

KUNGL
TEKNISKA
HÖGSKOLAN

Inte
Master Pr

in System-on-Chip Design

L7a: Three-level optimization

Reading material

- **TOP: An algorithm for three-level combinational logic optimization**, E. Dubrova, P. Ellerjee, D.M. Miller, J.C. Muzio, A.J. Sullivan, *IEE Proceedings - Circuits, Devices and Systems*, vol. 151, no. 4, pp. 307-314, August 2004.

Three-level synthesis: Motivation

- For control-logic applications, 3 levels seem to be a good trade-off between the speed of two-level implementation and the density of multi-level one
 - speed is crucial for control logic:
 - IBM's Gigahertz processor has been implemented on a single PLA (1998)
- Algorithms for 3-level optimization are much simpler than for multi-level

Formulation of the problem

input: a Boolean function $f(x_1, x_2, \dots, x_n)$

output: an expression for f of type

$$f(x_1, \dots, x_n) = (P_1 + \dots + P_k) \bullet (P_{k+1} + \dots + P_r)$$

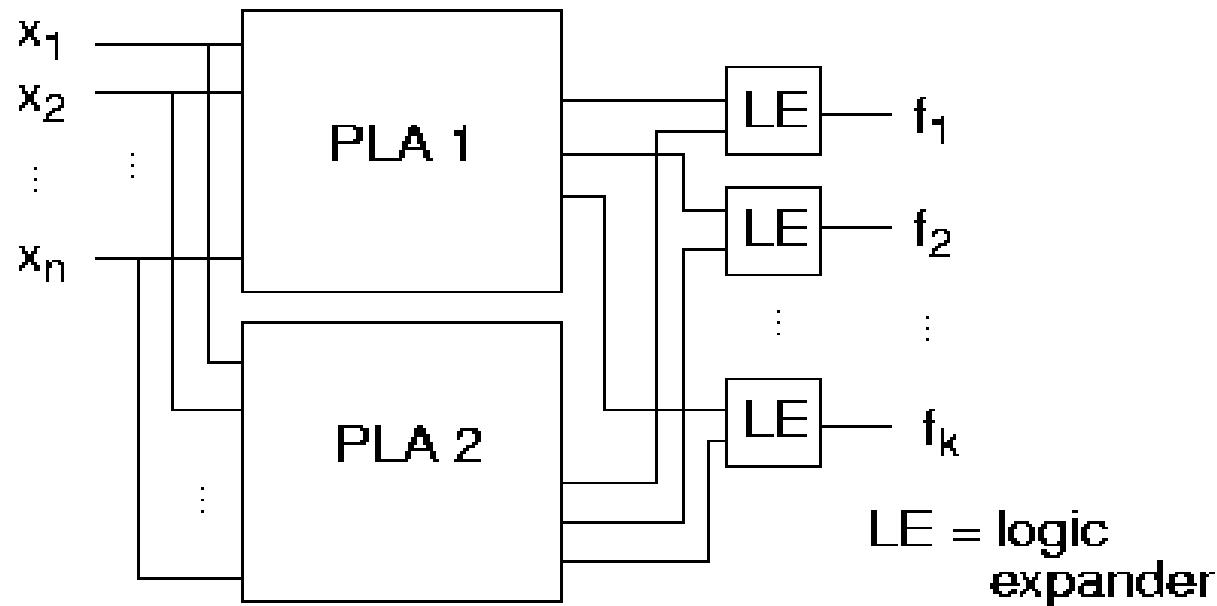
with the minimal number r of products P_i , where
"•" is a suitable binary operation

Previous work

- Fast heuristics for finding a close to minimal expression for a specified " \bullet "
 - 1991: AND/OR
 - 1995: XOR
- Fast heuristic for finding a close to minimal expression for any " \bullet " (2000):

Implementation

- The expression of the above type can be implemented by the following Programmable Logic Device:



Example: $\bullet = \text{XOR}$

x_3	x_4	x_1	x_2		
00	00	00	01	11	10
00	0	1	0	1	
01	1	1	1	0	
11	0	1	0	1	
10	1	0	1	1	

$$P_1 = \bar{x}_1 x_2$$

$$P_2 = \bar{x}_3 x_4$$

$$P_3 = x_1 \bar{x}_2$$

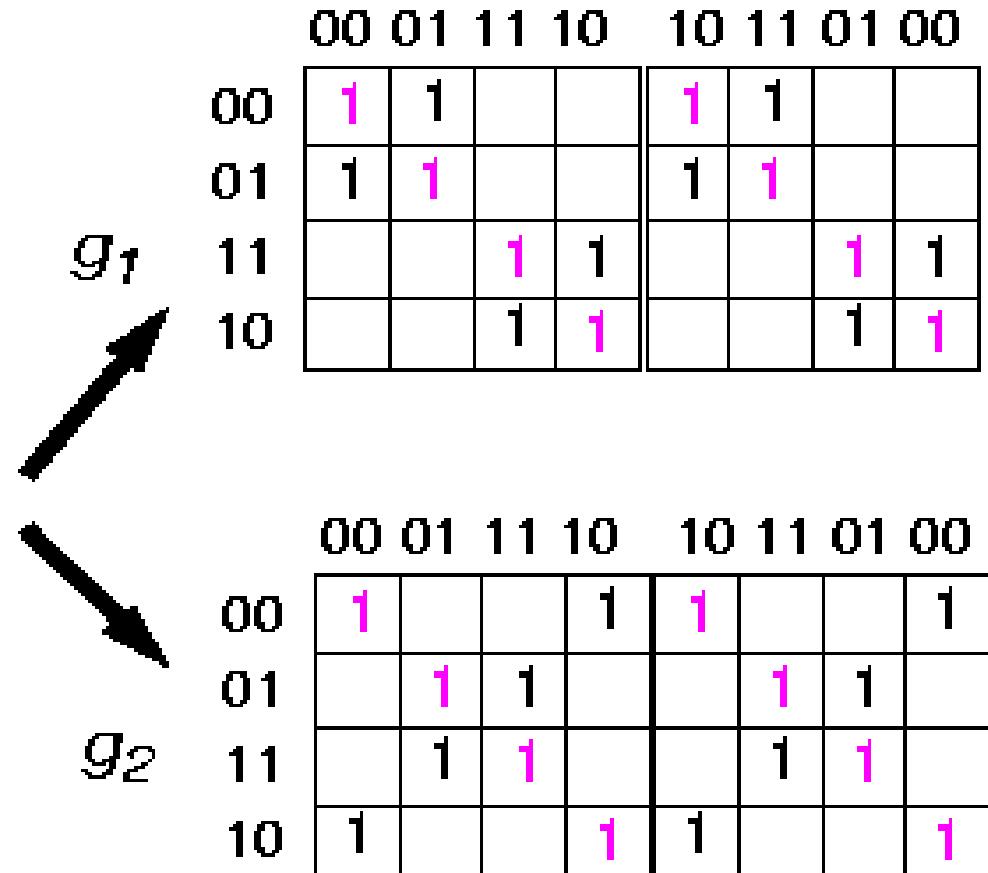
$$P_4 = x_3 \bar{x}_4$$

$$f(x_1, x_2, \dots, x_n) = (P_1 + P_2) \oplus (P_3 + P_4)$$

Example: • = AND

$$f = g_1 \cdot g_2$$

00	01	11	10	10	11	01	00
00	1			1			
01		1			1		
11			1				1
10				1			1



Example: $\bullet = \text{OR}$

$$f(x_1, \dots, x_n) = g_1(x_1, \dots, x_{n/2}) + g_2(x_{n/2+1}, \dots, x_n)$$

- same number of products as in the minimal sum-of-products expression, but they are distributed in a way favorable for the total area of the targeted PLD
- the goal is to divide the products so that the number of common inputs and outputs in g_1 and g_2 is minimal

