

KUNGL
TEKNISKA
HÖGSKOLAN

International Master Program in System-on-Chip Design

L9: Galois Fields

Reading material

- Muzio & Wesselkamper "Multiple-valued switching theory", p. 3 - 5, 101 - 104
- Sasao, "Switching theory for logic synthesis", pp. 43 - 44

Motivation

- There are alternatives to Boolean algebras for representing Boolean functions, e.g. Galois Field (GF(2))
- Some functions have much shorter expression in GF(2) as compared to SOP expression in Boolean algebra
 - e.g. n-variable parity function has 2^{n-1} products in SOP and just n in GF(2)

p. 3 - Advanced Logic Design – L9 - Elena Dubrova

Fields

- Informally, a field is an algebra over a set upon which the operations of addition, subtraction, multiplication and division are all defined
- More formally, an algebra $\langle E; +, \cdot; 0, 1 \rangle$ is a **field** if the following set of axioms holds for binary operations "+", "·" and some distinct elements **0** and **1** of a set E

p. 4 - Advanced Logic Design – L9 - Elena Dubrova

Axioms of a field

A1: $a, b \in E \Rightarrow a+b, a \cdot b \in E$

A2: $\forall a, b \in E, a \cdot b = b \cdot a, a + b = b + a$

A3: $\forall a, b, c \in E, a \cdot (b+c) = a \cdot b + a \cdot c$

A4: $\forall a \in E, a \cdot 1 = a, a + 0 = a$

A5: $\forall a \in E \exists b \in E \text{ such that } a+b = 0,$

$\forall a \in E - \{0\} \exists c \in E \text{ such that } a \cdot c = 1$

A6: $\forall a, b, c \in E, a \cdot (b \cdot c) = (a \cdot b) \cdot c, (a+b)+c = a+(b+c)$

p. 5 - Advanced Logic Design – L9 - Elena Dubrova

Axioms of a field (cont.)

- A5 means that all elements in E have an inverse w.r.t. addition and all non-zero elements have an inverse w.r.t. multiplication
- If E is finite, we have a **finite field**

p. 6 - Advanced Logic Design – L9 - Elena Dubrova

Galois Field GF(2)

- Galois Field GF(2) is defined as $GF(2) := \{B; \oplus, \cdot; 0, 1\}$ where
 - $B = \{0,1\}$
 - " \oplus " is the binary operation XOR
 - " \cdot " is the binary operation AND
 - GF(2) is functionally complete with constants

p. 7 - Advanced Logic Design – L9 - Elena Dubrova

Example 1 of a field - GF(p)

- If
 - $E = \{0,1,\dots, p\}$, p - prime
 - " $+$ " = addition mod p
 - " \cdot " = multiplication mod p
- then all the axioms are satisfied and $\langle \{0,1, \dots, p\}; +, \cdot; 0, 1 \rangle$ is a field, called **Galois field** of order p

p. 8 - Advanced Logic Design – L9 - Elena Dubrova

Example 2 of a field - GF(2)

- If $p = 2$, the addition mod 2 = XOR (\oplus) and the multiplication mod 2 = AND
- $\{\text{XOR, AND, 1}\}$ is functionally complete for Boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$

p. 9 - Advanced Logic Design – L9 - Elena Dubrova

Reed-Muller canonical form (or Algebraic Normal Form)

- Developed in 1954 by Reed and Muller
- Any Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ has a canonical form of type:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=0}^{2^n-1} c_i \cdot x_1^{i_1} \cdot x_2^{i_2} \cdots \cdot x_n^{i_n}$$

where

- \sum is XOR-sum and $c_i \in \{0,1\}$ is a constant
- (i_1, i_2, \dots, i_n) is the binary expansion of i
- $x_k^{i_k} = 1$ if $i_k = 0$ and $x_k^{i_k} = x$ if $i_k = 1$

p. 10 - Advanced Logic Design – L9 - Elena Dubrova

Difference from AND-OR SOP form

- “sum” is XOR
- product-terms have different lengths
- Example:

