Upper Bound on the Number of Products
in the AND-OR-XOR Expansion of Logic Functions.

E.V. Dubrova D.M. Miller J.C. Muzio

VLSI Design and Test Group
Department of Computer Science
University of Victoria, P.O.Box 3055
Victoria, B.C., Canada, V8W 3P6

Abstract

The representation of logic functions consisting of an XOR sum of two sum-of-products ex-
pressions is considered. The upper bound on the number of products in such the representation is
shown to be 5-27~*, which is 37.50% smaller than the upper bound for sum-of-product expression
and 16.67% smaller than the bound for AND-XOR expression.

1 Introduction

In 1990 Sasao and Besslich [4] showed that the upper bound on the number of products in an AND-
XOR expansion in which both complemented and uncomplemented forms of a variable are used is
3.2773, This bound is 25% less than the upper bound on the number of products in the conventional
sum-of-product expression of logic functions, which is clearly 2771.

However, in some technologies, the implementation of an XOR operation is more complex than
the implementation of an OR operation. For example, in fully complemented CMOS an XOR gate
takes more chip area than an OR gate (12 versus 6 transistors) and has the larger delay. So, even if a
logic function has fewer products in its AND-XOR expression than in its sum-of-product expression,
it does not guarantee that its CMOS AND-XOR implementation will occupy less area than its
AND-OR implementation.

We show that the representation of logic functions as an XOR sum of two sum-of-products
expressions has a lower upper bound on the number of products than an AND-XOR expansion.
Since only one XOR operation per function is used, such an expansion could have an advantage
over an AND-XOR expansion for technologies like CMOS, in which an XOR operation has a more
complex implementation than an OR operation. Of course, there is a speed tradeoff as the proposed

expansion has three levels.

2 AND-OR-XOR expansion

In this section we present a theorem which gives the upper bound on the number of products in the

representation of logic functions consisting of an XOR sum of two sum-of-products expressions.

Let fi. fo.hy1, hy denote Boolean functions and z denote a Boolean variable. We use 7.7 for
AND, 747 for OR and "@&” for XOR operations. ”-” is omitted when obvious.
Property 1 The following equations hold:
T(f1 & o) +a(h1 @ ha) = (Th + 2h1) & (Tf2 + xha)
T(f1 & f2) +a(h1 @ ha) = (T/ + zha) & (Tf2 + xh)
Proof: The proof is straightforward.
a
Let P; and @);, © > 0, denote arbitrary products involving some of the variables z;,...,z, or

their complements. For example, the function f(a1,a2, 23) = z122 + T122T3 can be written as

f(.fl,.fg,.fg) = P1 + PQ7 with P1 = 212 and P2 = Tl.fgfg.

Theorem 1 Fvery Boolean function f(z1,...,z,) of n variables (n > 4) can be expanded using al

2"=4 products as:

most 5 -
fler,...en)=(Pi+ P+ ...+ P) & (Pps1+ Popo+ ...+ Pn),
for some pin 1 <p<m.

Proof: By induction on n.

1) Let n = 4. By exhaustive search through 402 PN-equivalence classes ! of Boolean functions
of 4-variables we can establish that each function can be expanded using at most 5 product terms.

Hence, for n = 4 the expansion exists and m < 5.

2) Hypothesis: Assume the result holds for functions of n or less variables. Using a Shannon

decomposition, any Boolean function of » + 1 variables can be expanded as:

'In the PN classification all functions which differ only by some permutation of the input variables and/or by
complementation of one or more of the input variables are considered as being in the same classification entry [3].

where fo(z1,...,2,) and fi(21,...,2,) are subfunctions of the function f(z1,...,2,41) for
which 2,41 =0 and z,41 = 1, respectively.

According to the inductive hypothesis, these subfunctions can be expanded as:
folz1....,zn)=(PA+ Po+ ...+ P)& (Ppp1+ Poya+ ...+ Pp)

Az zn) = (@it @24 ..+ Q) E(Qrir + Qrpz + ...+ Q)
with m <5-277%, 5<5.2""% and for some p and r such that 1<p<m, 1<r<s. Then:
flz1, .. .2n41) = Tpg1 folz1, e s @n) + Tpyr il ..., 20) {Shannon decomposition}

= Ty (A+...+4P) & (Popr+ ...+) + 21 (1 +...+4Q,) &
E(Qry1+...+Qy)) {substitution}

= @Tp(Pi+...+P)+e,1(@Q1+...+Qy) & (Tpy1(Ppp1 + ...+ P+
+ Tn41(Qrpr ...+ Q) {Property 1}

