
L7: Multi­level optimization

p. 2 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Reading material

• de Micheli pp. 343 ­ 408
• Curtis, “The design of switching circuits”, pp. 269

­ 307
• Karp, “Functional decomposition and switching

circuits design”, J. Appl. Math, vol 11, 1963, pp.
291­335

p. 3 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Outline

• Introduction and Motivation
• Basic ideas in multi­level optimization
• Theory behind multi­level optimization

– Boolean and algebraic factors
– Kernels and kernel extraction

p. 4 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Two­level vs. multi­level

PLA
control logic
constrained layout
highly automatic
technology independent
Very predictable

Multi­level Logic
all logic
general (e.g. standard cell, FPGAs)
automatic
partially technology independent
Very hard to predict

E.g. Standard Cell LayoutE.g. Standard Cell Layout

p. 5 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Optimization criteria for synthesis
The optimization criteria for multi­level logic is to minimize some function

of:
– Area occupied by the logic gates and interconnect

(approximated by literals = transistors in technology independent
optimization)

– Critical path delay of the longest path through the logic
– Degree of testability of the circuit, measured in terms of the

percentage of faults covered by a specified set of test vectors for
an approximate fault model (e.g. single or multiple stuck­at
faults)

– Power consumed by the logic gates
– Noise Immunity
– Place­ability, Wire­ability

while simultaneously satisfying upper or lower bound constraints placed
on these physical quantities

p. 6 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example: area­delay trade­off

p. 7 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Network representation

Boolean network:
• directed acyclic graph (DAG)
• node logic function

representation fj(x,y)

• node variable yj: yj= fj(x,y)

• edge (i,j) if fj depends explicitly
on yi

Inputs x = (x1, x2,…,xn)

Outputs z = (z1, z2,…,zp)

External don’t cares d1(x),…,dp(x)

p. 8 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Node representation

• Sum­of­products
• BDD
• factored forms

p. 9 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Sum of Products (SOP)

• Advantages:
– easy to manipulate and minimize
– many algorithms available
– two­level theory applies

• Disadvantages:
– bad representative of logic complexity.

p. 10 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Reduced Ordered BDDs

• given an ordering, ROBDD is canonical, hence it
is a good replacement for truth tables
– not really a good estimator for implementation

complexity
• for a good ordering, BDDs remain reasonably

small for complicated functions (e.g. not
multipliers)

• manipulations are well defined and efficient

p. 11 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Factored Forms

• Advantages
– good representative of logic complexity
– in many designs (e.g. complex gate CMOS) the

implementation of a function corresponds directly to its
factored form

– good estimator of logic implementation complexity
– doesn’t blow up easily

• Disadvantages
– not as many algorithms available for manipulation
– hence often just convert into SOP before manipulation

p. 12 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Manipulation of Boolean Networks

• Basic Techniques:
– Global structural operations (change topology)

• algebraic
• Boolean

– Local node simplification (change node functions)
• don’t cares
• node minimization

p. 13 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Boolean and algebraic methods

• Boolean methods
– exploit properties of Boolean algebra
– use don’t cares
– complex at times

• Algebraic methods
– treat functions symbolically as polynomials
– exploit properties of polynomial algebra
– simpler and faster, but weaker

p. 14 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Boolean and Algebraic Methods

• In both methods, the goal is to reduce the number
of literals in network representation by
factorization

• “weaker” means that algebraic methods may not
find the decomposition which is found by Boolean
methods

• Contrary, Boolean methods will find all the
decompositions found by algebraic methods

p. 15 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example

• Consider the function
f = ab + ac + ad + a′c +a′d

• Using algebraic method, we get:
f = a(b + c + d) + a′(c + d), 7 literals

• Using Boolean method, we get
f = ab + c + d, by applying a+a′ = 1, 4 literals

p. 16 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Boolean methods

• Based on the theory of Boolean decomposition
– Ashenhurst 1959: disjoint decomposition
– Curtis 1962: non­disjoint decomposition
– Roth, Karp 1963 : some extensions to MVL and

practical algorithms
– von Stengel 1991: disjoint decomposition in MVL case

p. 17 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Problem formulation

• Given a function f, express it as a composite
function of some set of new functions

