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Abstract

A generalization of McMillan’s conjunctive expansion of
Boolean functions [1] to the case of multiple-valued input
binary-valued output functions is presented. It is based on
the operation of generalized cofactor, defined by employ-
ing a new distance measure on truth assignments, called
m-valued weighted distance. Using our result, Boolean
multiple-output functions can be expanded directly by treat-
ing the output part as a single multiple-valued variable.
Such an approach might allow a better utilization of the
common subparts for different outputs compared to the
output-by-output Boolean expansion.

1. Introduction

This paper generalizes McMillan’s conjunctive expan-
sion of Boolean functions[1] to the case of multiple-valued
input binary-valued output functions f : M™ — {0,1},
M ={0,1,...,m — 1}. For an n-variable Boolean func-
tion, the expansion [1] isa Boolean AND of n components,
namely f = AL, f;- The components f;, 1 < i < n are
defined as f; = f®|f(—1), where ”|” is the generalized
cofactor and f(? is the projection of f onto (z1,...,;),
ie. f@ = 3(xiq,...,2,).f. The generalized cofactor
F@|£6-1) agrees with £ whenever f(—1 istrue. The
minterms for which £(—1) isfalse are mapped to the " near-
est” minterm where f(—1) istrue, according to the distance
measure on truth assignments, defined by

d(z,y) = Z 2770 (a(ws) ® y(wi)) oy

where” &” isthe XOR,” >~ ” and” -” arethe arithmetic ad-
dition and multiplication, z,y € {0,1}" are binary vectors
and W = (wy,...,w,),w; € {0,1} isavector of weights.
For afixed T, the nearest minterm is uniquely defined and
therefore the expansion f = A, fi is canonical. Note,
that if the coefficients 27 ~¢ are omitted in (1), then d(z, )
reduces to the conventional Hamming distance[2].

The main motivation for our generalization is to pro-
vide a more efficient way to handle the case of Boolean
multiple-output functions. If a k-output Boolean func-
tion {0,1}" — {0,1}* is treated as a single-output func-
tion with one variable being multiple-valued, i.e. of type
{0,1}™ x {0,1,...,k — 1} — {0,1}, then our expansion
allows to detect and utilize the common subparts for dif-
ferent outputs directly. Contrary, if the Boolean function is
expanded output-by-output, then an additional step might
be needed to find the common subparts.

To extend McMillan's conjunctive expansion [1] to the
multiple-valued case, we introduced a few notions which
might be of interest on their own, namely: (1) a new gen-
eralization of Hamming distance H D(z,y) to the case of
m-ary vectorsz,y € M™, (2) adefinition of weighted dis-
tance for m-ary vectors z,y € M™, (3) an extension of
generalized cofactor f|g to the case of f : M™ — M,
g : M™ — {0,1}. To our best knowledge, so far the
generalized cofactor has only be extended to the case of
f:M™— {0,1} and g being asingle cube[5].

The paper is organized as follows. Section 2 gives a
background on multiple-valued input binary-valued output
functions. In Section 3, the generalizations of Hamming
distance and weighted Hamming distance between the m-
ary vectors are described. In Section 4, the generalized co-
factor is extended to the multiple-valued case. In Section 5,
a new canonical expansion of multiple-valued functionsis
introduced. Section 6 concludes the paper.

2. Multiple-valued input binary-valued output
functions

This section gives abrief background on multiple-valued
input binary-valued output functions. We use the standard
definitions and notation in the area of multiple-valued logic
(3. [6].

A multiple-valued input binary-valued output function is
a discrete function of type f : M™ — {0, 1}, whose vari-
ables range over afinite set of values M = {0,1,...,m —
1} and whose output take valuesfrom {0, 1}.



Such functions are a "nice’ subset of the general
multiple-valued functions M™ — M. Many notions and
algorithms for the Boolean functions trivially extend to the
case of M™ — {0,1}. Any multiple-valued input binary-
valued output function can be expressed in terms of Boolean
AND, Boolean OR and the operation literal of a multiple-
valued variable z defined as follows:

Ecs*_ 1 ifzesS
1 0 otherwise

where S C M isasubset of constants. Such a representa-
tionispossible becausetheliteral isacharacteristic function
of type M — {0, 1} and therefore the operations on the lit-
erals are Boolean operations of type {0,1}" — {0,1}. It
was shown that the set of operations {AND, OR, literals}
is functionally complete for multiple-valued input binary-
valued output functions[3].

