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L9: Galois Fields

Reading material

* Muzio & Wesselkamper “Multiple-valued
switching theory”, p. 3-5, 101 - 104

» Sasao, “Switching theory for logic synthesis”, pp.
43 - 44
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Motivation

» There are alternative to Boolean algebras for
repsenting Boolean functions, e.g. Galois Field
(GF(2))

» Some functions have much shorter expression in
GF(2) as compared to SOP expression in
Boolean algebra

— e.g. n-variable parity function has 2"™1 products in SOP
and just n in GF(2)
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Fields

 Informally, a field is an algebra over a set upon
which the operations of addition, subtraction,
multiplication and division are all defined

* More formally, an algebra (E; +, -; 0,1) is a field is
the following set of axioms holds for binary
operations "+”, "-” and some distinct elements O
and 1 ofasetE
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Axioms of a field

Al:abUOE = atb,abUE
A2:0a,b0E,ab=b-a,a+b=b+a
A3: Oa,b,c OE, a:(b+c)=ab+a-c
Ad:JallE,a'l=a,a+0=a

A5: Oa 0 E [b O E such that a+b = 0,
OaOE-{0} [t OEsuchthata-c=1

A6: (a,b,c O E, a-(b-c)=(a-b)-c, (a+b)+c=a+(b+c)
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Axioms of a field (cont.)

A5 means that all elements in E have an inverse
w.r.t. addition and all non-zero elements have an
inverse w.r.t. multiplication

» |f E is finite, we have a finite field
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Galois Field GF(2)

» Galois Field GF(2) is defined as GF(2) :={B; [, -;
0, 1} where
- B={0,1}
— "["is the binary operation XOR
— ""is the binary operation AND
— GF(2) is functionally complete with constants
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Example 1 of a field - GF(p)

o If
-E={0,1,..., p}, p - prime
— "+" = addition mod p
— ™" = multiplication mod p
 then all the axioms are satisfied and ({0,1,..., p};
+, -; 0,1) is a field, called Galois field of order p
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Example 2 of a field - GF(2)

o If p =2, the addition mod 2 = XOR () and the
multiplication mod 2 = AND

* {XOR, AND, 1} is functionally complete for for
Boolean functions f: {0,1}" - {0,1}
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Reed-Muller canonical form
(or Algebraic Normal Form)
» Developed in 1954 by Reed and Muller
* Any Boolean function f: {0,1}" - {0,1} has a
canonical form of type:

n-1 . . .

— | I 1

f(X1, X000 00s X)) = > Ci Xy Xy 2o X, "
i=0

where
— 2 is XOR-sum and ¢; 0 {0,1} is a constant

— (iy,ip,..., Iy) is the binary expansion of i
- x k=1ifi,=0and x k= xifi,=1
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Difference from AND-OR SOP form

e “sum”is XOR
» product-terms have different lengths

« Example:

X1 X5

AND-OR form: f(x;,X,) = X'y X, + X; X',

AND-XOR form: f(x,X,) = x; O X,

koo
O R O
on—w—\o|"‘
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An algorithm for finding Reed-Muller
canonical form

» Multiply the truth table of function f(x;,x,, ...,x,) by
the transformation matrix T", defined by

o
Ti=
_1 1_
o
"= g Tt
_1 1_

where “[1” denotes the Kroneker product
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Examples of transformation

T2=

matrices

for n=2 and n=3

T3 =

P -, O O|Fr B O O
P O O o|r O O O
P B, RO O O O
P O rr OO O O O
P , O OO O o o
P O O oo o o o

L N e
F O r Ok O+, O

p. 13 - Advanced Logic Design — L9 - Elena Dubrova

1

Example of computing RM form

0

0

0

0

0

L R T o I R
P O r Ok O
P O O|Fr O
P o o o|lr O O
P R, R PO O O
P o r OlO O O

P O OO ©O o o
P O o oo o o o

0

R O kR, O Fr L O

o Let f(Xq,X5,X3) = X'1X, + X1 X3

O r B O O FLr OO

X1 X5 X3

X1X3

P P P O O O O
B P O O FR L O
O R O Fr O B

X1Xp

=

1
f=x.%, O X X3 0 X,
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Minimization

