
A Conjunctive Canonical Expansion of Multiple-Valued Functions

Elena Dubrova Petra Färm
Department of Microelectronic and Information Technology

Royal Institute of Technology, Stockholm, Sweden
elena,petra @ele.kth.se

Abstract

A generalization of McMillan’s conjunctive expansion of
Boolean functions [1] to the case of multiple-valued input
binary-valued output functions is presented. It is based on
the operation of generalized cofactor, defined by employ-
ing a new distance measure on truth assignments, called

-valued weighted distance. Using our result, Boolean
multiple-output functions can be expanded directly by treat-
ing the output part as a single multiple-valued variable.
Such an approach might allow a better utilization of the
common subparts for different outputs compared to the
output-by-output Boolean expansion.

1. Introduction

This paper generalizes McMillan’s conjunctive expan-
sion of Boolean functions [1] to the case of multiple-valued
input binary-valued output functions ,

. For an -variable Boolean func-
tion, the expansion [1] is a Boolean AND of components,
namely . The components , are
defined as , where is the generalized
cofactor and is the projection of onto ,
i.e. . The generalized cofactor

agrees with whenever is true. The
minterms for which is false are mapped to the ”near-
est” minterm where is true, according to the distance
measure on truth assignments, defined by

(1)

where is the XOR, and are the arithmetic ad-
dition and multiplication, are binary vectors
and is a vector of weights.
For a fixed , the nearest minterm is uniquely defined and
therefore the expansion is canonical. Note,
that if the coefficients are omitted in (1), then
reduces to the conventional Hamming distance [2].

The main motivation for our generalization is to pro-
vide a more efficient way to handle the case of Boolean
multiple-output functions. If a -output Boolean func-
tion is treated as a single-output func-
tion with one variable being multiple-valued, i.e. of type

, then our expansion
allows to detect and utilize the common subparts for dif-
ferent outputs directly. Contrary, if the Boolean function is
expanded output-by-output, then an additional step might
be needed to find the common subparts.

To extend McMillan’s conjunctive expansion [1] to the
multiple-valued case, we introduced a few notions which
might be of interest on their own, namely: (1) a new gen-
eralization of Hamming distance to the case of

-ary vectors , (2) a definition of weighted dis-
tance for -ary vectors , (3) an extension of
generalized cofactor to the case of ,

. To our best knowledge, so far the
generalized cofactor has only be extended to the case of

and being a single cube [5].
The paper is organized as follows. Section 2 gives a

background on multiple-valued input binary-valued output
functions. In Section 3, the generalizations of Hamming
distance and weighted Hamming distance between the -
ary vectors are described. In Section 4, the generalized co-
factor is extended to the multiple-valued case. In Section 5,
a new canonical expansion of multiple-valued functions is
introduced. Section 6 concludes the paper.

2. Multiple-valued input binary-valued output
functions

This section gives a brief background on multiple-valued
input binary-valued output functions. We use the standard
definitions and notation in the area of multiple-valued logic
[3], [6].

A multiple-valued input binary-valued output function is
a discrete function of type , whose vari-
ables range over a finite set of values

and whose output take values from .



Such functions are a ”nice” subset of the general
multiple-valued functions . Many notions and
algorithms for the Boolean functions trivially extend to the
case of . Any multiple-valued input binary-
valued output function can be expressed in terms of Boolean
AND, Boolean OR and the operation literal of a multiple-
valued variable defined as follows:

if
otherwise

where is a subset of constants. Such a representa-
tion is possible because the literal is a characteristic function
of type and therefore the operations on the lit-
erals are Boolean operations of type . It
was shown that the set of operations AND, OR, literals
is functionally complete for multiple-valued input binary-
valued output functions [3].

3. Hamming distance in -valued case

In this section we extend Hamming distance [2] to the
case of -ary vectors and introduce the notion
of weighted distance. The later will be used in the next
section as a distance measure on truth assignments in the
definition of the generalized cofactor.