3. Hamming distance in m-valued case

In this section we extend Hamming distance [2] to the
case of m-ary vectorsz,y € M™ and introduce the notion
of weighted distance. The later will be used in the next
section as a distance measure on truth assignments in the
definition of the generalized cofactor.

In the Boolean case, the Hamming distance between two
binary vectorsz, y € {0,1}" isdefined by

HD(z,y) = ) _ (i) ©y(i) e

i=1

where ” @ ” is the XOR, ” .7 is the arithmetic addi-
tion and z(¢) and y (i) are the ith bits of z and y, corre-
spondently. Hamming distance gives the number of po-
sition in which two binary vectors differ. For example,
HD(010,001) = 2. Two useful properties of Hamming
distanceare HD(z,z) = 0 and HD(z,y) + HD(y, z) >
HD(z,z),wherez,y,z € {0,1}".

There are several possibilitiesfor extension of Hamming
distance to the m-ary vectors, depending on how the XOR
between two bits is generalized. One possibility istwo ex-
tend z (i) @ y(¢) to the absolute value of the arithmetic sub-
traction |z (i) — y(i)|. For example, for m = 3, the dif-
ference between O and 1 is 1, between 1 and 2 is 1, and be-
tween O and 2is2. Such adefinition preservesthe properties
HD(z,z) = 0 and HD(z,y) + HD(y,2) > HD(x,z),
however it does not alow the unique definition of the ” near-
est” vector in its weighted extension.

Another possibility isto extend the XOR to the addition
modulo m. Then, for m = 3, the difference between 0
and 1is 1, between 1 and 2 is O, and between 0 and 2 is
2. Since each element of M has a unique inverse with re-
spect to the addition modulo m [3], such a definition guar-
antees the uniqueness of the " nearest” vector initsweighted

extension. However, the properties HD(z,z) = 0 and
HD(z,y)+HD(y,z) > HD(z, z) arenot preserved. E.g.
HD(1,1) = 2 and HD(0,1) + HD(1,2) = 1 +0 <
HD(0,2) = 2.

In this paper, we propose an alternative generalization
of the XOR, which preservesthe properties HD(z,z) = 0
and HD(z,y)+HD(y, z) > HD(z, z) aswell asprovides
the unique definition of the " nearest” vector in its weighted
extension. We generalize the XOR to the bit-wise XOR
between m-ary digitsz,y € M:

[togm]

ziy= Y 20l @i eyl) ()

i=1

where” @ ” isthe XOR,” >>” and” - ” are the arithmetic
addition and multiplication and z(7) and y(¢) aretheith bits
of z and y, correspondently.

Note, that ”"” is the operation of type M? —
{0,1,...,2Mte9m] _ 1}, s0, unlessm is of type 2* for some
k > 1, ”"” has more than m values in its output do-

main. For example, for m = 3, the output domain of ” *”
is{0,1,2,3},eg. 2°2=10,0"1=1,0"2 = 2 and
1" 2 = 3. Using this extension of the XOR, our generaliza-
tion of Hamming distanceis asfollows.

Definition 1 The m-valued distance between the two m-
ary vectorsz,y € M™ isdefined by

n

dm(2,y) =Y o(i) " y(i) (4)
i=1
where” *” is defined by (3), ” Y~ ” is the arithmetic addi-
tion, and z(¢) and y(i) are the th digits of z and y, corre-
spondently.

Note, that in the above definition z () and y(:) are ith
digits, not bits. For example, in the ternary vector x =
(210), the 1st digit is 2, the 2nd is 1 and the 3rd is 0.
So, the distance between the vectors (210) and (021) is
dm(210,021) = 2+ 3 + 1 = 6. Using the properties of
the ” *”, we can easily show that the m-valued distance
defined by (4) satisfies the properties d,,(z,z) = 0 and
dm(z,y) +dm(y,2) > dn(z,2), wherez,y, z € M™.

Next, we extend the Definition 1 to its weighted version.

