

KUNGL
TEKNISKA
HÖGSKOLAN

Inte
Master Pr

in System-on-Chip Design

L7: Multi-level optimization

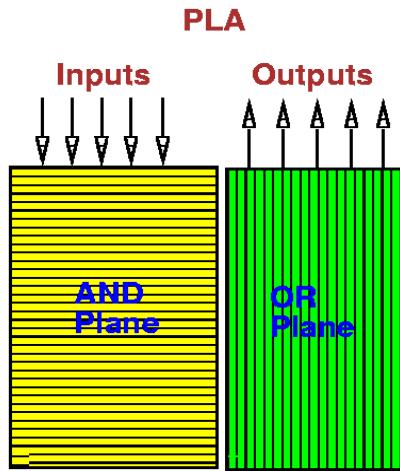
Reading material

- de Micheli pp. 343 - 408
- Curtis, “The design of switching circuits”, pp. 269 - 307
- Karp, “Functional decomposition and switching circuits design”, J. Appl. Math, vol 11, 1963, pp. 291-335

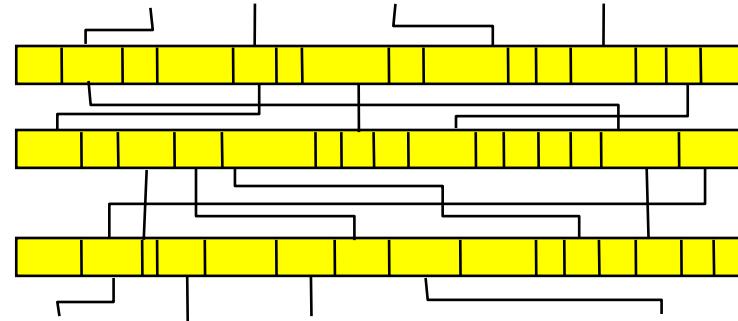
Outline

- Introduction and Motivation
- Basic ideas in multi-level optimization
- Theory behind multi-level optimization
 - Boolean and algebraic factors
 - Kernels and kernel extraction

Two-level vs. multi-level



E.g. Standard Cell Layout



PLA

control logic
constrained layout
highly automatic
technology independent

Very predictable

Multi-level Logic

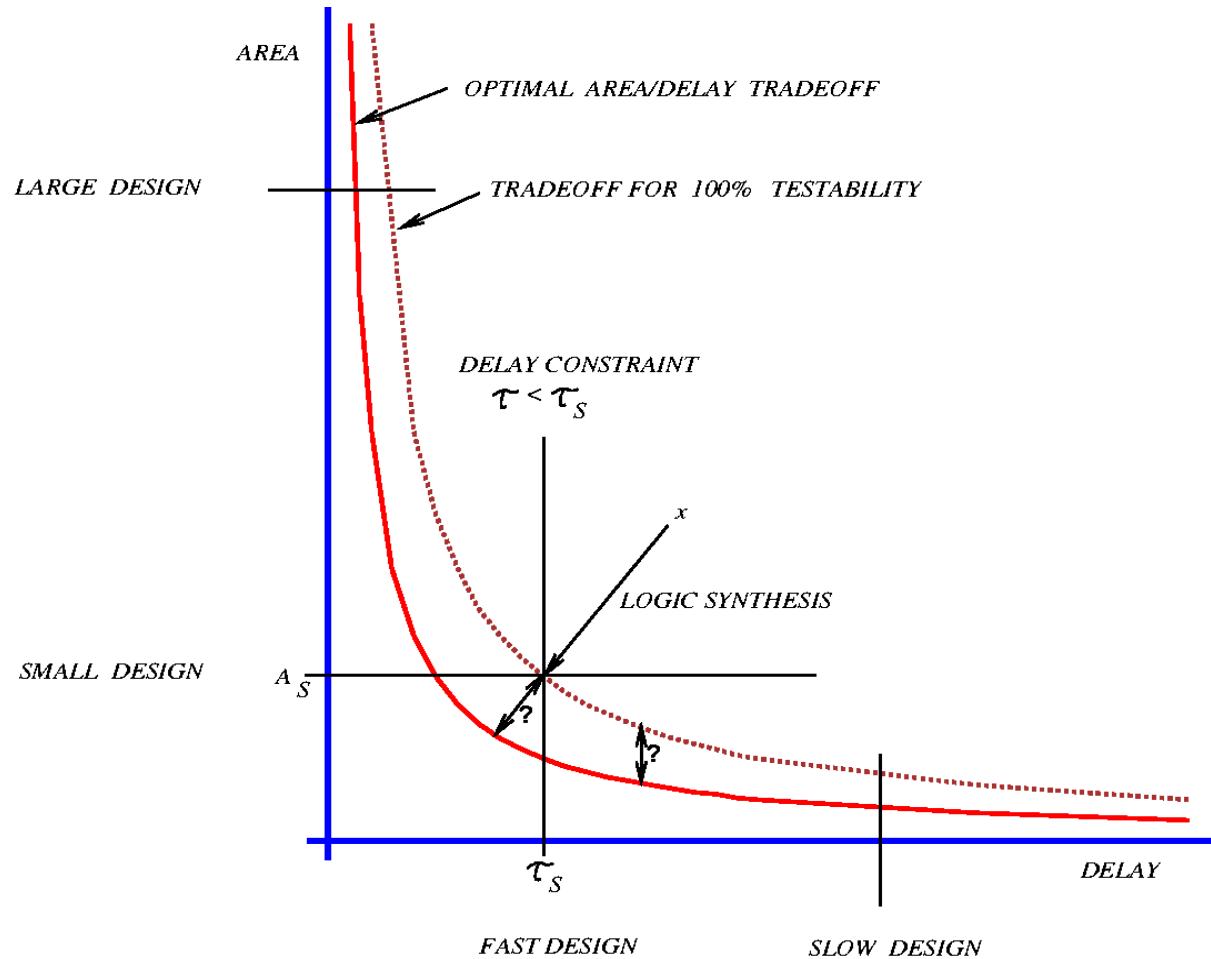
all logic
general (e.g. standard cell, FPGAs)
automatic
partially technology independent
Very hard to predict

