely specified multiple-valued function

.

3.3 Output phase optimization

Sometimes, a better result can be obtained by renam-
ing the values in the output domain of the function to
obtain a different ordering. For example, consider the
function shown in Figure 2 (left). A minimum sum-of-
products expression over Post algebra is

If we rename the values in the output domain as
shown in Figure 2 (right), a minimum sum-of-products
form is

In general, an output ordering problem needs to be
solved to get a minimum sum-of-products expression
for a multiple-valued function. This problem is an
analog of the output phase assignment problem in the
Boolean case.

4 Factoring

If we have a minimum sum-of-products expression
over Post algebra, we may often simplify it further by
factoring. We can look for a (algebraic) factorization
of the type where represents the
MIN operation and , the MAX operation. This leads

3



0 1 2 3
0 1 1 1 1
1 3 3 3 1
2 0 0 3 1
3 2 0 3 1

0 1 2 3
0 0 0 0 0
1 1 1 1 0
2 2 2 1 0
3 3 2 1 0

Figure 2: Re-ordering values in output domain.

to a slight extension of a factoring operation defined
for multiple-valued input, binary-valued output func-
tions [4]. Note that a product of two expressions can
be written as an array, e.g.

Thus, to find we need to find a subset of the
cubes of that can be arranged in a ”satisfiable” ma-
trix (which is the same as defined in [4], except that
now we have constants to deal with). The constants in
the matrix must be able to be written as an outer prod-
uct (MIN operation) of two constant vectors. As an
example, the satisfiable matrix

provides a factorization

Given a satisfiable matrix, the factorization is ob-
tained by doing row and column operations, where
for each row, we take the maximum coefficient, and
the supercube of the row entries; similarly for the
columns. Then one factor is the sum of the row results,
the other is the sum of the column results. Recall, that
if a variable is not present in a cube, the literal with
all values is there. Note also that, given a satisfiable
matrix, the two factors are not necessarily unique.

Duality of MIN and MAX operations can be ex-
ploited to look for a ”factorization” of the type

MAX .

5 Experimental results

We have implemented the minimization Algorithm 1
in MVSIS [5] and applied it to a set of benchmark
functions. Most of the examples are from the multi-
valued logic benchmark suite available from Portland
State University [20]; some are hand-made examples.
The characteristics of the benchmarks are summarized
in Table1. It shows, for each example, the number of
inputs (PI) followed in parenthesis by the maximum

Table 1: MV-network examples

example PI PO example PI PO
adder-mod4 3 (4) 1(4) nursery 8 (3-5) 1 (5)
decoder 3 (4) 2(8) balance 4 (5) 1 (5)
plus8 2 (8) 1(15) car 6 (3-4) 1 (4)
pal3x 6 (3) 1(4) mm3 5 (3) 1 (3)
matmul 8 (3) 4(3) mm4 5 (4) 1 (4)
xor-mux 3 (4-6) 1(4) mm5 5 (5) 1 (5)
employ1 9 (3-5) 1(4) iris 4 (5-12) 1 (3)
employ2 7 (3-5) 1(4) chess1 6 (4-8) 1(18)
max 8 (8) 1(8)

range of their values, and the number of outputs (PO)
followed by the maximum range of their values.

The results of minimization are summarized in Ta-
ble 2. Column orig shows, after multi-level examples
are collapsed into two-level sum-of-product expres-
sions over Post algebra, the number of multi-valued
cubes in the multiple-valued functions when each i-set
is minimized without priority don’t cares. The rest of
the columns show the number of cubes obtained using
two different heuristics for output phase assignment.
The first heuristic (column heur-1) assigns to each i-
set a priority. The highest priority i-set is associated
with , etc. Consider the following merit func-
tion, which is the inverse of the weighted sum of the
cube count and the literal count for the cover,
i.e.

The reasoning is that: (1) high priority i-sets have
smaller representations and do not need and cannot use
don’t cares as effectively; (2) functions with few liter-
als, may have more minterms and hence produce more
priority don’t cares for downstream i-sets.

Note that the i-set with the largest representation is
given the lowest priority, so that when it is minimized
we always obtain the empty set. We tried heuristics for

, and . The experiments
show that, among these, the best ordering was pro-
vided by either or , but never by .
In the discussion that follows we select the best result
between and for each heuristic.

