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Reading material

• Muzio & Wesselkamper  “Multiple-valued 
switching theory”, p. 3 - 5, 101 - 104

• Sasao, “Switching theory for logic synthesis”, pp. 
43 - 44
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Motivation

• There are alternative to Boolean algebras for 
repsenting Boolean functions, e.g. Galois Field 
(GF(2))

• Some functions have much shorter expression in 
GF(2) as compared to SOP expression in 
Boolean algebra
– e.g. n-variable parity function has 2n-1 products in SOP 

and just n in GF(2)

p. 4 - Advanced Logic Design – L9 - Elena Dubrova

Fields

• Informally, a field is an algebra over a set upon 
which the operations of addition, subtraction, 
multiplication and division are all defined

• More formally, an algebra �E; +, ·; 0,1� is a field is 
the following set of axioms holds for binary 
operations "+”, "·” and some distinct elements 0
and 1 of a set E 
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Axioms of a field

A1: a,b ∈ E   � a+b, a·b ∈ E
A2: ∀a,b ∈ E, a·b = b ·a, a + b = b + a
A3: ∀a,b,c ∈ E,  a·(b+c) = a·b + a·c
A4: ∀a ∈ E, a·1= a, a + 0 = a
A5: ∀a ∈ E ∃b ∈ E such that a+b = 0,                            

∀a ∈ E - {0}  ∃c ∈ E such that a·c = 1
A6: ∀a,b,c ∈ E, a·(b·c)=(a·b)·c, (a+b)+c=a+(b+c)
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Axioms of a field (cont.)

• A5 means that all elements in E have an inverse 
w.r.t. addition and all non-zero elements have an 
inverse w.r.t. multiplication

• If E is finite, we have a finite field
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Galois Field GF(2)

• Galois Field GF(2) is defined as GF(2) := {B; ⊕, ·; 
0, 1} where 
– B = {0,1} 

– "⊕" is the binary operation XOR
– "·" is the binary operation AND
– GF(2) is functionally complete with constants
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Example 1 of a field - GF(p)

• If 
– E = {0,1,…, p}, p - prime 
– "+" = addition mod p
– "·" = multiplication mod p

• then all the axioms are satisfied and  �{0,1 ,…, p}; 
+, ·; 0,1� is a field, called Galois field of order p
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Example 2 of a field - GF(2)

• If p = 2, the addition mod 2 = XOR (⊕) and the 
multiplication mod 2 = AND

• {XOR, AND, 1} is functionally complete  for for 
Boolean functions f: {0,1}n→ {0,1}
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Reed-Muller canonical form              
(or Algebraic Normal Form)

• Developed in 1954 by Reed and Muller
• Any Boolean function f: {0,1}n → {0,1} has a 

canonical form of type:

f(x1,x2,..., xn) =  � ci ·x1
i1·x1

i2 ·... ·xn
in

where 
– � is XOR-sum and ci ∈ {0,1} is a constant         

– (i1,i2,..., in) is the binary expansion of i
– xk

ik = 1 if ik = 0 and xk
ik = x if ik = 1 

i = 0

2n -1
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Difference from AND-OR SOP form

• “sum” is XOR

• product-terms have different lengths

• Example:  

x1 x2     f
0   0    0
0   1    1
1   0    1
1   1    0

AND-OR form: f(x1,x2 ) = x'1 x2 + x1 x'2

AND-XOR form: f(x1,x2 ) = x1 ⊕ x2
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An algorithm for finding Reed-Muller 
canonical form

• Multiply the truth table of  function f(x1,x2, ...,xn) by 
the transformation matrix Tn, defined by

T1 =
1  0

1  1

Tn =
1  0

1  1
⊗⊗⊗⊗ Tn-1

where “⊗” denotes the Kroneker product
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Examples of transformation matrices 
for n=2 and n=3

T2 =

1  0  0  0

1  1  0  0

1  0  1  0

1  1  1  1

T3 =

1  0  0  0  0  0  0  0

1  1  0  0  0  0  0  0

1  0  1  0  0  0  0  0

1  1  1  1  0  0  0  0

1  0  0  0  1  0  0  0

1  1  0  0  1  1  0  0

1  0  1  0  1  0  1  0

1  1  1  1  1  1  1  1 
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Example of computing RM form

