number of calibration samples from 10 to 91, in the case of a 9
entry LUT, the maximum value of the approximation error
referred to the full scale change from 0.37 to 0.29%FS and the
corresponding RMS value decreases from 0.14 to 0.10%FS. This
performance is better than that obtained using a classical LUT
technique. The optimal LUT method has been tested by approxi-
mating other functions and, in general, the RMS value of the
approximation error decreases considerably, but a similar
mprovement in the corresponding maximum value is not guaran-
teed.
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Fig. 1 Function y = sin(x) (0° < x <90°): approximation error referred
to full scale against LUT dimension

(i) classical (max.)
(i1) optimal (max.)
(ii1) classical (RMS)
(iv) optimal (RMS)

To evaluate the method, the output signals from a nonlinear
resistive sensor have been used. An eight bit MC68HCI1 micro-
controller based system has been programmed to acquire and
process the signals. The relationship between the measurand and
the output signal has been characterised by means of > 50 points,
that were acquired with an eight bit analogue to digital converter
of the microcontroller. The end point linearity was 12%FS while
the least squares linearity was 9%FS. Four methods were consid-
ered for LUTs with 5 and 9 entries:

(1) direct measurement of the LUT values, supported by linear
extrapolation techniques if boundary points were not directly
measurable

(i) LUT entries calculated from the 5th degree Lagrange interpo-
lating polynomial [3] obtained using equally spaced samples
with respect to the measurand

(iif) LUT entries are calculated from a 5th degree interpolating
polynomial, computed by a least mean squares technique
using 22 sparse calibration samples

(iv) optimal LUT entries computed using 11, 22 and 42 sparse
calibration samples.

Table 1: Measured data from resistive network: approximation
error referred to full scale against LUT dimension

Method Max. error |[RMS error
% FS % FS

LUT (5 entries).classical (i) 1.915 1.1
LUT (5 entries) Lagrange (ii) 2.255 1.178
LUT (5 entries) fitting (22 samples) (iit) 2.23 1.178
LUT (5 entries) optimal (11 samples) (iv) 1.41 0.674
LUT (5 entries) optimal (22 samples) (1v) 1.325 0.633
LUT (9 entries) classical (i) 0.591 0.299
LUT (9 entries) Lagrange (i1) 0.671 0.296
LUT (9 entries) fitting (22 samples) (iii) 0.785 0.335
LUT (9 entries) optimal (22 samples) (iv) 0415 0.198
LUT (9 entries) optical (42 samples) (iv) 0.385 0.192

LUT entries were computed using MATLAB. The different meth-
ods have resulted in a 3%FS of maximum deviation among corre-
sponding LUT values, normalised to 20000 instead of 255 to
minimise the effect of quantisation error. The results are shown in
Table 1. Optimal LUTs decrease both the maximum and the RMS

values of the approximation error referred to the full scale, and, as
in all least mean squares methods, increasing calibration sample
number improves the solution accuracy without increasing imple-
mentation difficulty. The relative simplicity of the method makes
it possible to implement it with a microcontroller which, when
reset, calculates the optimal LUT entries and then processes the
sensor output signal using a classical and fast LUT with linear
interpolation. Such a system allows a fast and inexpensive recali-
bration that would not be possible if interpolating polynomials
were used because of the fixed point arithmetic of an 8 bit micro-
controller.

When the sensor’s output depends on two variables, an n-
dimensional LUT has to be used. The method that has been
described can easily be extended to the two variable case where
the benefits, in terms of memory space reduction, are even greater.
In such a case, the optimal LUT method is preferable with respect
to neural techniques [7] as well, since it is a good compromise
between performances and simplicity. Neural techniques, in fact,
require a longer computation time and also require complex learn-
ing procedures that cannot easily be implemented on a microcon-
troller-based system.
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Best ROBDD variable ordering for functions
with disjunctive decompositions

E.V. Dubrova, D.M. Miller and J.C. Muzio

Indexing terms: Reduced order systems, Boolean functions

The problem of finding a variable ordering to minimise the size of
an ROBDD is considered for functions possessing disjunctive
decompositions. An example is presented showing that the best
ordering for a function with a disjunctive decomposition cannot
always be directly determined from the best orderings for the
component functions.

Introduction: Reduced ordered binary decision diagram (ROBDD)
is a graphical data structure for the efficient representation of
Boolean functions. Functions are represented by directed, acyclic
graphs, which are built for some chosen ordering of the function
variables [1]. Although a function requires, in the worst case, a
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graph of exponential size in the number of variables, many practi-
cal functions have a linear representation for this.

For functions with disjunctive decompositions, storage can be
saved [2] by expressing them as a composition of two functions g
and A, namely

fX)=9((Y),Z)
with Y and Z being sets of variables forming a partitioning of the
set of variables X = {x,, x,, ..., x,} of f, and storing the ROBDDs
of g and h. The ROBDD for f can be expanded in a straightfor-
ward fashion from the ROBDDs for g and A, by replacing the
composition variable in the ROBDD of g with the graph for 4,
and then reducing the resulting diagram.