* The number of products in the RM canonical form
IS up to 2"
* It can be simplified using the axioms and
properties of GF(2)
— e.g. the number of products can be reduced by using
the property of XOR
xOx=0

so, any minterm from the off-set can be covered by an
even number of implicants
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Example

X1X2 X1X2
X3X,\_00 01 11 10 X3X,\ 00 01 11 10
00 0fLN 0|0 00| 0|/1\ 0| O
01/ 0N1J 0|0 01/ 0| 1]0]|0

1m1)o 1)@y 112101

10/ 0(1) o]0 10{ 0 \1/] 0|0
AND-OR cover AND-XOR cover
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Why minimizing RM form?

* an RM expression can be directly implemented by
a Programmable Logic Array with XOR plane

» the number of products in the RM expression
corresponds to the number of columns in PLA
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Formulation of the AND-XOR two-
level minimization problem

iInput: a Boolean function f(X;,X,, ...,X;,)
output: an expression for f of type

f(X1, X5, ..Xy) =P, OP, O...0P,

with the minimal number k of products P,
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Extension: Fixed/mixed polarity
Reed-Muller canonical forms
» Fixed polarity: Variables are allowed to appear in

either complemented or un-complemented form
(but not both), according to the polarity vector

* Mixed polarity: Variables are allowed to appear in
both complemented or un-complemented form
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Applications of RM canonical form

» Design of easily testable circuits

— A circuit implementing RM canonical form of an n-
variable function needs only 2n+4 tests to detect all
single stuck-at fault

e O(2" tests for a random circuit

— only 4 universal tests are needed if an n-input AND

with an observable output is added to the circuit
implementing RM canonical form
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Applications of RM canonical form

Design of Feedback Shift Registers (FSRS)

n-1T o= 1 T 0 > output

feedback function <

An FSR consists of n bits with feedback from each to n-1st

At each clocking instance, the value of the bit i is moved to
the bit i-1. The value of the bit 0 becomes the output

The new value of the bit n-1 is computed as some function
of the previous values of other bits
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Feedback functions of FSRs

Feedback functions are usually represented in
RM canonical form

Example: 3-bit linear FSR 2> 1 0
f=x, X
+

Example: 32-bit non-linear FSR
f=X, U X, U Xg U X7 0 Xg5 0 X7 U Xp0 U Xoy
U X30 U X3 Xg L Xp5 X35 1 X4 X5 X6
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Applications of FSRs

* FSRs are used extensively for generating
pseudo-random sequences for a number of
applications:

— Pseudo-random testing (LFSRs)
— Monte Carlo simulation (LFSRs)
— Stream ciphers (LFSRs and NLFSRs)
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Binary Additive Stream Cipher

initial value —»{_9€nerator keystream

plaintext ciphertext

» Generation of truly random sequences is too
costly

» Desirable properties of pseudo-random sequence
generators:
— Large period length
— Good statistical properties
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LFSRs

» Linear Feedback Shift Registers (LFSRS):

+ Easy to implement in both, software and hardware,
fast

+ Period grows exponentially with the size

+ It is known how to construct an LFSR with the maximal
period

+ Sequences have good statistical properties

— Sequences are easy to predict
¢ LFSRs are combined with a non-linear function
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Combining LFSRs with non-linear
functions

LESR 1 \ LESR
5
LESR k /

Non-linear combining function Non-linear filter
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NLFSRs

* Non-linear Feedback Shift Registers (NLFSRS):
+ Easy to implement, fast
+ Period grows exponentially with the size
+ Sequences have good statistical properties
+ Sequences are hard to predict

— Itis not known how to construct an NLFSR with the
maximal period
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Optimization of feedback functions

e The number of terms in the RM canonical form of
a feedback function translates into the number of
gates in the FSR

* The depth of the circuit implementing the
feedback function translates into the throughput
of the FSR

e Current implementations of FSR-based stream
ciphers do not satisfy requirements of some
constrained environments applications, e.g. RFID

p. 28 - Advanced Logic Design — L9 - Elena Dubrova