x_1	x_2	f
0	0	0
0	1	1
1	0	1
1	1	0

AND-OR form: $f(x_1, x_2) = x'_1 x_2 + x_1 x'_2$

AND-XOR form: $f(x_1, x_2) = x_1 \oplus x_2$

An algorithm for finding Reed-Muller canonical form

- Multiply the truth table of function $f(x_1, x_2, \dots, x_n)$ by the transformation matrix T^n , defined by

$$T^1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$T^n = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \otimes T^{n-1}$$

where “ \otimes ” denotes the Kronecker product

Examples of transformation matrices for n=2 and n=3

$$T^2 = \left[\begin{array}{c|cc} 1 & 0 & 0 \\ \hline 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

$$T^3 = \left[\begin{array}{c|ccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array} \right]$$

p. 13 - Advanced Logic Design – L9 - Elena Dubrova

Example of computing RM form

- Let $f(x_1, x_2, x_3) = x'_1x_2 + x_1x_3$

$$\left[\begin{array}{c|ccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array} \right] \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$x_1 x_2 x_3$

$0 \ 0 \ 0$

$0 \ 0 \ 1$

$x_2 \ 0 \ 1 \ 0$

$0 \ 1 \ 1$

$1 \ 0 \ 0$

$x_1 x_3 \ 1 \ 0 \ 1$

$x_1 x_2 \ 1 \ 1 \ 0$

$1 \ 1 \ 1$

$f = x_1 x_2 \oplus x_1 x_3 \oplus x_2$

p. 14 - Advanced Logic Design – L9 - Elena Dubrova

Minimization

- The number of products in the RM canonical form is up to 2^n
- It can be simplified using the axioms and properties of GF(2)
 - e.g. the number of products can be reduced by using the property of XOR
$$x \oplus x = 0$$
so, any minterm from the off-set can be covered by an even number of implicants

p. 15 - Advanced Logic Design – L9 - Elena Dubrova

Example

		x_1x_2	00	01	11	10
x_3	x_4	00	0	1	0	0
00	01	0	1	0	0	0
01	11	1	0	1	1	0
11	10	0	1	0	0	0

AND-OR cover

		x_1x_2	00	01	11	10
x_3	x_4	00	0	1	0	0
00	01	0	1	0	0	0
01	11	1	0	1	1	1
11	10	0	1	0	0	0

AND-XOR cover

p. 16 - Advanced Logic Design – L9 - Elena Dubrova

Why minimizing RM form?

- an RM expression can be directly implemented by a Programmable Logic Array with XOR plane
- the number of products in the RM expression corresponds to the number of columns in PLA

p. 17 - Advanced Logic Design – L9 - Elena Dubrova

Formulation of the AND-XOR two-level minimization problem

input: a Boolean function $f(x_1, x_2, \dots, x_n)$

output: an expression for f of type

$$f(x_1, x_2, \dots, x_n) = P_1 \oplus P_2 \oplus \dots \oplus P_k$$

with the minimal number k of products P_k

p. 18 - Advanced Logic Design – L9 - Elena Dubrova

Extension: Fixed/mixed polarity Reed-Muller canonical forms

- **Fixed polarity:** Variables are allowed to appear in either complemented or un-complemented form (but not both), according to the polarity vector
- **Mixed polarity:** Variables are allowed to appear in both complemented or un-complemented form

p. 19 - Advanced Logic Design – L9 - Elena Dubrova

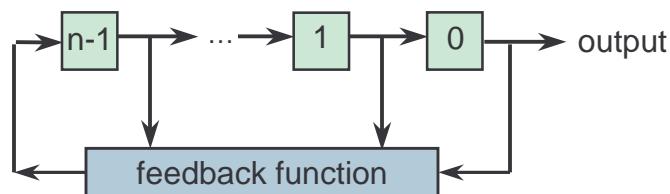
Applications of RM canonical form

- Design of easily testable circuits
 - A circuit implementing RM canonical form of an n -variable function needs only $2n+4$ tests to detect all single stuck-at fault
 - $O(2^n)$ tests for a random circuit
 - only 4 universal tests are needed if an n -input AND with an observable output is added to the circuit implementing RM canonical form

p. 20 - Advanced Logic Design – L9 - Elena Dubrova

Applications of RM canonical form

- Design of Feedback Shift Registers (FSRs)