• Sometimes, a composite expression can be found
in which the new functions are significantly
simpler than f

• The problem of selecting the ''best''
decomposition is too hard to be solved
exhaustively

p. 18 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Problem formulation

• All practical algorithms using decomposition
theory in logic circuit synthesis restrict the type of
decomposition

• The basis for the different types of decomposition
is the simple disjunctive decomposition

p. 19 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Simple disjunctive decomposition

• Let X := (x1, ... ,xn)

• Simple disjunctive decomposition of a function f:
Bn → B is a representation of the form:

f(X) = g(h(Y),Z)

 where h: B|Y| → B, g: B|Z|+1 → B and Y, Z ⊆ X such
that Y ∪ Z=X and Y∩ Z=∅

• Y is called bound set; Z is called free set

p. 20 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Simple disjunctive decomposition

...

h

g

...Y

Z

...

fX

n

co
st

|X||Y| |Z|

p. 21 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Bound set existence condition
• Suppose f = g(h(Y),Z) is given by a Karnaugh map

with the columns representing the variables from Y
and the rows ­ from Z

• Column multiplicity k(Y/Z) is the number of distinct
columns in such a map

0

1

1

1

0

1

0

1

x1x2

x3 00 01 11 10

0

1

Y = {x1,x2}

Z = {x3}
k(Y/Z) = 2

p. 22 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Column multiplicity

h
x3 0 1

0

1

g(h,x3)

0

1 11

01 0

1

x1x2

x3
00 01 11 10

0

1

f(x1,x2,x3)
0 1 0 0h(x1,x2)

0

1

1

1

unique up to

complementation

p. 23 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Bound set existence condition

 Theorem (Ashenhurst, 1959): for f: Bn → B, Y is a
bound set if and only if k(Y/Z) ≤ 2

• Brute­force method for finding all bound sets:
– build Karanugh maps for all possible partitionings Y/Z

an check column multiplicity
– N of all partitionings is O(2n) for |X|= n

p. 24 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Finding bound sets from BDDs
• A more efficient way to check whether Y is a

bound set is to build a BDD with the variables
from Y on the top:

• k(Y/Z) = = number of nodes in the lower block
adjacent to the cut line

Y

Z

0 1

k(Y/Z) = 4

p. 25 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example

x1

x2

x3

0 1

k(Y/Z) = 2

Y

Z

0

1 11

10 0

1

x1x2

x3
00 01 11 10

0

1

p. 26 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Multiple­valued functions

Theorem (Karp, 1963): for f: Mn → M, Y is a bound
set if and only if k(Y/Z) ≤ m

• If we have k(Y/Z) ≤ m for a Boolean function, we
can decompose it as:

f(X) = g(h(Y),Z)

 with h: B|Y|→ M, g: B|Z| x M→ B, or

f(X) = g(h1(Y), h2(Y),…, hlog2m(Y),Z)

p. 27 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Complex decompositions

• Once a decomposition f(X) = g(h(Y),Z) is found,
either g, h, or both may be similarly decomposed,
giving one of the following complex disjunctive
decomposition types:

• multiple: f(X) = g(h(Y1), k(Y2), Z)

• iterative: f(X) = g(h(k(Y1), Z1), Z2)

• tree­like : f(X) = g(h(k(Y1), Z1), l(Y2), Z2)

p. 28 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Examples of complex
decompositions

multiple

...
...

...

...
...

...

iterative tree-like

...
...