Column heur-2 shows the results of a second heuris-
tic, which is the reverse of heur-1, i.e. the order of the
i-sets is in reverse priority, except that the largest i-set
is always kept as the default. Column rand is a random
ordering but again with the largest i-set being the de-
fault. On average, there is a 25% reduction when the
first heuristic is used with the minimization algorithm.
The first heuristic is on average better than its reverse,
but there are a few cases when the random ordering

4



Table 2: Minimization results (# cubes)
example orig heur-1 heur-2 rand
adder-mod4 48 36 36 28
decoder 14 14 14 14
plus8 56 44 56 39
pal3x 138 94 122 90
matmul 96 88 80 80
xor-mux 48 28 28 28
employ1 19 19 19 19
employ2 36 21 31 21
nursery 48 32 44 44
balance 104 68 86 101
car 32 28 32 28
mm3 10 10 10 10
mm4 34 23 30 27
mm5 79 69 52 53
iris 29 28 28 28
max 49 7 49 42
chess1 2651 1770 1746 1757
average ratio 1 0.75 0.87 0.80

gives the best result (adder-mod4, plus8, pal3x). An-
other way to look at the results is that heur-1 gives a
result, equal to the best, in 11 out of 17 times; heur-2
in 7 out of 17 times; and rand in 11 out of 17 times.
Taking the best of the three columns gives an average
ratio of 0.72. This suggests a need for a better heuris-
tic, which we will look into in our future experiments.

6 Conclusion

We showed how to find a minimum two-level sum-
of-products expression over chain-based Post algebra
for incompletely specified multiple-valued functions.
We gave an algorithm for minimizing Post expres-
sions, using techniques for minimization of binary-
output multi-valued functions. Experimental results
showed about 25% reduction in the size of the cover
compared to an algorithm which minimizes each i-set
separately. We noted that output phase assignment can
improve the results.

References
[1] Ben Dhaou I., Dubrova E., Tenhunen H. 2001

Power efficient inter-module communication for
digit-serial DSP architectures in deep-submicron
technology Proc. 31st Int. Symp. Multiple-Valued
Logic

[2] Brayton R. K., Khatri S. P. 1999 Multi-valued
logic synthesis Proc. 12th Int. Conf. on VLSI De-
sign 196-206.

[3] Dueck G. W., Miller D. M., 1988 Direct search
minimization of multiple-valued functions Proc.
18th Int. Symp. Multiple-Valued Logic 218-25

[4] Gao M. and Brayton R., 2000 Semi-Algebraic
Methods for Multi-Valued Logic Proceedings of
the International Workshop on Logic Synthesis

[5] M. Gao, J.-H. Jiang, Y. Jiang, Y. Li, S. Sinha, R.
Brayton, 2001 MVSIS, submitted to IWLS’01

[6] Hanyu T., Kameyama M. 1995 A 200 MHz
pipelined multiplier using 1.5 V-supply multiple-
valued MOS current-mode circuits with dual-
rail source-coupled logic, IEEE Journal of Solid-
State Circuits 30(11) 1239-45

[7] Liao S., Devadas S., Ghosh A. 1993 Boolean
factorization using multiple-valued minimization
Proc. Int. Conf. Computer-Aided Design 606-11

[8] De Micheli G. D., Brayton R., Sangiovanni-
Vincentelli A. 1984 KISS: a program of optimal
state encoding of finite state machines Proc. Int.
Conf. Computer-Aided Design

[9] Moraga C. 1971 A minimization method for 3-
valued logic functions in Theory of Machines and
Computations (New York: Academic) 363-75

[10] Muzio J. C. and Miller, D. M. 1979 On the mini-
mization of many-valued functions Proc. 9th Int.
Symp. Multiple-Valued Logic 294-9

[11] Muzio J. C. and Wesselkamper T. C.
1986 Multiple-valued switching theory (Bristol:
Hilger)

[12] Post E. L. 1921 Introduction to a general the-
ory of elementary propositions Amer. J. Math. 43
163-85

[13] B. Ricco et al. 1998 Non-volatile multilevel
memories for digital applications Proc. IEEE
86(12) 2399-2421

[14] Rudell R. and Sangiovanni-Vincentelli A. 1987
Multiple-valued minimization for PLA optimiza-
tion IEEE Trans. om Computer-Aided Design 5
727-50

[15] Smith K. C. 1981 The prospects for multivalued
logic: A technology and applications view, IEEE
Trans. om Computers C-30(9) 619-34

[16] Sasao T. Multiple-valued logic and optimization
of programmable logic arrays 1988 IEEE Com-
puter 21 71-80

[17] Smith W. R. 1997 Min-
imization of multiple-valued functions in Com-
puter science and multiple-valued logic ed: Rine
(North-Holland:Amsterdam)

[18] Somenzi F. 1998 CUDD: CU Decision Diagram
Package, Release 2.3.0 University of Colorado at
Boulder

[19] The VIS Group, VIS: A system for Verification
and Synthesis 1996 Proc. 8th Int. Conf. on Com-
puter Aided Verification Springer Lecture Notes
in Computer Science ed: Alur and Henzinger
1102

[20] Portland Logic Optimization group, Portland
State University, http://www.ee.pdx.edu/ polo/

5