Normally, the size of the graph varies for different variable
orderings and, for some functions, it is highly sensitive to the
ordering. Finding a best ordering that minimises the size of the
graph requires, in the worst case, a time exponential in the number
of variables [3]. Therefore, computing the best orderings for two
functions of variables n, and s, will usually be much faster than
computing a best ordering for one function of n, + n, variables.
Thus, a natural question to ask concerning functions with disjunc-
tive decompositions is whether a best ordering for /= g(A(Y), Z)
can always be determined from the best orderings for 4 and g.

This Letter gives a negative answer to this question. We show
that the best ordering for a function with a disjunctive decomposi-
tion cannot always be directly determined from the best orderings
of the component functions.

Best ROBDD variable ordering for functions with disjunctive decom-
positions: Let f(x;, x,, ..., x,) be a completely specified Boolean
function of type f: B> > B on B-= {0, 1}. We denote by X the set
of the variables of £, i.e. X = {x,, x,, ..., X,,}

An ordering of the variables in an ROBDD for fis a vector
describing the variables in order from top to bottom of the
ROBDD. A best ordering is the ordering resulting in the ROBDD
with a minimal number of nodes.

Let Y denote a proper subset of X, and let Z = X — Y. The
operation functional substitution of a function 4 into a variable of
another function g is defined if iz BY — B and g: B x B4 — B,
resulting in the function f: B x BZ — B given by

fX) =9(h(Y),2)
Similarly, the operation ordering substitution of an ordering <¥>
into a variable 4 of another ordering <Z,, 4, Z,> is defined if Z, L
Z,=7 he¢ Zand Z, n Z, = &, resulting in the ordering <X>
given by

(X) = (Z1,(Y), Z3)
Note that without any confusion we are using / to also denote the
substituted variable of g.

We are interested in whether the set of best orderings for a
function with a disjunctive decomposition f{X) = g(h(Y), Z) can
always be composed from the best orderings of g and 4, i.e. if it
can be calculated by performing an ordering substitution on the
sets of best orderings for 4 and g. In more formal terms, this ques-
tioii can be expressed as follows.

Let S, be the set of all non-degenerate (ie. depending on all
their input variables) functions of n variables or less. Let S, be the
set of all sets which are best orderings of the functions from S;.
Let o S, — S,, be defined as the mapping which assigns to any
function /'€ S, the set of best orderings for f from S;. If o denotes
functional substitution, and e denotes ordering substitution, then
we want to check whether the following equality holds:

algoh) = alg) e alh) )

for all g, h € S, for which the operation o is defined. Here, ofg o
h) is the set of all best orderings for AX) = g(M(Y), Z), and o(g) e
afh) is the set obtained after performing ordering substitution on
the sets of best orderings for 4 and g. Recall that if eqn. 1 holds,
then o is a homomorphism between (S, o) and (S,, e) [4].

The following theorem shows, however, that this is not the case
fornz35.

Theorem: Let o S; — S, be the mapping which assigns to any
function f € S, the set of best orderings for f from S,. Then, for n
> 5, o, is not a homomorphism between (S, o) and (S,, o).

Proof: By example; consider the following function of 5 variables:

Fl@y, . xs) = m1(ma ® a5) + b (Ta D 25) + 1103 + T T2Th
This can be decomposed as f = g(h(x,, Xs), X, X3, X;), where
g=a1h' + 2hh + a125 + 2 0274
and

h=x4Pas

The ordering <x,, x,, &, x,> is the only best ordering for g, result-
ing in an ROBDD with 8 nodes. Therefore ofg) = {<x,, x3, &,
x;>}. Since A is totally symmetric, all its orderings give ROBDDs
with the same number of nodes, and therefore ah) = {<x,, x>,
<x57 )C4>}. SO a‘(g) L4 Oﬂ(h) = {<XZa X3, Xg Xs, x1>a <x2a X3y X5, X4y
x.>}. Both of these two orderings result in ROBDDs for f'with 12
nodes. For example, the ROBDD for the ordering <x,, X3, X, Xs,
x> is shown in Fig. la.

Fig. 1 ROBDD:s for f for different orderings

a <Xy, X3, Xgy X5, X
b <xy, x5, X9 X3, %>

Fig. 2 ROBDDs for g for different orderings

a <xy, X3, hy x>
b <h, x5, x3, x>

However, there exist orderings for f which yield an ROBDD
with 11 nodes, e.g. the ordering <x,, X;, X, X3, x> (Fig. 1b), and
therefore ag o h) # a(g) e ofh) for n = 5.

The phenomenon demonstrated by the above example holds for
any & as long as A is a function of two or more variables, since in
the ROBDD for g, for the ordering <x,, x;, i, x>, the variable /
is represented by two nodes, while in the ROBDD for the ordering
<h, X,, X;, x,> the variable % is represented by just one node (see
Fig. 2a and b). Thus the theorem holds for n > 5.