- An FSR consists of n bits with feedback from each to $n-1$ st
- At each clocking instance, the value of the bit i is moved to the bit $i-1$. The value of the bit 0 becomes the output
- The new value of the bit $n-1$ is computed as some function of the previous values of other bits

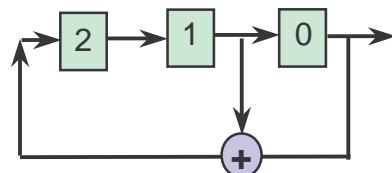
p. 21 - Advanced Logic Design – L9 - Elena Dubrova

Feedback functions of FSRs

- Feedback functions are usually represented in RM canonical form

- Example: 3-bit linear FSR

$$f = x_0 \oplus x_1$$



- Example: 32-bit non-linear FSR

$$\begin{aligned} f = & x_0 \oplus x_2 \oplus x_6 \oplus x_7 \oplus x_{12} \oplus x_{17} \oplus x_{20} \oplus x_{27} \\ & \oplus x_{30} \oplus x_3 x_9 \oplus x_{12} x_{15} \oplus x_4 x_5 x_{16} \end{aligned}$$

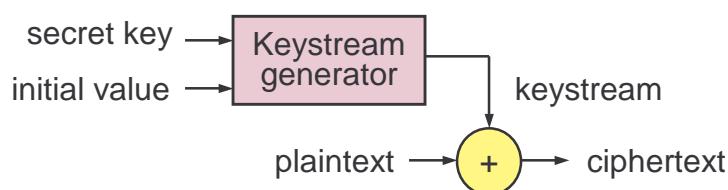
p. 22 - Advanced Logic Design – L9 - Elena Dubrova

Applications of FSRs

- FSRs are used extensively for generating pseudo-random sequences for a number of applications:
 - Pseudo-random testing (LFSRs)
 - Monte Carlo simulation (LFSRs)
 - Stream ciphers (LFSRs and NLFSRs)

p. 23 - Advanced Logic Design – L9 - Elena Dubrova

Binary Additive Stream Cipher



- Generation of truly random sequences is too costly
- Desirable properties of pseudo-random sequence generators:
 - Large period length
 - Good statistical properties

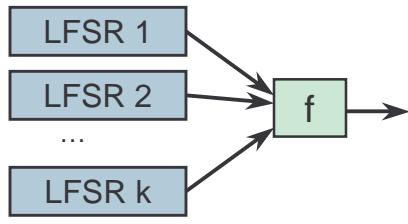
p. 24 - Advanced Logic Design – L9 - Elena Dubrova

LFSRs

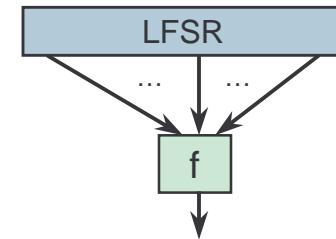
- Linear Feedback Shift Registers (LFSRs):
 - + Easy to implement in both, software and hardware, fast
 - + Period grows exponentially with the size
 - + It is known how to construct an LFSR with the maximal period
 - + Sequences have good statistical properties
 - Sequences are easy to predict
 - LFSRs are combined with a non-linear function

p. 25 - Advanced Logic Design – L9 - Elena Dubrova

Combining LFSRs with non-linear functions



Non-linear combining function



Non-linear filter

p. 26 - Advanced Logic Design – L9 - Elena Dubrova

NLFSRs

- Non-linear Feedback Shift Registers (NLFSRs):
 - ✚ Easy to implement, fast
 - ✚ Period grows exponentially with the size
 - ✚ Sequences have good statistical properties
 - ✚ Sequences are hard to predict
 - It is not known how to construct an NLFSR with the maximal period

p. 27 - Advanced Logic Design – L9 - Elena Dubrova

Optimization of feedback functions

- The number of terms in the RM canonical form of a feedback function translates into the number of gates in the FSR
- The depth of the circuit implementing the feedback function translates into the throughput of the FSR
- Current implementations of FSR-based stream ciphers do not satisfy requirements of some constrained environments applications, e.g. RFID

p. 28 - Advanced Logic Design – L9 - Elena Dubrova