• Let f(x1,x2,x3) = x’1x2 + x1x3

1  0  0  0  0  0  0  0

1  1  0  0  0  0  0  0

1  0  1  0  0  0  0  0

1  1  1  1  0  0  0  0

1  0  0  0  1  0  0  0

1  1  0  0  1  1  0  0

1  0  1  0  1  0  1  0

1  1  1  1  1  1  1  1 

0

0

1

1

0

1

0

1

· =

0

0

1

0

0

1

1

0

x1x3

x2

x1 x2 x3

0  0  0  

0  0  1  

0  1  0  

0  1  1  

1  0  0  

1  0  1  

1  1  0  

1  1  1
f = x1x2 ⊕ x1x3 ⊕ x2

x1x2
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Minimization

• The number of products in the RM canonical form 
is up to 2n

• It can be simplified using the axioms and 
properties of  GF(2)
– e.g. the number of products can be reduced by using 

the property of XOR 
x ⊕ x = 0

so, any minterm from the off-set can be covered by an 
even number of implicants
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Example
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x3 x4 00  01  11  10
00

01

x1x2

1

0

0

1

1

0

1

0

11

10

AND-OR cover

1

0

0

1 0

0

0

0

x3 x4 00  01  11  10
00

01

x1x2

1

0

0

1

1

0

1

0

11

10

AND-XOR cover
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Why minimizing RM form?

• an RM expression can be directly implemented by 
a Programmable Logic Array with XOR plane 

• the number of products in the RM expression 
corresponds to the number of columns in PLA
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Formulation of the AND-XOR two-
level minimization problem

input: a Boolean function f(x1,x2, ...,xn)
output: an expression for f of type

f(x1,x2, ...,xn) = P1 ⊕ P2 ⊕ ... ⊕ Pk

with the minimal number k of products Pk
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Extension: Fixed/mixed polarity 
Reed-Muller canonical forms

• Fixed polarity: Variables are allowed to appear in 
either complemented or un-complemented form 
(but not both), according to the polarity vector 

• Mixed polarity: Variables are allowed to appear in 
both complemented or un-complemented form  
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Applications of RM canonical form

• Design of easily testable circuits
– A circuit implementing RM canonical form of an n-

variable function needs only 2n+4  tests to detect all 
single stuck-at fault

• O(2n) tests for a random circuit

– only 4 universal tests are needed if an n-input AND 
with an observable output is added to the circuit 
implementing RM canonical form 
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Applications of RM canonical form

• Design of Feedback Shift Registers (FSRs)

n-1 1 0

feedback function

output…

• An FSR consists of n bits with feedback from each to n-1st
• At each clocking instance, the value of the bit i is moved to 

the bit i-1. The value of the bit 0 becomes the output
• The new value of the bit n-1 is computed as some function 

of the previous values of other bits
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Feedback functions of FSRs

• Feedback functions are usually represented in 
RM canonical form

• Example: 3-bit linear FSR

f = x0 ⊕ x1

• Example: 32-bit non-linear FSR

f = x0 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x12 ⊕ x17 ⊕ x20 ⊕ x27
⊕ x30 ⊕ x3 x9 ⊕ x12 x15 ⊕ x4 x5 x16

+

2 1 0
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Applications of FSRs

• FSRs are used extensively for generating 
pseudo-random sequences for a number of 
applications:
– Pseudo-random testing (LFSRs)
– Monte Carlo simulation (LFSRs)
– Stream ciphers (LFSRs and NLFSRs)
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Binary Additive Stream Cipher

• Generation of truly random sequences is too 
costly

• Desirable properties of pseudo-random sequence 
generators:
– Large period length
– Good statistical properties

Keystream
generator

+

secret key

initial value keystream

ciphertextplaintext
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LFSRs

• Linear Feedback Shift Registers (LFSRs):
+ Easy to implement in both, software and hardware, 

fast
+ Period grows exponentially with the size
+ It is known how to construct an LFSR with the maximal 

period
+ Sequences have good statistical properties
– Sequences are easy to predict

• LFSRs are combined with a non-linear function
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Combining LFSRs with non-linear 
functions

f

LFSR 1

…
LFSR 2

LFSR k
f

LFSR
……

Non-linear combining function Non-linear filter
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NLFSRs

• Non-linear Feedback Shift Registers (NLFSRs):
+ Easy to implement, fast
+ Period grows exponentially with the size
+ Sequences have good statistical properties
+ Sequences are hard to predict
– It is not known how to construct an NLFSR with the 

maximal period
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Optimization of feedback functions

• The number of terms in the RM canonical form of 
a feedback function translates into the number of 
gates in the FSR

• The depth of the circuit implementing the 
feedback function translates into the throughput 
of the FSR

• Current implementations of FSR-based stream 
ciphers do not satisfy requirements of some 
constrained environments applications, e.g. RFID