Optimization criteria for synthesis

The optimization criteria for multi-level logic is to *minimize* some function of:

- Area occupied by the logic gates and interconnect (approximated by literals = transistors in technology independent optimization)
- Critical path delay of the longest path through the logic
- Degree of testability of the circuit, measured in terms of the percentage of faults covered by a specified set of test vectors for an approximate fault model (e.g. single or multiple stuck-at faults)
- Power consumed by the logic gates
- Noise Immunity
- Placeability, Wireability

Example: area-delay trade-off



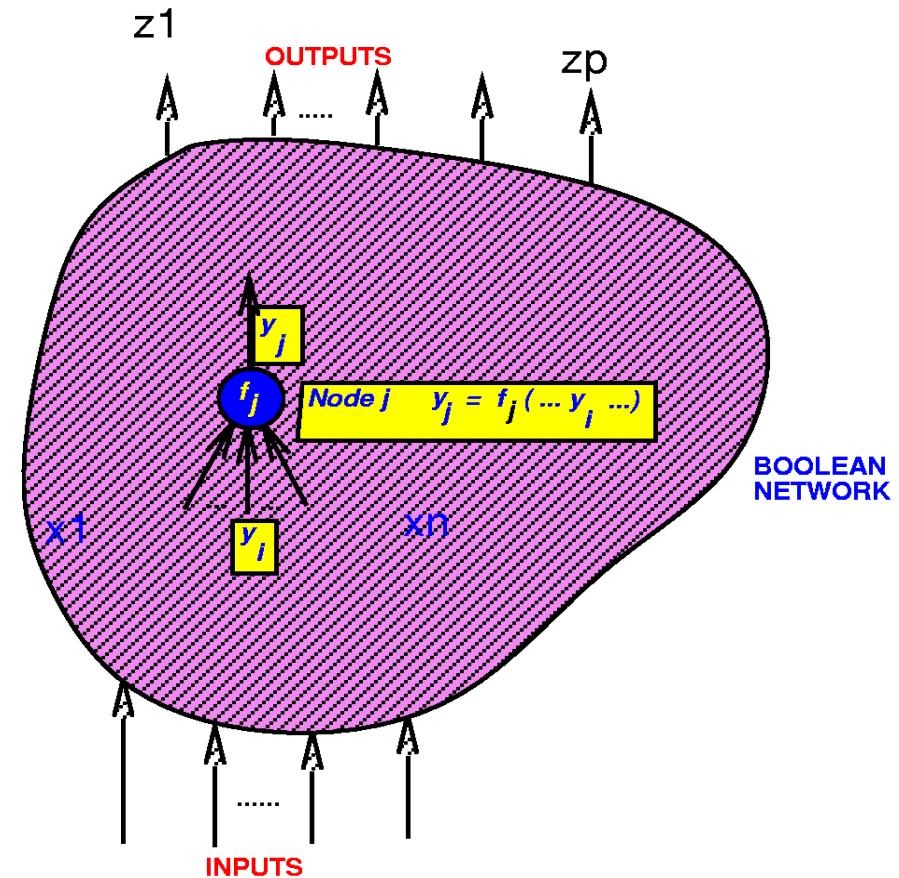
Network representation

Boolean network:

- directed acyclic graph (DAG)
- node logic function representation $f_j(x,y)$
- node variable y_j : $y_j = f_j(x,y)$
- edge (i,j) if f_j depends explicitly on y_i

Inputs $x = (x_1, x_2, \dots, x_n)$

Outputs $z = (z_1, z_2, \dots, z_p)$



External don't cares $d_1(x), \dots, d_n(x)$

Node representation

- Sum-of-products
- BDD
- factored forms

Sum of Products (SOP)

- Advantages:
 - easy to manipulate and minimize
 - many algorithms available
 - two-level theory applies
- Disadvantages:
 - bad representative of logic complexity.

Reduced Ordered BDDs

- given an ordering, ROBDD is canonical, hence it is a good replacement for truth tables
 - not really a good estimator for implementation complexity
- for a good ordering, BDDs remain reasonably small for complicated functions (e.g. not multipliers)
- manipulations are well defined and efficient

Factored Forms

- Advantages
 - good representative of logic complexity
 - in many designs (e.g. complex gate CMOS) the implementation of a function corresponds directly to its factored form
 - good estimator of logic implementation complexity
 - doesn't blow up easily
- Disadvantages
 - not as many algorithms available for manipulation
 - hence often just convert into SOP before manipulation

Manipulation of Boolean Networks

- Basic Techniques:
 - Global structural operations (change topology)
 - algebraic
 - Boolean
 - Local node simplification (change node functions)
 - don't cares
 - node minimization

Boolean and algebraic methods

- Boolean methods
 - exploit properties of Boolean algebra
 - use don't cares
 - complex at times
- Algebraic methods
 - treat functions symbolically as polynomials
 - exploit properties of polynomial algebra
 - simpler and faster, but weaker

Boolean and Algebraic Methods

- In both methods, the goal is to reduce the number of literals in network representation by factorization
- “weaker” means that algebraic methods may not find the decomposition which is found by Boolean methods
- Contrary, Boolean methods will find all the decompositions found by algebraic methods

Example

- Consider the function
$$f = ab + ac + ad + a'c + a'd$$
- Using algebraic method, we get:
$$f = a(b + c + d) + a'(c + d), \text{ 7 literals}$$
- Using Boolean method, we get
$$f = ab + c + d, \text{ by applying } a+a' = 1, \text{ 4 literals}$$

Boolean methods

- Based on the theory of Boolean decomposition
 - Ashenhurst 1959: disjoint decomposition
 - Curtis 1962: non-disjoint decomposition
 - Roth, Karp 1963 : some extensions to MVL and practical algorithms
 - von Stengel 1991: disjoint decomposition in MVL case

Problem formulation

- Given a function f , express it as a composite function of some set of new functions
- Sometimes, a composite expression can be found in which the new functions are significantly simpler than f
- The problem of selecting the "best" decomposition is too hard to be solved exhaustively

Problem formulation

- All practical algorithms using decomposition theory in logic circuit synthesis restrict the type of decomposition
- The basis for the different types of decomposition is the simple disjunctive decomposition

