

KUNGL
TEKNISKA
HÖGSKOLAN

International Master Program in System-on-Chip Design

L8: Technology mapping

Technology mapping

Example:

$$t_1 = a + bc;$$

$$t_2 = d + e;$$

$$t_3 = ab + d;$$

$$t_4 = t_1 t_2 + fg;$$

$$t_5 = t_4 h + t_2 t_3;$$

$$F = t_5';$$

This shows an unoptimized set of logic equations
consisting of 17 literals

Optimized equations

Using technology independent optimization, these equations are optimized using only 13 literals:

$$t_1 = d + e;$$

$$t_2 = b + h;$$

$$t_3 = at_2 + c;$$

$$t_4 = t_1 t_3 + fgh;$$

$$F = t_4'$$

p. 3 - Advanced Logic Design – L8 - Elena Dubrova

Optimized equations

Implement this network using a set of gates which form a *library*. Each gate has a *cost* (i.e. its area, delay, etc.)

p. 4 - Advanced Logic Design – L8 - Elena Dubrova

Technology mapping

Two approaches:

- Rule-Based [LSS]
- Algorithmic [DAGON, MISII]
 - Represent each function of a network using a set of *base functions*. This representation is called the *subject graph*.
 - Typically the base is 2-input NANDs and inverters [MISII].
 - The set should be *functionally complete*.
 - Each gate of the library is likewise represented using the base set. This generates *pattern graphs*
 - Represent each gate in all possible ways

p. 5 - Advanced Logic Design – L8 - Elena Dubrova

Subject graph

p. 6 - Advanced Logic Design – L8 - Elena Dubrova

Algorithmic approach

- A **cover** is a collection of pattern graphs such that
 - every node of the subject graph is **contained** in one (or more) pattern graphs
 - each **input** required by a pattern graph is actually an **output** of some other graph (i.e. the **inputs of one gate must exists as outputs of other gates.**)
- For minimum area, the cost of the cover is the **sum of the areas** of the gates in the cover.
- Technology mapping problem: *Find a **minimum cost covering** of the subject graph by choosing from the collection of pattern graphs for all the gates in the library.*

p. 7 - Advanced Logic Design – L8 - Elena Dubrova

Subject graph

$$\begin{aligned}t_1 &= d + e; \\t_2 &= b + h; \\t_3 &= a t_2 + c; \\t_4 &= t_1 t_3 + fgh; \\F &= t_4';\end{aligned}$$

p. 8 - Advanced Logic Design – L8 - Elena Dubrova

Pattern graphs for the IWLS library

p. 9 - Advanced Logic Design – L8 - Elena Dubrova

Subject graph covering

$$\begin{aligned}t_1 &= d + e; \\t_2 &= b + h; \\t_3 &= at_2 + c; \\t_4 &= t_1t_3 + fgh; \\F &= t_4';\end{aligned}$$

Total cost = 23

p. 10 - Advanced Logic Design – L8 - Elena Dubrova

Better covering

$$\begin{aligned}
 t_1 &= d + e; \\
 t_2 &= b + h; \\
 t_3 &= at_2 + c; \\
 t_4 &= t_1 t_3 + fgh; \\
 F &= t_4' ;
 \end{aligned}$$

Total area = 18

p. 11 - Advanced Logic Design – L8 - Elena Dubrova

Alternate covering

$$\begin{aligned}
 t_1 &= d + e; \\
 t_2 &= b + h; \\
 t_3 &= at_2 + c; \\
 t_4 &= t_1 t_3 + fgh; \\
 F &= t_4' ;
 \end{aligned}$$

Total area = 15

p. 12 - Advanced Logic Design – L8 - Elena Dubrova

Tech. mapping using DAG covering

Input:

- Technology independent, optimized logic **network**
- Description of the gates in the **library** with their cost

Output:

- **Netlist of gates** (from library) which minimizes total cost

General Approach:

- Construct a subject DAG for the network
- Represent each gate in the target library by pattern DAG's
- Find an optimal-cost covering of subject DAG using the collection of pattern DAG's

p. 13 - Advanced Logic Design – L8 - Elena Dubrova

Complexity of DAC covering

- **Complexity of DAG covering:**
 - NP-hard
 - Remains NP-hard even when the nodes have output degree ≤ 2
 - If subject DAG and pattern DAG's are trees, an efficient algorithm exists

p. 14 - Advanced Logic Design – L8 - Elena Dubrova