AND-OR-XOR Algorithm

- We want to construct g and h such that:

$$f = g \oplus h$$

- Conditions which should be satisfied for this:
 - Each cube of F_f should belong to either F_g or F_h , but not both
 - Some of the cubes of R_f may belong to both F_g and F_h

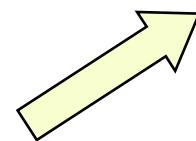
	g	0	1
h	0	0	1
1	1	0	

Main steps of the algorithm

- Cluster the cubes of F_f into equivalence classes
 - If two cubes intersect, they belong to the same class
- Partition the resulting clusters into two groups
 - These groups are the initial on-sets of g and h
- Find cover for the incompletely specified function with the on-set F_g , don't care set $R_f \cup D_f$, and off-set F_h

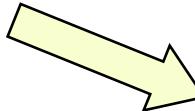
Example

$x_3 x_4$	00	01	11	10
00	0	1	0	1
01	1	1	1	0
11	0	1	0	1
10	1	0	1	1



g

$x_3 x_4$	00	01	11	10
00	-	1	-	0
01	1	1	1	-
11	-	1	-	0
10	0	-	0	0



h

$x_3 x_4$	00	01	11	10
00	0			1
01	0	0	0	
11	0			1
10	1		1	1

Main steps of the algorithm, cont.

- Compute the intersection of the resulting cover with R_f . Add it to the on-set of h
- Find cover for the incompletely specified function with the on-set F_h , don't care set $R_f \cup D_f$, and off-set F_{g_init}

	$x_1 x_2$	00	01	11	10
$x_3 x_4$	00	-	0	-	1
h	01	0	0	0	1
	11	-	0	-	1
10	1	1	1	1	1

AND-OR-AND Algorithm

- We want to construct g and h such that:

$$f = g \cdot h$$

- Conditions which should be satisfied for this:

$$- F_g \cap F_h = F_f$$

$$- R_g \cup R_h = R_f$$

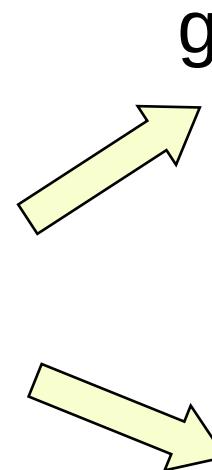
	g	0	1
h	0	0	0
	1	0	1

- We can use some of the cubes in the off-set of g or h (but not both) to reduce the size of the cover of F_f

