
L7a: Three­level optimization
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Reading material

• TOP: An algorithm for three­level 
combinational logic optimization, E. Dubrova, 
P. Ellervee, D.M. Miller, J.C. Muzio, A.J. Sullivan, 
IEE Proceedings ­ Circuits, Devices and Systems, 
vol. 5, no. 4, pp. 307­314, August 2004. 
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Three­level synthesis: Motivation

• For control­logic applications, 3 levels seem to be 
a good trade­off between the speed of two­level 
implementation and the density of multi­level one
–  speed in crucial for control logic:

• IBM’s Gigahertz processor has been implemented on a single 
PLA (1998) 

• Algorithms for 3­level optimization are much 
simpler than for multi­level
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Formulation of the problem

input: a Boolean function f(x1,x2, ...,xn)
output: an expression for f of type

  f(x1,...,xn) = (P1+ …+Pk)•(Pk+1+ ... +Pr)

   with the minimal number r of products Pi, where 
"•" is a suitable binary operation
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Previous work

• Fast heurictics for finding a close to minimal 
expression for a specified "•"
– 1991:   AND/OR
– 1995:   XOR

• Fast heuristic for finding a close to minimal 
expression for any "•” (2000):   
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Implementation
• The expression of the above type can be implemented by 

the following Programmable Logic Device: 
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Example:  • = XOR

f(x1, x2 , ..., xn) = ( P1 + P2 ) ⊕ ( P3 + P4 )
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Example:   •  = AND



p. 9 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example:  • = OR

f(x1,...,xn) = g1(x1,...,xn/2) + g2(xn/2+1,...,xn) 
– same number of products as in the minimal sum­of­

products expression, but they are distributed in a way 
favorable for the total area of the targeted PLD

–  the goal is to divide the products so that the number of 
common inputs and outputs in g1 and g2 is minimal
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AND­OR­XOR Algorithm

• We want to construct g and h such that: 
f = g ⊕ h

• Conditions which should be satisfied for this:
– Each cube of Ff should belong to either Fg

or Fh, but not both
– Some of the cubes of Rf may belong to
both Fg and Fh
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Main steps of the algorithm

• Cluster the cubes of Ff  into equivalence classes
– If two cubes intersect, they belong to the same class

• Partition the resulting clusters into two groups
–  These groups are the initial on­sets of g and h

• Find cover for the incompletely specified function 
with the on­set Fg, don’t care set Rf ∪ Df, and off­
set Fh
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Main steps of the algorithm, cont.

• Compute the intersection of the resulting cover 
with Rf . Add it to the on­set of h

• Find cover for the incompletely 
    specified function with the 
    on­set Fh, don’t care set 
    Rf ∪ Df, and off­set Fg_init h
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AND­OR­AND Algorithm

• We want to construct g and h such that: 
f = g ∙ h

• Conditions which should by satisfied for this:
– Fg ∩ Fh = Ff

– Rg ∪ Rh = Rf

• We can use some of the cubes
in the off­set of g or h (but not both)
to reduce the size of the cover of Ff                            
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Example
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Main steps of the algorithm

• Select a pair of cubes c1,c2 ∈ Ff  and compute their 
supercube, sup(c1,c2). Add sup(c1,c2) to Fg

• Mark cubes of the off­set Rf which are contained in 
sup(c1,c2) in blue color

• Select a cube c3 ∈ Ff  such that sup(c2,c3) does not 
contain any cubes of Rf  marked in blue. Add sup(c1,c2) to 
Fh

• Mark cubes of the Rf  which are contained in sup(c2,c3) in 
yellow color

• Repeat the above steps until each cube of Ff is included 
in two supercubes with different colors 
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Example
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Summary

• Three­level decomposition algorithms can be 
repeatedly applied to the get a multi­level circuit 
for a given functions

• They are more complex then two­level 
minimization algorithms, but more simple than 
multi­level optimization algorithms