Simple disjunctive decomposition

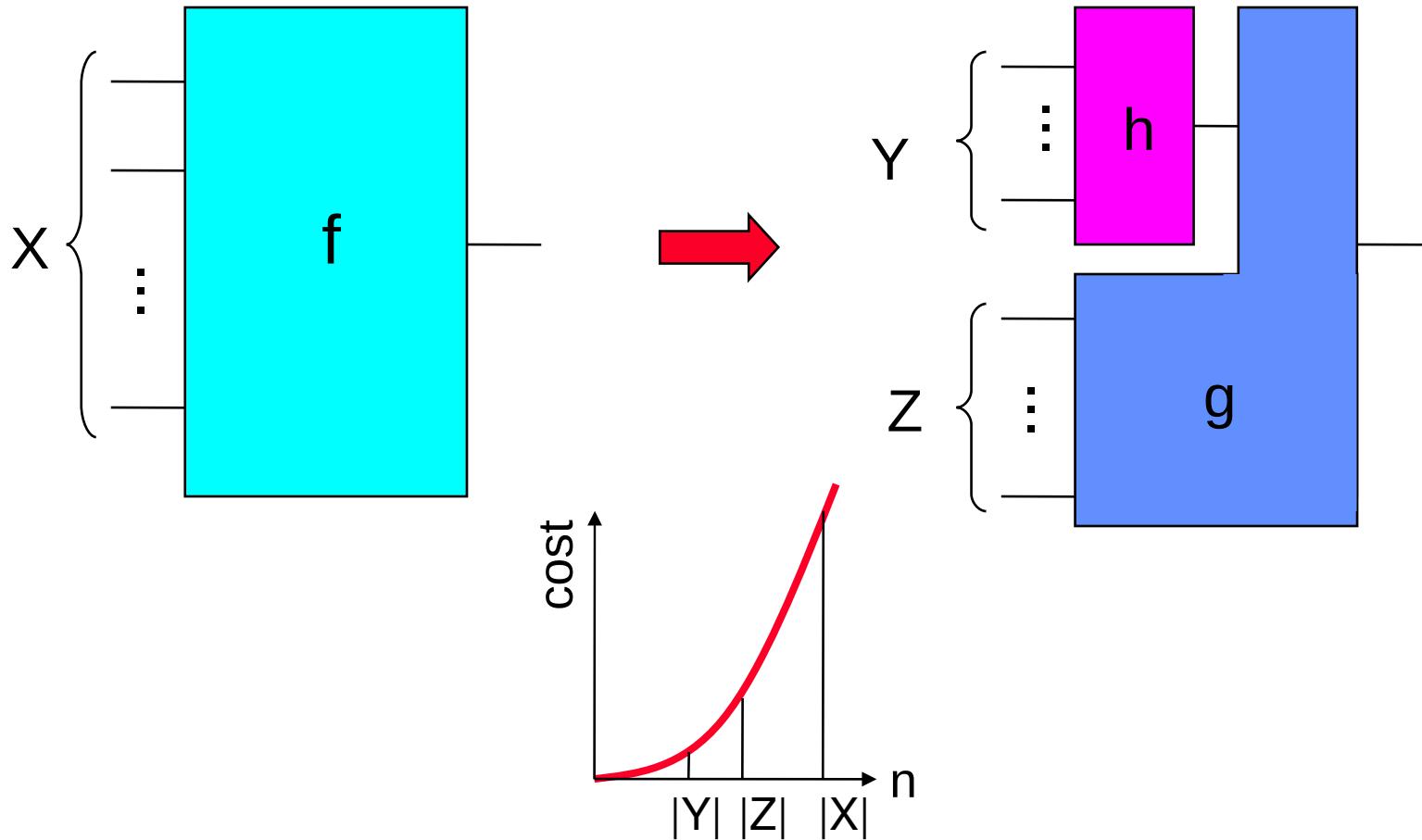
- Let $X := (x_1, \dots, x_n)$
- Simple disjunctive decomposition of a function f : $B^n \rightarrow B$ is a representation of the form:

$$f(X) = g(h(Y), Z)$$

where $h: B^{|Y|} \rightarrow B$, $g: B^{|Z|+1} \rightarrow B$ and $Y, Z \subseteq X$ such that $Y \cup Z = X$ and $Y \cap Z = \emptyset$

- Y is called bound set; Z is called free set

Simple disjunctive decomposition



Bound set existence condition

- Suppose $f = g(h(Y), Z)$ is given by a Karnaugh map with the columns representing the variables from Y and the rows - from Z