Definition 2 Given a weight vector W = (wy, ..., w,),
w; € M, the m-valued weighted distance between the two
m-ary vectorsz,y € M™ isdefined by

n

wdi (z,y) = @I (@(w) “y(wi)) ()

i=1
where” 7 isdefined by (3),” Y. ” and ” - ” are the arith-

metic addition and multiplication, and z(w;) and y(w;) are
theith digits of z and y, correspondently.



For m = 2, the coefficient 2[*91 in (5) reduces to 2,
which agrees with the definition of weighted Boolean dif-
ference (1).

From the number representation theory, we know that a
vector of digits (an—1 ... ag),a; € {0,1,...,k—1} overa
radix r represents the number [3]:

-1 —2
A 1" " F Apor™ “ 4+ ...+ ag.

If r > k, then the above representation is unique. Oth-
erwise, it is redundant, i.e. different vectors can repre-
sent the same number. In our case, a; = z(w;) “y(w;) €
{0,1,...,2Mgm] — 1} and r = 2[e9™1 50 our represen-
tation isunique aslong as for any m-ary digitsz,y, 2 € M
itholdsthat x "y = x " z if and only if y = z (cancellation
law of addition). This clearly holds for ” *”. Therefore,
given a fixed weight vector W = (wx,...,w,), the dis-
tance (5) uniquely defines the nearest vector for any m-ary
vector from M™.

For example, form = 3, n = 3and W = (1,2,3)
the nearest point to (021) is (020), yielding the minimal
distance wd,,, (021,020) = (0~ 0)-4%+(2"2)-4' +(1°0)-
4° = 1. For W = (2,3,1), the nearest point to (021)
is (001), yielding the minimal distance wd,,,(021,001) =
(171)-424(070) -4 + (270) - 4° = 2. Thisuniqueness
property of the m-valued weighted distance is used in the
next section as a distance measure on truth assignmentsin
the definition of the generalized cofactor.

4. Generalized cofactor

If f and g aren-variable Boolean functions, then the gen-
eralized cofactor f|g isaBoolean functionwhichvaluefor a
given minterm z € {0, 1}™ is obtained by finding the near-
est minterm y € {0,1}" that satisfies g, and evaluating f
at this point [1]. The nearest minterm is defined as the one
minimizing d(z,y) (1) for agiven W. Such a definition of
the generalized cofactor coincides with the definition of the
constrain operator on OBDD’s [4] in the special case when
the OBDD variable order isW.

The definition of the generalized cofactor from [1] di-
rectly extendsto thecaseof f : M™ — M, g : M™ —
{0, 1} if them-valued weighted distance wd,,, (z, y) is used
instead of Boolean weighted difference (1) as a distance
measure on truth assignments. Let 0 denote the constant-
0 function.

Definition 3 For a minterm 2z € M™ and a function g :
M™ — {0,1} suchthat g # 0, let z — g bethe minterm
y € M™ for which g(y) = 1 and wd,,, (z,y) is minimized.

So, ¢ — g isthe nearest point to x which satisfies g. As
we showed in the last section, z — ¢ is uniquely defined
forz € M™. Clearly, if z satisfies g itself, i.e. if g(z) = 1,

then z — ¢ = z, since wd,,(z,z) = 0 is the minimal
possible distance. Thisimplies that f|g agrees with f for
every minterm z satisfying g.

Definition 4 For any functions f : M™ — M and g :
M™ — {0, 1}, the generalized cofactor f|g is a function
of type M™ — M defined as follows:

-if g # 0, then flg(z) = f(z — g) foranyz € M™,
-else flg = 0.

A number of properties of Boolean generalized cofactor
from [1] hold for the multiple-valued case. For example, it
is easy to show that if g isaliteral, then the generalized co-
factor reduces to the conventional cofactor over avariable:

flii=f

zi=j

Wheref zi=j = f(.CUl, ey Tim1y s Tit1,--- ,.’L'n).

If gisacube C and f isof type f : M™ — M, then
the generalized cofactor coincides with the cofactor over a
cube f|c from [5]. It isinteresting to observe that in this
case the generalized cofactor is independent of the weight
vector W.

As an example, consider thecaseof m = 3, n = 2
and W = (w1, w2). The generalized cofactor of afunction

010 . 00,1 . 0,2
f =2Z1zo withrespecttog = z1 22 isflg = 2. If f =
010 021 1,22 00,1 11

Z1%2 + Z1To + T122,a0d g = x1 T2 + 172, then we
0,2
get flg = 7.