The above function is also applicable for the case where negated
edges [5] are allowed in the ROBDD.

Conclusion: This Letter gives a negative response to the question
Of W}xether a l)est ordering fol‘ a funchon Of ﬁve or more variables
with a disjunctive decomposition {X) = g(A(Y), Z) can always be
determined from the best orderings of # and g. We believe that for
n < 5 the answer is positive.

Our example shows that for # 2 5, sometimes an ordering gener-
ated from the best orderings of g and % is not a best one for f.
Furthermore, it demonstrates that it is possible that none of the
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orderings generated this way are the best for f. Such examples,
however, are quite rare, and are hard to find. We are presently
working on determining a set of conditions for identifying such
cases. It would also be interesting to see how the percentage of
these cases changes as # increases.
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Forward body-bias MOS (FBMOS) dual rail
logic using an adiabatic charging technique
with sub 0.6V operation

K. Kioi, H. Kotaki, S. Kakimoto, T. Fukushima and
Y. Sato

Indexing terms: MOS logic circuits, Logic circuits

A novel logic family for low-voltage adiabatic logic, called
forward body-bias MOS (FBMOS) dual rail logic, has been
proposed. This technique uses forward body-bias effects to enable
non-floating output levels during the entire data valid time
without increased transistor count.

Introduction: Recently, several researchers independently proposed
adiabatic circuits for low-energy logic [1 — 4]. The theoretical limit
on energy dissipation per logical step is k71n2 for logically irre-
versible operations [5], where & is Boltzmann’s constant and T is
the absolute temperature. Logically, reversible operations can con-
quer the limit but are currently not essential because the switching
energy in CMOS logic circuits is much larger than the limit.
Hence, the previous designs of adiabatic circuits using logically
irreversible operations [1, 2] are practical from a size viewpoint.
However, the previous adiabatic circuits have floating output
nodes [1] which may be eliminated by the addition of extra transis-
tors [2]. The proposed circuits adopt a novel circuit technique
which avoids the floating output nodes without any additional
transistor count. FBMOS have non-floating output levels over the
entire data valid time. An additional advantage of the proposed

i MN27i-" , TP:T
b {negative logic) Y (clamp)

3130

Fig. 1 Example of FBMOS logic gates: inverter/buffer depicted with
pMOS clamp

- EN (positive logic

circuits is that a voltage drop caused by the capacitive coupling
effect is drastically reduced. The power supply voltage of the pro-
posed circuits is < 0.6V [6, 7.

0 0.2
02 _zero biased \lbo" . < r
> £ L
p . 01k
> 5 I
0.0 N=N0 —- I
0.0L

T 24, 3, 4 02 00 02 04

Na x10 cm V.V
a 9% p

Fig. 2 Characteristics of threshold voltage against net impurity concen-
tration and simulation results of I, — V,, characteristics of nMOS tran-
sistor for various forward body-bias vol;ages

a Threshold voltage against net impurity concentration
b Simulation results
Na = 1.5 X107

Circuit configuration of FBMOS logic: An example of the pro-
posed FBMOS gates is shown in Fig. 1 This logic family has the
same circuit configuration as ECRL [1] except for the cross-cou-
pled forward body-bias nodes, EN and ENb of the ntMOS transis-
tors, and the cross-coupled body nodes of the pMOS transistors.
In many other MOS circuits, the silicon substrate is connected to a
fixed bias voltage. However, in the case of the twin double-well
structure [6], the body terminal of each transistor is individually
connected to another terminal as an SOI structure. The threshold
voltage of a MOS transistor varies slightly against forward body-
bias voltage. If the body-bias voltage, V,,, equals zero, then the
threshold wvoltage, V,, is at its maximum value. As V,, is
increased, V,, decreases slightly. The net impurity concentration of
nMOS transistors is adjusted so that when the body bias V,, = ¥V,
they are in a depletion mode of operation. When the body bias ¥,
=0, they are in an enhancement mode of operation. For net impu-
rity concentrations within the feasible range, when ¥, is raised
from 0 to 0.6V, the threshold voltage drops by ~0.1-0.2V, as
shown in Fig. 2a.
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Fig. 3 Simulation waveforms of FBMOS INV/BUF gate a—d and
ECRL INV/BUF gate e

nMOS Na = 1.5 X 10Ycm3, pMOS Na = 4.0 X 10cm3
a Inputs IN, INb

b Clock Power

¢ Output Q

d Output Qb

e Output Qb

Basic operation: The timing and logical operation of the FBMOS
gate uses the same 4-phase clocking scheme as in ECRL and 2N-
2N2P [2]. Consider the INV/BUF gate as an example of the basic
operation of the FBMOS family. The waveforms are shown in
Fig. 3 It is assumed that the valid level of input IN is low and that
of INb is high. At the beginning of the WAIT (first) phase, the
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