Example

Inputs: x_3x_4 x_1x_2

	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1



1	1	0	0
1	1	0	0
0	0	1	1
0	0	1	1

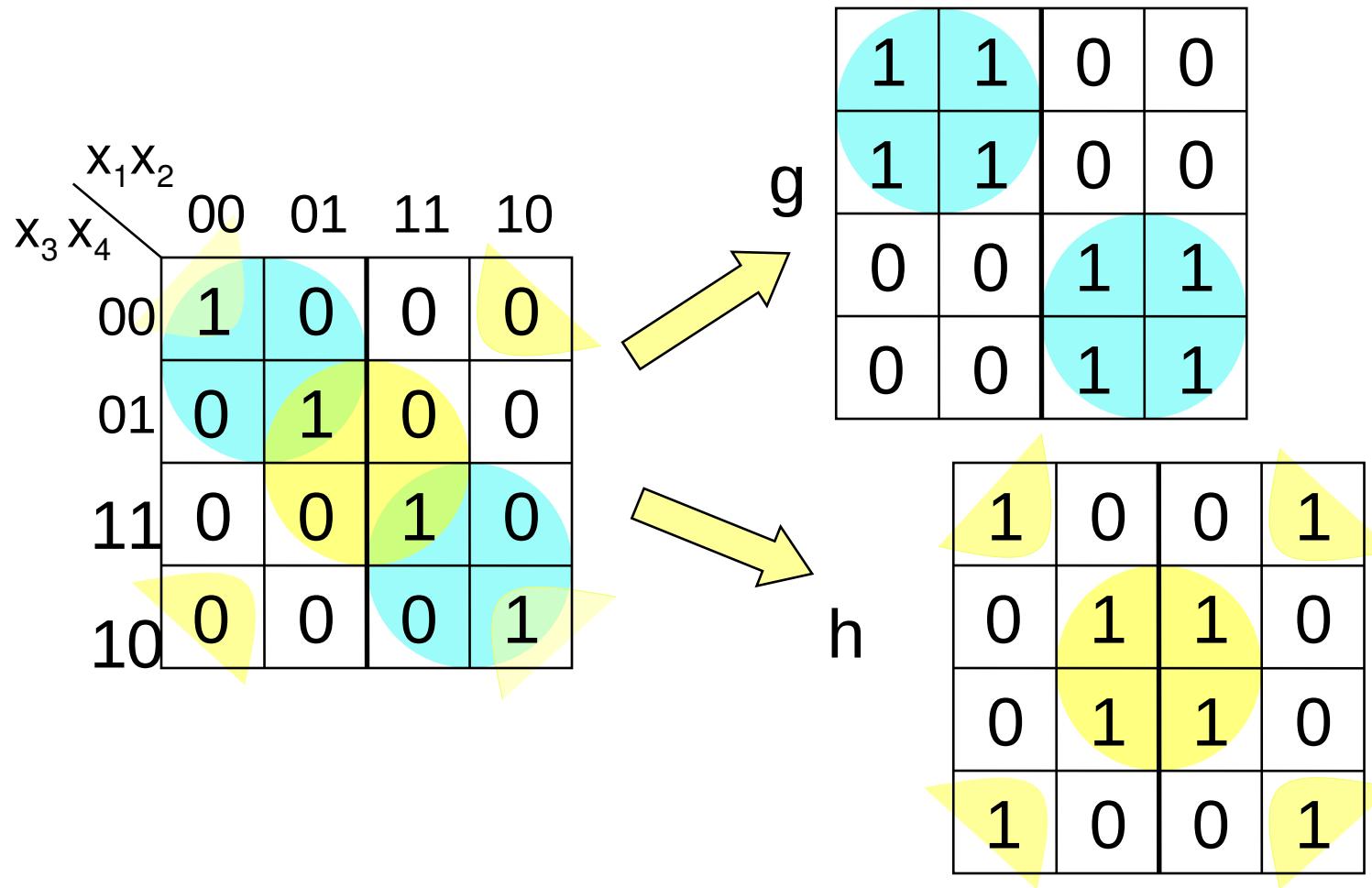
h

1	0	0	1
0	1	1	0
0	1	1	0
1	0	0	1

Main steps of the algorithm

- Select a pair of cubes $c_1, c_2 \in F_f$ and compute their supercube, $\text{sup}(c_1, c_2)$. Add $\text{sup}(c_1, c_2)$ to F_g
- Mark cubes of the off-set R_f which are contained in $\text{sup}(c_1, c_2)$ in **blue color**
- Select a cube $c_3 \in F_f$ such that $\text{sup}(c_2, c_3)$ does not contain any cubes of R_f marked in blue. Add $\text{sup}(c_1, c_2)$ to F_h
- Mark cubes of the R_f which are contained in $\text{sup}(c_2, c_3)$ in **yellow color**
- Repeat the above steps until each cube of F_f is included in two supercubes with different colors

Example



Summary

- Three-level decomposition algorithms can be repeatedly applied to the get a multi-level circuit for a given functions
- They are more complex then two-level minimization algorithms, but more simple than multi-level optimization algorithms