5. Conjunctive expansion

Similarly to the Boolean case, we use the generalized co-
factor to decompose a multiple-valued input binary-valued
output function f : M™ — {0,1} into a Boolean AND
of n multiple-valued input binary-valued output functions
fi,-.., fn,defined asfollows.

Definition 5 Forany f : M™ — {0,1}and1 <i <mn,
fi=fOIf

where () stands for the projection of f onto (z, .. ., z;),

i.e f(z) = 3(.’13,'4_1, . ,.’En)f

The proof of definition 5 is based on the following
Lemma:

Lemmal If f and g are of type M™ — {0, 1}, then
(Flo)-9=171-9

where” - ” isthe Boolean AND.



Proof: By Definition 3, (f|g)(z) = f(=) for every minterm
x € M™ where g(z) = 1. So, we get (f|g)(z) - g(z)
f(z) - g(x) = f(z) ontheleft hand side and f(x) - g(x)
f(x) ontheright hand side.

On the other hand, for any z € M™ such that g(z) = 0,
wehave (f - g)(z) = 0 ontheright hand sideand (f|g)(z) -
g(z) = 0 on theleft hand side.

O

Theorem 1 Any multiple-valued input binary-valued out-
put function f : M™ — {0, 1} can be expressed as

f=N\# (6)
i=1

where” A ” isthe Boolean AND.

Proof: (sameasin[1]) By induction on n.
Dietn=1.Thenf = f; = fO|fO = W1 = f) =
£, where 1 denotes the constant-1 function.
2) Hypothesis: Assumetheresult for all functions of n vari-
ables.

N2 fi

(/\?:1 fz) ) fn-‘rl

f(n) . (f(n+1)|f(n))
f(n) .f(n+1)

= flnt1),

O

The expansion (6) is canonical for afixed weight vector
W = (wi,...,wp),w; € M. Similarly to the Boolean
case [1], if afunction f does not depend on some variable
z;, then f() = f(=1)_ Therefore f; = f@|f® =1, so
the corresponding component f; in (6) is constant-1.

As an example of the application of the expansion (6)
to multiple-output Boolean functions, consider the 2-output
4-variable Boolean function with f(out,) = z|zhaha) +
TN X2xh Ty + T1ToT3T4 + Tixhasxy and floutz) =
Tixhraxy + TiTor3T4 + T1T2ThTy + T1THTHTy. We
treat its output part as a single variable z5 (2-valued in
this case) and represent it as a 5-variable function f =
f(outy) - zt + f(outs) - x5. By applying (6) to f, we get
F=N_ fiwith fr = fo = f3 =1, f1 = mams + 7))
and f5 = zizhar + z1x32; + 22325 + 212525, SO,
f = fs - f5 with 6 products in the decomposed represen-
tation versus 8 in the non-decomposed.

If instead of using multiple-valued expansion, we apply
the Boolean one output-by-output, then we get f(out;) =
fa(outy) - fa(outy) with fi(out;) = zams + xhz) and
fslouty) = 2l zhxl + z1z3zl and f(outz) = f3(outs) -
falouts) with fy(outs) = zazs + zhz) and fs(outs) =
zizhzs + z1z3w5. An additional step is needed to recog-
nize that f4 (outl) = f4 (Outg).

6. Conclusion

This paper extends McMillan’s conjunctive expansion of
Boolean functions[1] to the multiple-valued case. Although
the generalization is done only for the case of multiple-
valued input binary-valued output functions, the more gen-
era case of f : M™ — M can aso be handled by first
partitioning f with respect to each of its non-zero values

i € M — {0} intom — 1 literals f: M™ — {0,1}, and then

expanding each of ;” The resulting expansion for f is of
type

m—1 n .
f= Z(l /\ fj)
i=1 j=1

where” >7” and ” - 7 are the multiple-valued operations
maximum and minimum, correspondently.

It is worth noticing that the variable ordering in the
weight vector W might considerably impact the size of the
expansion (6). The problem of finding an optimal variable
ordering is till open in both the Boolean as well as the
multiple-valued case.
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