		x_1x_2	00	01	11	10
		x_3	0	1	0	0
x_3	0	0	1	0	0	
1	1	1	1	1		

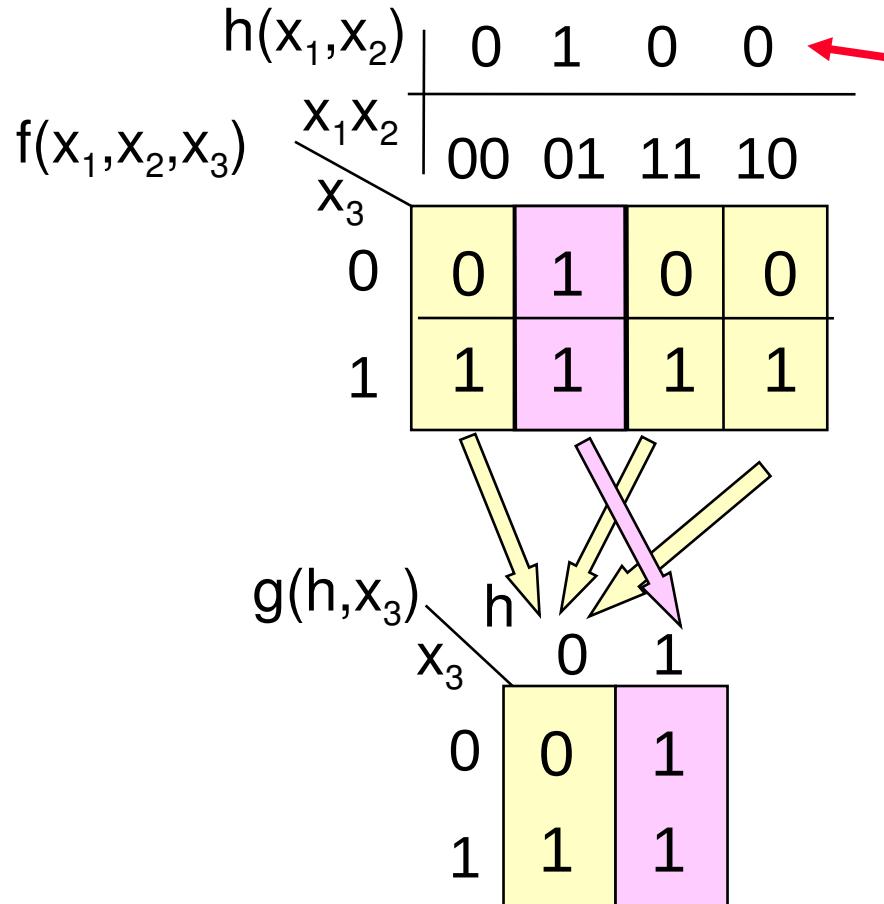
$$Y = \{x_1, x_2\}$$

$$k(Y/Z) = 2$$

$$Z = \{x_3\}$$

- Column multiplicity $k(Y/Z)$ is the number of distinct columns in such a map

Column multiplicity



unique up to
complementation

Bound set existence condition

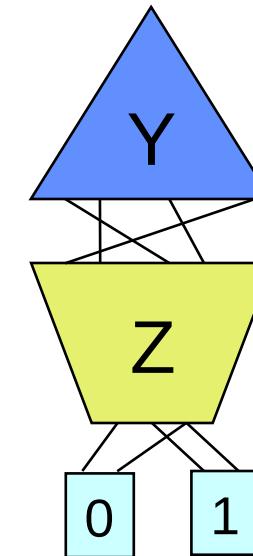
Theorem (Ashenhurst, 1959): for $f: B^n \rightarrow B$, Y is a bound set if and only if $k(Y/Z) \leq 2$

- Brute-force method for finding all bound sets:
 - build Karanugh maps for all possible partitionings Y/Z and check column multiplicity
 - N of all partitionings is $O(2^n)$ for $|X|=n$

Finding bound sets from BDDs

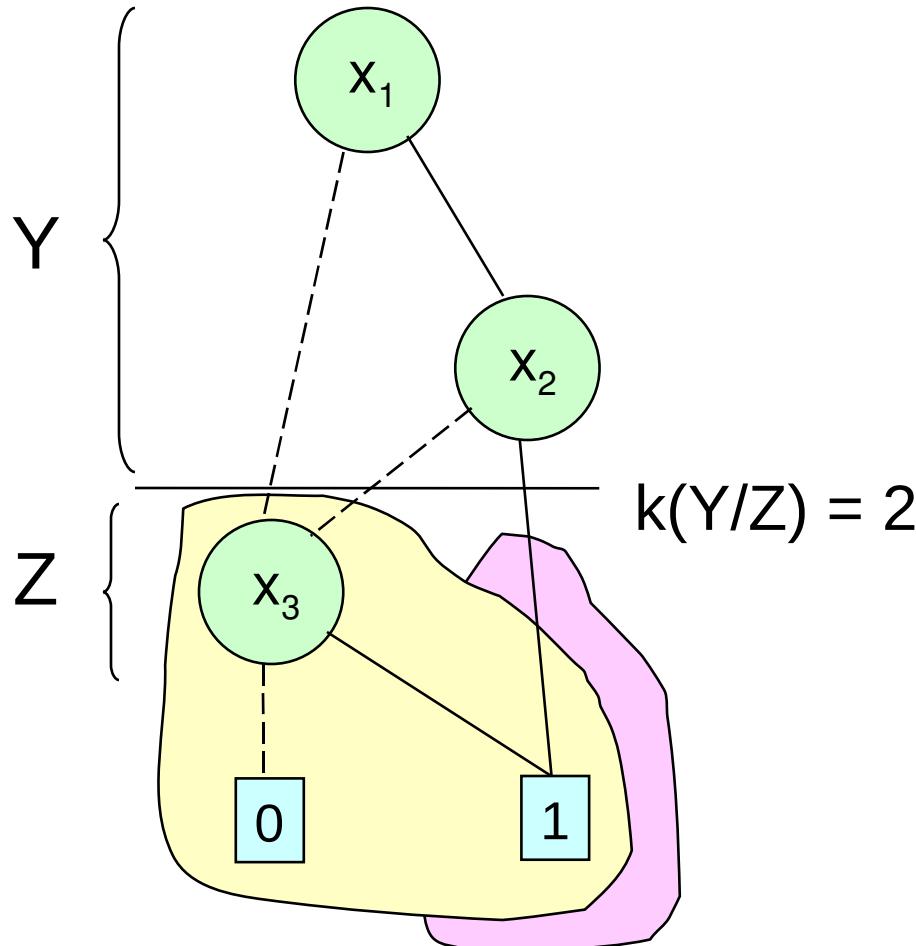
- A more efficient way to check whether Y is a bound set is to build a BDD with the variables from Y on the top:

$$k(Y/Z) = 4$$



- $k(Y/Z) =$ number of nodes in the lower block adjacent to the cut line

Example



$x_1 x_2$	00	01	11	10
x_3	0	0	1	0
0	1	1	1	1
1				

Multiple-valued functions

Theorem (Karp, 1963): for $f: M^n \rightarrow M$, Y is a bound set if and only if $k(Y/Z) \leq m$