In the Boolean case, the Hamming distance between two
binary vectors is defined by

(2)

where is the XOR, is the arithmetic addi-
tion and and are the th bits of and , corre-
spondently. Hamming distance gives the number of po-
sition in which two binary vectors differ. For example,

. Two useful properties of Hamming
distance are and

, where .
There are several possibilities for extension of Hamming

distance to the -ary vectors, depending on how the XOR
between two bits is generalized. One possibility is two ex-
tend to the absolute value of the arithmetic sub-
traction . For example, for , the dif-
ference between 0 and 1 is 1, between 1 and 2 is 1, and be-
tween 0 and 2 is 2. Such a definition preserves the properties

and ,
however it does not allow the unique definition of the ”near-
est” vector in its weighted extension.

Another possibility is to extend the XOR to the addition
modulo . Then, for , the difference between 0
and 1 is 1, between 1 and 2 is 0, and between 0 and 2 is
2. Since each element of has a unique inverse with re-
spect to the addition modulo [3], such a definition guar-
antees the uniqueness of the ”nearest” vector in its weighted

extension. However, the properties and
are not preserved. E.g.

and
.

In this paper, we propose an alternative generalization
of the XOR, which preserves the properties
and as well as provides
the unique definition of the ”nearest” vector in its weighted
extension. We generalize the XOR to the bit-wise XOR
between -ary digits :

(3)

where is the XOR, and are the arithmetic
addition and multiplication and and are the th bits
of and , correspondently.

Note, that is the operation of type
, so, unless is of type for some

, has more than values in its output do-
main. For example, for , the output domain of
is , e.g. , , and

. Using this extension of the XOR, our generaliza-
tion of Hamming distance is as follows.

Definition 1 The -valued distance between the two -
ary vectors is defined by

(4)

where is defined by (3), is the arithmetic addi-
tion, and and are the th digits of and , corre-
spondently.

Note, that in the above definition and are th
digits, not bits. For example, in the ternary vector

, the 1st digit is 2, the 2nd is 1 and the 3rd is 0.
So, the distance between the vectors and is

. Using the properties of
the , we can easily show that the -valued distance
defined by (4) satisfies the properties and

, where .
Next, we extend the Definition 1 to its weighted version.

Definition 2 Given a weight vector ,
, the -valued weighted distance between the two

-ary vectors is defined by

(5)

where is defined by (3), and are the arith-
metic addition and multiplication, and and are
the th digits of and , correspondently.



For , the coefficient in (5) reduces to 2,
which agrees with the definition of weighted Boolean dif-
ference (1).

From the number representation theory, we know that a
vector of digits , over a
radix represents the number [3]:

If , then the above representation is unique. Oth-
erwise, it is redundant, i.e. different vectors can repre-
sent the same number. In our case,

and , so our represen-
tation is unique as long as for any -ary digits
it holds that if and only if (cancellation
law of addition). This clearly holds for . Therefore,
given a fixed weight vector , the dis-
tance (5) uniquely defines the nearest vector for any -ary
vector from .

For example, for , and
the nearest point to is , yielding the minimal
distance

. For , the nearest point to
is , yielding the minimal distance

. This uniqueness
property of the -valued weighted distance is used in the
next section as a distance measure on truth assignments in
the definition of the generalized cofactor.

4. Generalized cofactor

If and are -variable Boolean functions, then the gen-
eralized cofactor is a Boolean function which value for a
given minterm is obtained by finding the near-
est minterm that satisfies , and evaluating
at this point [1]. The nearest minterm is defined as the one
minimizing (1) for a given . Such a definition of
the generalized cofactor coincides with the definition of the
constrain operator on OBDD’s [4] in the special case when
the OBDD variable order is .

The definition of the generalized cofactor from [1] di-
rectly extends to the case of ,

if the -valued weighted distance is used
instead of Boolean weighted difference (1) as a distance
measure on truth assignments. Let denote the constant-
0 function.

Definition 3 For a minterm and a function
such that , let be the minterm

for which and is minimized.

So, is the nearest point to which satisfies . As
we showed in the last section, is uniquely defined
for . Clearly, if satisfies itself, i.e. if ,

then , since is the minimal
possible distance. This implies that agrees with for
every minterm satisfying .

Definition 4 For any functions and
, the generalized cofactor is a function

of type defined as follows:

- if , then for any ,
- else .