= (TppP+ . TPt 1@+ Q) © (Tnpr P + -

vt Tog1 P F 20 1@ + oo+ 201 Qs) {Distributivity of - over 4}
Since m <5-2""% and s<5-2""% therefore p+7r+ (m=p)+(s—r)=m+s<5- 2(nt1)—4
O

Having proved the theorem, we can make a comparison between the three bounds (see Table 1):

1. the upper bound on the number of products in the conventional sum-of-product (AND-OR)

expression of logic functions 27~ !;

2. the upper bound on the number of products in the AND-XOR expansion in which both com-

plemented and uncomplemented forms of a variable are used 3 - 2773;
3. the upper bound on the number of products in the AND-OR-XOR expansion 5 - 274,

It can be seen from the Table 1, that as n increases, the difference between the number of products
in the upper bound for AND-OR-XOR expansion and in the bounds for the other expansions grows
progressively. For n = 10 the bound for AND-OR-XOR expansion has 192 products less than the
bound for AND-OR expansion and 64 products less than the bound for AND-XOR expansion.

Table 1. Upper bounds on the number of products for three expansions.

Number of variables n

FExpansiontype |1 |2 |3 (4| 5 | 6 | 7 8 9 10
AND-OR 11248163264 | 128 | 256 | 512
AND-XOR 11213612]24|48 | 96 | 192 | 384
AND-OR-XOR |1 |23 |5]10| 20|40 | 80 | 160 | 320

The following example shows AND-OR, AND-XOR and AND-OR-XOR expansions for a Boolean

function of four variables.

Example: Consider the Boolean function of four variables f(z1, 22, 3, 24) shown in Figure 1.

X1X2
Xsxa\.00 01 11 10

00| 0 /1\ 0 |1}
i \..
01¢T [[1] 1 N
1|0 |l1fof1] P
o FIGTIEh,

o1 o/ P4

Figure 1: Karnaugh map of the function f(z1, 2,23, z4).
The minimal sum-of-products expansion for this function consists of 8 product terms:

fla1, 22,3, 4) = T122T3 + T122%4 + T1T3%4 + T2T3%a + T1T2T4 + 17223 + T123T4 + T223T4

The minimal AND-XOR expansion in which both complemented and uncomplemented forms of a

variable are used consists of 6 product terms:
J(a1, w0, 03, 24) = 2123 © o4 © T1T3Ty E T1T2T3 € ToT3T4 ¢ T1T2T4
The minimal AND-OR-XOR expansion consists of 4 product terms:
fla1, 22,23, x4) = (T122 + Taza) E (21T2 + 23Ta) = (P + Po) & (Ps + Pa)

The minterms, corresponding to the product terms Py, Py, Ps, Py are shown on Figure 1.

3 Conclusion

The representation of logic functions as an XOR sum of two sum-of-products expressions is con-
sidered. The upper bound on the number of products in such the representation is shown to be
5-2"~4 where n is the number of variables. This bound is 37.50% smaller than the upper bound on
the number of products in the conventional sum-of-product expression of logic functions (27~1!), and
16.67% smaller than the upper bound on the number of products in the AND-XOR expansion in
which both complemented and uncomplemented forms of a variable are used (3 -2"7?). In addition,
since only one XOR operation per function is used, an AND-OR-XOR expansion could have an
advantage over an AND-XOR expansion for technologies like CMOS, in which an XOR operation
has a more complex implementation than an OR operation.

While the proposed expansion leads to a three-level implementation which is good for achieving
the area gains over two-level implementations, on the other hand finding such an expansion may be
more problematic than finding AND-OR and AND-XOR expansions. So, some powerful algorithm

has to be found to eliminate this problem.

References

[1] D.E. Muller, Application of Boolean algebra to switching circuit design and to error detection,

IRE Tramns. Electron. Comput., vol. EC-3, September 1954, pp. 6-12.

[2] 1.S. Reed, A class of multiple-error-correcting codes and their decoding scheme, IRE Trans. on

Inform. Theory, vol. 4, September 1954, pp. 38-42.

[3] S.L. Hurst, D.M. Miller, J.C. Muzio, Spectral Techniques in Digital Logic, Academic Press
Inc., 1985.

[4] T. Sasao, P. Besslich, On the complezity of Mod-2 Sum PLA’s, IEEE Trans. on Computers,
Vol. 39, No. 2, February 1990, pp. 262-266.