- If we have $k(Y/Z) \leq m$ for a Boolean function, we can decompose it as:

$$f(X) = g(h(Y), Z)$$

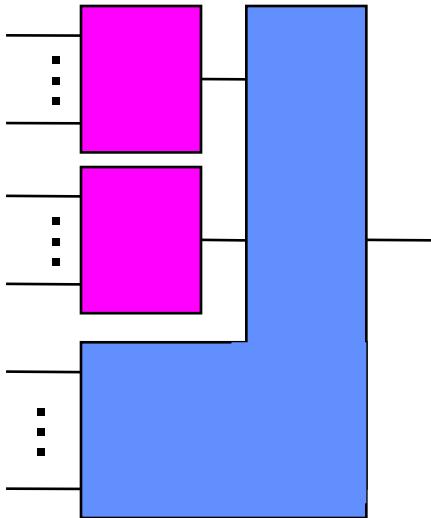
with $h: B^{|Y|} \rightarrow M$, $g: B^{|Z|} \times M \rightarrow B$, or

$$f(X) = g(h_1(Y), h_2(Y), \dots, h_{\log_2 m}(Y), Z)$$

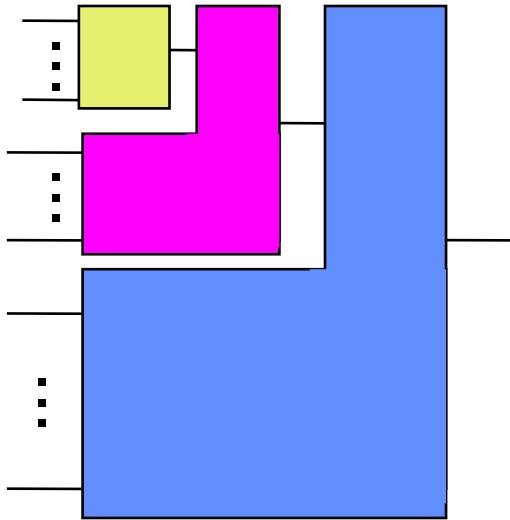
Complex decompositions

- Once a decomposition $f(X) = g(h(Y), Z)$ is found, either g , h , or both may be similarly decomposed, giving one of the following complex disjunctive decomposition types:
- multiple**: $f(X) = g(h(Y_1), k(Y_2), Z)$
- iterative**: $f(X) = g(h(k(Y_1), Z_1), Z_2)$
- tree-like** : $f(X) = g(h(k(Y_1), Z_1), I(Y_2), Z_2)$

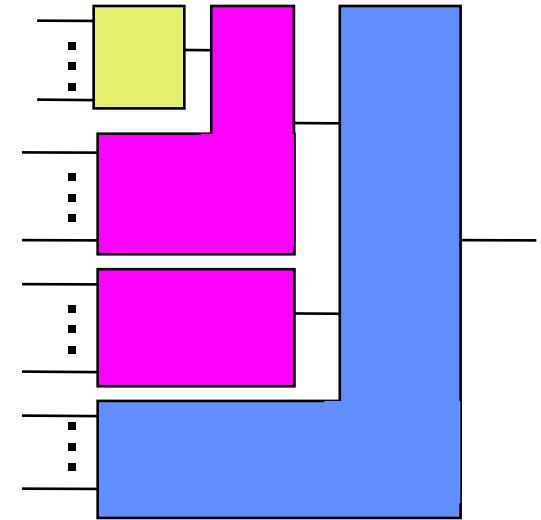
Examples of complex decompositions



multiple



iterative



tree-like

The “best” decomposition

- The more f is decomposed, the more its cost is reduced
- often a function can be decomposed in several different ways depending on the bound set chosen
- since a function may have up to 2^n bound sets, it is too long to consider all possible combinations
 - a theory is needed to decide which is the best

Support set

- The set of variables on which the function f actually depends is called its **support set $\text{sup}(f)$**

$$\text{sup}(f) = (x_i \mid f|_{x_i=0} \neq f|_{x_i=1})$$

- **Example:** Support set of

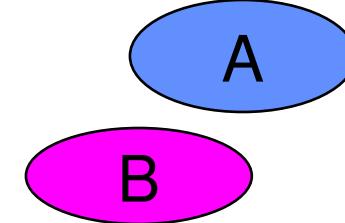
$$f(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2$$

$$\text{is } \text{sup}(f) = \{x_1, x_2\}$$

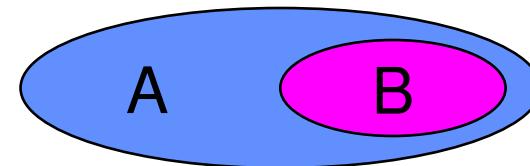
Relation between bound sets

- There are 3 possible ways for two bound sets, A and B, to be related:

- they are non-disjoint, i.e. $A \cap B = \emptyset$

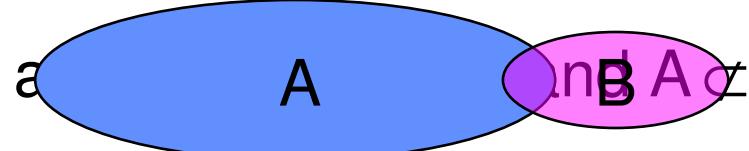


- A contains B , i.e. $A \subset B$



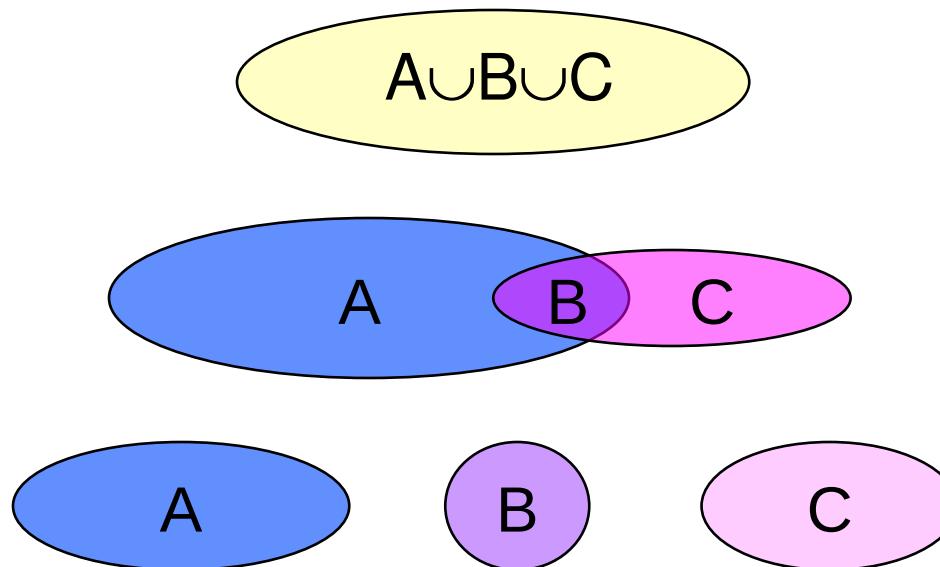
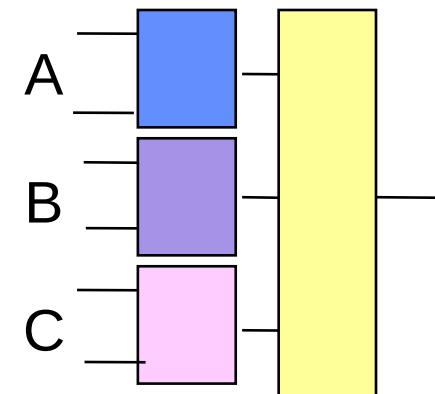
- they overlap, i.e. $A \cap B \neq \emptyset$