A number of properties of Boolean generalized cofactor
from [1] hold for the multiple-valued case. For example, it
is easy to show that if is a literal, then the generalized co-
factor reduces to the conventional cofactor over a variable:

where .
If is a cube and is of type , then

the generalized cofactor coincides with the cofactor over a
cube from [5]. It is interesting to observe that in this
case the generalized cofactor is independent of the weight
vector .

As an example, consider the case of ,
and . The generalized cofactor of a function

with respect to is . If

, and , then we

get .

5. Conjunctive expansion

Similarly to the Boolean case, we use the generalized co-
factor to decompose a multiple-valued input binary-valued
output function into a Boolean AND
of multiple-valued input binary-valued output functions

, defined as follows.

Definition 5 For any and ,

where stands for the projection of onto ,
i.e. .

The proof of definition 5 is based on the following
Lemma:

Lemma 1 If and are of type , then

where is the Boolean AND.



Proof: By Definition 3, for every minterm
where . So, we get

on the left hand side and
on the right hand side.

On the other hand, for any such that ,
we have on the right hand side and

on the left hand side.

Theorem 1 Any multiple-valued input binary-valued out-
put function can be expressed as

(6)

where is the Boolean AND.

Proof: (same as in [1]) By induction on .
1) Let . Then

, where 1 denotes the constant-1 function.
2) Hypothesis: Assume the result for all functions of vari-
ables.

The expansion (6) is canonical for a fixed weight vector
. Similarly to the Boolean

case [1], if a function does not depend on some variable
, then . Therefore , so

the corresponding component in (6) is constant-1.
As an example of the application of the expansion (6)

to multiple-output Boolean functions, consider the 2-output
4-variable Boolean function with

and
. We

treat its output part as a single variable (2-valued in
this case) and represent it as a 5-variable function

. By applying (6) to , we get
with ,

and . So,
with 6 products in the decomposed represen-

tation versus 8 in the non-decomposed.
If instead of using multiple-valued expansion, we apply

the Boolean one output-by-output, then we get
with and

and
with and

. An additional step is needed to recog-
nize that .

6. Conclusion

This paper extends McMillan’s conjunctive expansion of
Boolean functions [1] to the multiple-valued case. Although
the generalization is done only for the case of multiple-
valued input binary-valued output functions, the more gen-
eral case of can also be handled by first
partitioning with respect to each of its non-zero values

into literals , and then

expanding each of . The resulting expansion for is of
type

where and are the multiple-valued operations
maximum and minimum, correspondently.

It is worth noticing that the variable ordering in the
weight vector might considerably impact the size of the
expansion (6). The problem of finding an optimal variable
ordering is still open in both the Boolean as well as the
multiple-valued case.

Acknowledgment

This work was supported in part by Vinnova EXCITE
project o

¯ 6472 and by IBM Faculty Award.

References

[1] K.L. McMillan, A conjunctively decomposed boolean
representation for symbolic model checking, Com-
puter Aided Verification: 8th Int. Conf. (CAV’96), R.
Alur and T. Henzinger eds., New Brunswick, New Jer-
sey, July 1996.

[2] R. W. Hamming, Error detecting and error correcting
codes, Bell System technical Journal, vol. 26, no. 2,
pp. 147-160, April 1950.

[3] J.C. Muzio, T.C. Wesselkamper, Multiple-Valued
Switching Theory, Adam Hilger Ltd. Bristol and
Boston, 1986.

[4] O. Coudert, C. Berthet, J.C. Madre, Verification of
synchronous sequential machines based on symbolic
execution, in J. Sifakis, ed., Int. Workshop on Auto-
matic Verification Methods for Finite State Systems,
Grenoble, France, vol. 407 of Lecture Notes in Com-
puter Science, Springer-Verlag, June 1989.

[5] R. Rudel and A. Sangiovanni-Vincentelli, Multiple-
valued minimization for PLA optimization, IEEE
Trans. on CAD/ICAS, vol. CAD-5, no. 9, pp. 727-750,
Sept. 1987.

[6] S. Hassoun and T. Sasao, eds., Logic Synthesis and
Verification, Kluwer Academic Publishers, 2002.