...
...

p. 29 ­ Advanced Logic Design– L7 ­ Elena Dubrova

The “best” decomposition

• The more f is decomposed, the more its cost is
reduced

• often a function can be decomposed in several
different ways depending on the bound set
chosen

• since a function may have up to 2n bound sets, it
is too long to consider all possible combinations
– a theory is needed to decide which is the best

p. 30 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Support set

• The set of variables on which the function f
actually depends is called its support set sup(f)

sup(f) = (xi | f|xi=0 ≠ f|xi=1)

• Example: Support set of
f(x1,x2,x3,x4,x5) = x1 + x2

 is sup(f) = {x1,x2}

p. 31 ­ Advanced Logic Design– L7 ­ Elena Dubrova

• There are 3 possible ways for two bound sets, A
and B, to be related:
– they are non­disjoint, i.e. A ∩ B = ∅

– A contains B , i.e. A ⊂ B

– they overlap, i.e. A ∩ B ≠ ∅ as well as A ⊄ B and A ⊄
B

Relation between bound sets

B

A

BA

BA

p. 32 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Fundamental Lemma

Lemma (Ashenhurst, 1959): If A∪B is a bound set
and B∪C is a bound set, then A, B, C and
A∪B∪C are bound sets

A B C

A∪B∪C

A B C

A

B

C

p. 33 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Ordering

• The bound sets A and B are ordered by inclusion
if and only if A ⊃ B

• Example: {a,b,c,d} ⊃ {b,d} ⊃ {d}

p. 34 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Composition tree

Theorem (Ashenhurst, 1959): Given a function f: Bn
→ B with sup(f) = (x1,...,xn), the set of all its non­
overlapping bound sets, partially ordered by
inclusion, form a tree

• The tree is unique for a given function (up to
complemnetation)

• The number of nodes in the tree is O(n)

p. 35 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Consequences

• some bound sets can be implied
 A∪B ∧ B∪C ⇒ A ∧ B ∧ C ∧ A∪B∪C

• if two composition trees are different, the
functions they represent are not equivalent
– checking equivalence can be terminated earlier

p. 36 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example

1,2,3,4,5,6

1 2 5

1,2,3 5,6

3 4 6

f = x1x2x3x4 + x'4(x5⊕x6)

AND XOR

h = g x4 + x'4 d

dg

p. 37 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Problem

• Some functions have trivial composition trees

1,2,…,n

1 2 n...

p. 38 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Roth­Karp decomposition

Theorem (Karp, 1963): For multiple­valued
functions Mn → M, Y is a bound set if and only if
k(Y/Z) ≤ m

• If we have k(Y/Z) ≤ m for a Boolean function, we
can decompose it as:

f(X) = g(h(Y),Z)

 with h: B|Y|→ M, g: B|Z| x M→ B, or

f(X) = g(h1(Y), h2(Y),…, hlog2m(Y),Z)

p. 39 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example, k(Y/Z) = 4

...

fX

...

h

g

...Y

Z

p. 40 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Non­disjoint decompositions

...

fX

...

h

g

...Y

Z

Y ∩ Z ≠ ∅

p. 41 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Algorithms based on Boolean
decomposition

• There are algorithms for finding all bound sets
and deriving from them the decomposed
expression for f
– mostly BDD based, quite fast

• For functions with no disjoint decomposition
– Roth & Karp decomposition is used
– Non­disjoint types of decompositions are used (harder

to find)

p. 42 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Relation to dominators
• Let X be a set primary inputs dominated by {v1,…,vk}
• Let X ∪ Y be a set primary inputs the transitive fan­in
of {v1,…,vk}

YZ X
v1

vk

root

• Then, there exist a decomposition of type
f(X,Y,Z) = h(g1(X,Y),…, gk(X,Y),Y,Z)

p. 43 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Algebraic decomposition

• Algebraic methods provide faster algorithms,
because they treat a function like a symbolic
polynomial
– AND = multiplication, OR = addition operation, x and x’

are two different variables
• There are fast methods for manipulating

polynomials. The optimally is lost, but the results
are quite good

p. 44 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Main idea

• Given a SOP, how do we generate a “good” factored form
• Division operation:

– is central in many operations
– find a good divisor
– apply the actual division

• results in quotient and remainder
• Factorization

– factored forms have no inversion except at inputs
– number of literals is used as size metric

p. 45 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Algebraic divisors and factors

• We say that fdivisor is an algebraic divisor of fdivident
when:
– fdivident = fdivisor ∙ fquotient + freminder

– fdivisor ∙ fquotient ≠ 0

– sup(fdivisor) ∩ sup(fquotient) = ∅

• If freminder = 0, then fdivisor is called factor of fdivident

p. 46 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example

• Algebraic division:
let fdivident= ac + ad + bc + bd + e and fdivisor = a + b

then fquotient = c + d, freminder = e, because

(a+b)(c+d) + e = fdivident and {a,b} ∩ {c,d} = ∅

• Boolean dvision:
let gdivident = a + bc and gdivisor = a + b

gdivisor is NOT an algebraic divisor, even though

gdivident = gdivisor ∙ gquotient with gquotient = a + c

because {a,b} ∩ {a,c} ≠ ∅

p. 47 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Why do we need to require
 sup(fdivisor) ∩ sup(fquotient) = ∅

• It prevents generation of cubes that are contained in
other cubes, as well as universal and void cubes

• Examples:
1) {a,b} ∩ {c,d} = ∅: (a+b)(c+d) = ac + ad + bc + bd
2) {a,b} ∩ {a,c} ≠ ∅: (a+b)(a+c) = aa + ac + ba + bc

• aa (universal cube) cannot be eliminated in algebraic model

3) {a,b} ∩ {a,c} ≠ ∅: (a+b)(a’+c) = aa’ + ac + ba’ + bc
• aa’ (void cube) cannot be eliminated in algebraic model

p. 48 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Generation of divisors

• The number of Boolean divisors of a function can
be very large

• To find an optimal multi­level expression, we need
to generate all possible divisors and choose an
expression with the smallest number of literals

• Algebraic divisors are a subset of Boolean
divisors, but this subset may still be large

p. 49 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Generation of divisors

• An important subset of algebraic divisors can be
generated by treating cubes as divisors

• The quotient in this process is called kernel and
the cube used for division is called co­kernel

• kernels and co­kernels can be used to write
expressions in factorized form

p. 50 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Kernel

• Cube free expression is an expression which
cannot be factored by a cube
– single cubes are never cube­free

• A kernel of an expression is the cube free
quotient of the expression obtained by dividing
it with a cube

• Cube used to get the kernel of the expression
is called its co­kernel

• Kernel set K(f) is the set of all kernels of f

p. 51 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example

Let fx = ace + bce + de + g

1. By dividing fx by cube a we get ce
– ce is not cube free (can be divided by c or e), so it is

not kernel

2. By dividing fx by e we get ac + bc + d
– ac + bc + d is cube free (cannot be divided by any cube

without reminder), so it is a kernel, and e is a co­kernel

3. K(fx)={(ace+bce+de+g),(ac+bc+d),(a+b)}

p. 52 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Kernel set computation

• Naive method:
– divide function by elements in power set of its support

set
– weed out non cube free quotients

• Smart way:
– use recursion

• kernels of kernels are kernels
– exploit commutativity of multiplication

• ab = ba

p. 53 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Example

Let fx = ace + bce + de + g
1. Select kernel ac + bc + d
2. Decompose fx as fx = fye + g, with fy= ac+bc+d
3. Recur on the quotient fy:

1. Select kernel a + b
2. Decompose fy as fy = fzc+d, with fz=a+b

4. Resulting factorized expression for fx:
fx = ((a+b)c + d)e + g

p. 54 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Summary of algebraic methods

• Boolean function is treated symbolically as a
polynomial

• fast manipulation algorithms
• some optimality is lost, because some Boolean

properties are neglected
• useful to reduce large networks