- B



Fundamental Lemma

Lemma (Ashenhurst, 1959): If $A \cup B$ is a bound set and $B \cup C$ is a bound set, then A , B , C and $A \cup B \cup C$ are bound sets



Ordering

- The bound sets A and B are ordered by inclusion if and only if $A \supset B$
- Example: $\{a,b,c,d\} \supset \{b,d\} \supset \{d\}$

Composition tree

Theorem (Ashenhurst, 1959): Given a function $f: B^n \rightarrow B$ with $\text{sup}(f) = (x_1, \dots, x_n)$, the set of all its non-overlapping bound sets, partially ordered by inclusion, form a tree

- The tree is unique for a given function (up to complementation)
- The number of nodes in the tree is $O(n)$

Consequences

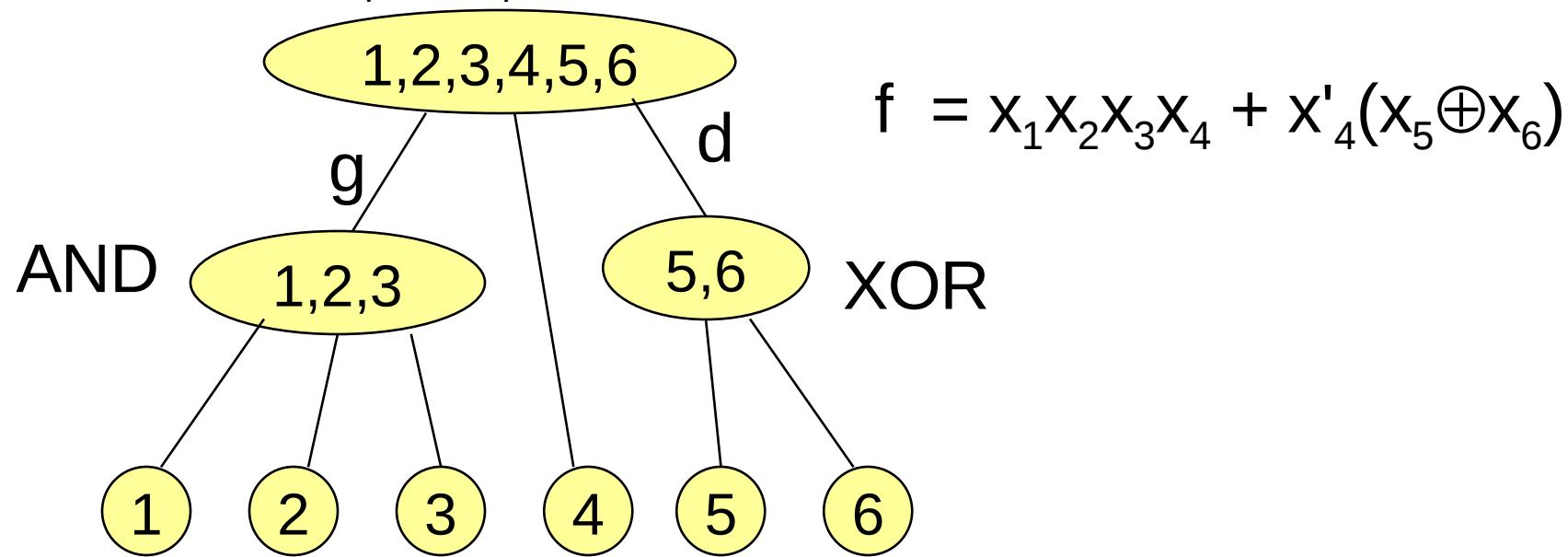
- some bound sets can be implied

$$A \cup B \wedge B \cup C \Rightarrow A \wedge B \wedge C \wedge A \cup B \cup C$$

- if two composition trees are different, the functions they represent are not equivalent
 - checking equivalence can be terminated earlier

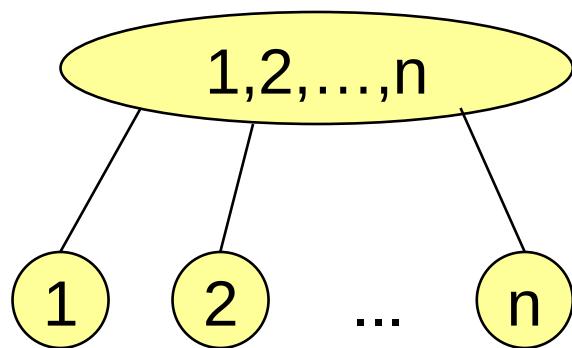
Example

$$h = g x_4 + x'_4 d$$



Problem

- Some functions have trivial composition trees



Roth-Karp decomposition

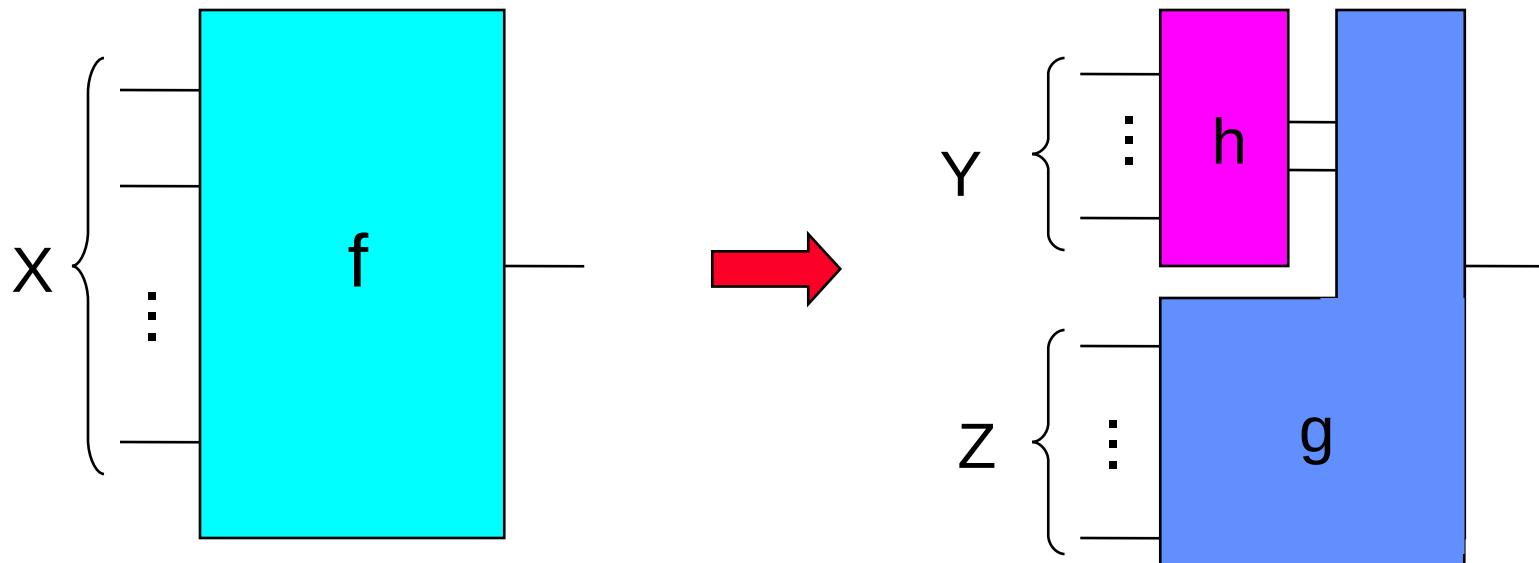
Theorem (Karp, 1963): For multiple-valued functions $M^n \rightarrow M$, Y is a bound set if and only if $k(Y/Z) \leq m$

- If we have $k(Y/Z) \leq m$ for a Boolean function, we can decompose it as:

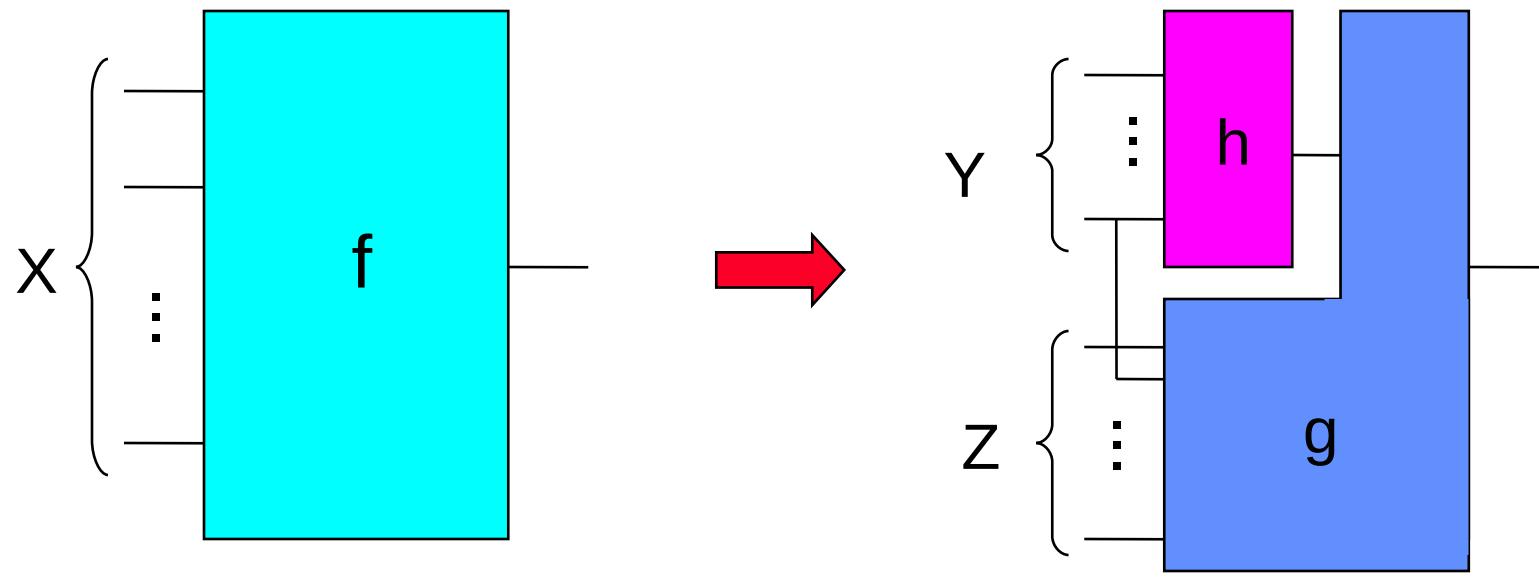
$$f(X) = g(h(Y), Z)$$

with $h: B^{|Y|} \rightarrow M$, $g: B^{|Z|} \times M \rightarrow B$, or

Example, $k(Y/Z) = 4$



Non-disjoint decompositions



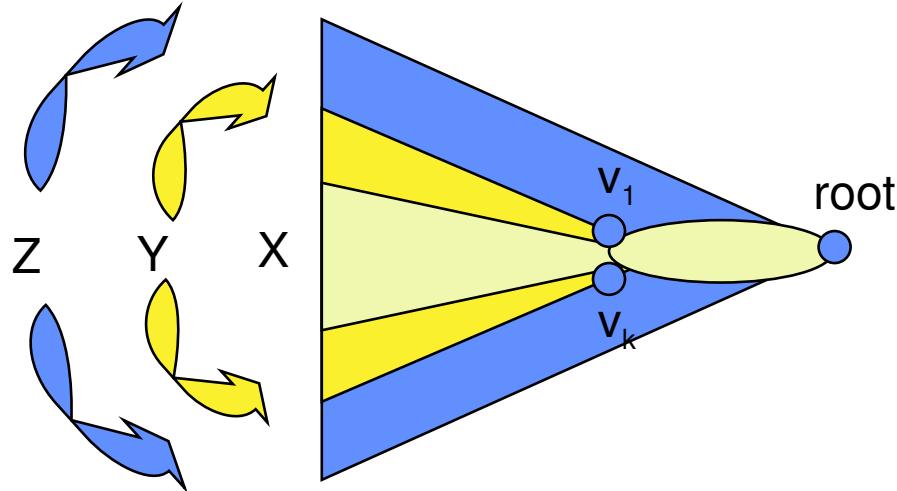
$$Y \cap Z \neq \emptyset$$

Algorithms based on Boolean decomposition

- There are algorithms for finding all bound sets and deriving from them the decomposed expression for f
 - mostly BDD based, quite fast
- For functions with no disjoint decomposition
 - Roth & Karp decomposition is used
 - Non-disjoint types of decompositions are used (harder to find)

Relation to dominators

- Let X be a set primary inputs dominated by $\{v_1, \dots, v_k\}$
- Let $X \cup Y$ be a set primary inputs the transitive fan-in of $\{v_1, \dots, v_k\}$



- Then, there exist a decomposition of type

$$f(X, Y, Z) = h(g_1(X, Y), \dots, g_k(X, Y), Y, Z)$$

Algebraic decomposition

- Algebraic methods provide faster algorithms, because they treat a function like a symbolic polynomial
 - AND = multiplication, OR = addition operation, x and x' are two different variables
- There are fast methods for manipulating polynomials. The optimality is lost, but the results are quite good

Main idea

- Given a SOP, how do we generate a “good” factored form
- Division operation:
 - is central in many operations
 - find a good divisor
 - apply the actual division
 - results in quotient and remainder
- Factorization
 - factored forms have no inversion except at inputs
 - number of literals is used as size metric

Algebraic divisors and factors

- We say that f_{divisor} is an **algebraic divisor** of f_{divident} when:
 - $f_{\text{divident}} = f_{\text{divisor}} \cdot f_{\text{quotient}} + f_{\text{remainder}}$
 - $f_{\text{divisor}} \cdot f_{\text{quotient}} \neq 0$
 - $\text{sup}(f_{\text{divisor}}) \cap \text{sup}(f_{\text{quotient}}) = \emptyset$
- If $f_{\text{remainder}} = 0$, then f_{divisor} is called **factor** of f_{divident}

Example

- Algebraic division:

let $f_{\text{divident}} = ac + ad + bc + bd + e$ and $f_{\text{divisor}} = a + b$

then $f_{\text{quotient}} = c + d$, $f_{\text{remainder}} = e$, because

$(a+b)(c+d) + e = f_{\text{divident}}$ and $\{a,b\} \cap \{c,d\} = \emptyset$

- Boolean division:

let $g_{\text{divident}} = a + bc$ and $g_{\text{divisor}} = a + b$

g_{divisor} is NOT an algebraic divisor, even though

Why do we need to require $\text{sup}(f_{\text{divisor}}) \cap \text{sup}(f_{\text{quotient}}) = \emptyset$

- It prevents generation of cubes that are contained in other cubes, as well as universal and void cubes
- Examples:
 - 1) $\{a,b\} \cap \{c,d\} = \emptyset$: $(a+b)(c+d) = ac + ad + bc + bd$
 - 2) $\{a,b\} \cap \{a,c\} \neq \emptyset$: $(a+b)(a+c) = aa + ac + ba + bc$
 - aa (universal cube) cannot be eliminated in algebraic model
 - 3) $\{a,b\} \cap \{a,c\} \neq \emptyset$: $(a+b)(a'+c) = aa' + ac + ba' + bc$
 - aa' (void cube) cannot be eliminated in algebraic model

Generation of divisors

- The number of Boolean divisors of a function can be very large
- To find an optimal multi-level expression, we need to generate all possible divisors and choose an expression with the smallest number of literals
- Algebraic divisors are a subset of Boolean divisors, but this subset may still be large

Generation of divisors

- An important subset of algebraic divisors can be generated by treating cubes as divisors
- The quotient in this process is called kernel and the cube used for division is called co-kernel
- kernels and co-kernels can be used to write expressions in factorized form

Kernel

- **Cube free** expression is an expression which cannot be factored by a cube
 - single cubes are never cube-free
- A **kernel** of an expression is the cube free quotient of the expression obtained by dividing it with a cube
- Cube used to get the kernel of the expression is called its **co-kernel**
- **Kernel set $K(f)$** is the set of all kernels of f

Example

Let $f_x = ace + bce + de + g$

1. By dividing f_x by cube a we get ce
 - ce is not cube free (can be divided by c or e), so it is not kernel
2. By dividing f_x by e we get $ac + bc + d$
 - $ac + bc + d$ is cube free (cannot be divided by any cube without remainder), so it is a kernel, and e is a co-kernel
3. $K(f_x) = \{(ace + bce + de + g), (ac + bc + d), (a + b)\}$

Kernel set computation

- Naive method:
 - divide function by elements in power set of its support set
 - weed out non cube free quotients
- Smart way:
 - use recursion
 - kernels of kernels are kernels
 - exploit commutativity of multiplication
 - $ab = ba$

Example

Let $f_x = ace + bce + de + g$

1. Select kernel $ac + bc + d$
2. Decompose f_x as $f_x = f_ye + g$, with $f_y = ac+bc+d$
3. Recur on the quotient f_y :
 1. Select kernel $a + b$
 2. Decompose f_y as $f_y = f_zc+d$, with $f_z=a+b$
4. Resulting factorized expression for f_x :

$$f_x = ((a+b)c + d)e + g$$

Summary of algebraic methods

- Boolean function is treated symbolically as a polynomial
- fast manipulation algorithms
- some optimality is lost, because some Boolean properties are neglected
- useful to reduce large networks