é’h VETENSKA Q\Z\ KUNGL LTI &R

ocH I} TEKNISKA lnaban [
Master Fr

%%gzﬂéf § HOGSKOLAN

L7: Multi-level optimization



Reading material

. de Micheli pp. 343 - 408

 Curtis, “The design of switching circuits”, pp. 269
- 307

« Karp, “Functional decomposition and switching
circuits design”, J. Appl. Math, vol 11, 1963, pp.
291-335

p. 2 - Advanced Logic Design— L7 - Elena Dubrova



Outline

* Introduction and Motivation
« Basic ideas in multi-level optimization

« Theory behind multi-level optimization
— Boolean and algebraic factors
— Kernels and kernel extraction

p. 3 - Advanced Logic Design— L7 - Elena Dubrova



Two-level vs. multi-level

PLA

$Il1p$uls$ AO:tgquA
———NE—— ||| | D

PLA

control logic
constrained layout
highly automatic
technology independent
Very predictable

E.g. Standard Cell Layout

| — |
(T T [T TT [T T[]
CIT T1 JTIT JT117T [

I —

—
L b 1 TrTr It
— I ‘ :

Multi-level Logic

all logic

general (e.g. standard cell, FPGAS)
automatic

partially technology independent
Very hard to predict

p. 4 - Advanced Logic Design— L7 - Elena Dubrova



Optimization criteria for synthesis

The optimization criteria for multi-level logic is to minimize some function

of:

Area occupied by the logic gates and interconnect
(approximated by literals = transistors in technology independent
optimization)

Critical path delay of the longest path through the logic

Degree of testability of the circuit, measured in terms of the
percentage of faults covered by a specified set of test vectors for
an approximate fault model (e.g. single or multiple stuck-at
faults)

Power consumed by the logic gates
Noise Immunity

PTacg;aBURGVAHRERPDPIGE Design— L7 - Elena Dubrova

while simultaneously satisfying upper or lower bound constraints placed



Example: area-delay trade-off

AREA :
/ OPTIMAL AREA/DEIAY TRADEOFF
LARGE DESIGN - / TRADEOFF FOR 100% TESTABILITY
DELAY CONSTRAINT
<
=T
X
1L.OGIC SYNTHESIS
SMALL DESIGN Ag

T DELAY

FAST DESIGN SLOW DESIGN

p. 6 - Advanced Logic Design— L7 - Elena Dubrova



Network representation

z1

Boolean network: OUTRUTS Zp
« directed acyclic graph (DAG)
 node logic function

representation 7,(x,y) I

» node variable y:: y=f(x,y) ,, // FETE

- edge (i,)) if £, depends explicitly

on y.

Inputs x = (x,, X,,...,X,)

INPUTS

V4 )
Cutptitsz= (49: Z2Rdvehedd Logic Design— L7 - Elena Dubrova

External don’t cares d./x)  .d (x)




Node representation

« Sum-of-products
- BDD
 factored forms

p. 8 - Advanced Logic Design— L7 - Elena Dubrova



Sum of Products (SOP)

« Advantages:
— easy to manipulate and minimize
— many algorithms available
— two-level theory applies
« Disadvantages:
— bad representative of logic complexity.

p. 9 - Advanced Logic Design— L7 - Elena Dubrova



Reduced Ordered BDDs

 given an ordering, ROBDD is canonical, hence it
IS a good replacement for truth tables

— not really a good estimator for implementation
complexity

» for a good ordering, BDDs remain reasonably
small for complicated functions (e.g. not
multipliers)

« manipulations are well defined and efficient

p. 10 - Advanced Logic Design— L7 - Elena Dubrova



Factored Forms

« Advantages
— good representative of logic complexity

— In many designs (e.g. complex gate CMOS) the
iImplementation of a function corresponds directly to its
factored form

— good estimator of logic implementation complexity
— doesn’t blow up easily

« Disadvantages
— not as many algorithms available for manipulation
— hence often just convert into SOP before manipulation

p. 11 - Advanced Logic Design— L7 - Elena Dubrova



Manipulation of Boolean Networks

« Basic Techniques:
— Global structural operations (change topology)
- algebraic
« Boolean
— Local node simplification (change node functions)

o don’t cares
« node minimization

p. 12 - Advanced Logic Design— L7 - Elena Dubrova



Boolean and algebraic methods

« Boolean methods
— exploit properties of Boolean algebra
— use don'’t cares
— complex at times

 Algebraic methods
— treat functions symbolically as polynomials

— exploit properties of polynomial algebra
— simpler and faster, but weaker

p. 13 - Advanced Logic Design— L7 - Elena Dubrova



Boolean and Algebraic Methods

 In both methods, the goal is to reduce the number
of literals in network representation by
factorization

« “weaker’” means that algebraic methods may not
find the decomposition which is found by Boolean
methods

« Contrary, Boolean methods will find all the
decompositions found by algebraic methods

p. 14 - Advanced Logic Design— L7 - Elena Dubrova



Example

o Consider the function
f=ab +ac +ad+ a'c +a'd

« Using algebraic method, we get:
f=alb+c+d)+a(c+d), 7literals

« Using Boolean method, we get
f=ab +c +d, by applying a+a’' = 1, 4 literals

p. 15 - Advanced Logic Design— L7 - Elena Dubrova



Boolean methods

« Based on the theory of Boolean decomposition
— Ashenhurst 1959: disjoint decomposition
— Curtis 1962: non-disjoint decomposition

— Roth, Karp 1963 : some extensions to MVL and
practical algorithms

— von Stengel 1991 disjoint decomposition in MVL case

p. 16 - Advanced Logic Design— L7 - Elena Dubrova



Problem formulation

« Given a function f, express it as a composite
function of some set of new functions

« Sometimes, a composite expression can be found
in which the new functions are significantly
simpler than f

« The problem of selecting the "best"
decomposition is too hard to be solved
exhaustively

p. 17 - Advanced Logic Design— L7 - Elena Dubrova



Problem formulation

 All practical algorithms using decomposition
theory in logic circuit synthesis restrict the type of
decomposition

« The basis for the different types of decomposition
IS the simple disjunctive decomposition

p. 18 - Advanced Logic Design— L7 - Elena Dubrova



Simple disjunctive decomposition

e Let X :=(x,, ... ,X,)

« Simple disjunctive decomposition of a function f:
B" . B is a representation of the form:

1(X) = g(h(Y),2)

where h: B -, B, g: B4+ . Band Y, Z O X such
thatY O Z=Xand Yn Z=[1

* Y is called bound set; Z is called free set

p. 19 - Advanced Logic Design— L7 - Elena Dubrova



Simple disjunctive decomposition

X4 .

cost

>N
Y1 1Z] [X]

p. 20 - Advanced Logic Design— L7 - Elena Dubrova



Bound set existence condition

« Suppose f = g(h(Y),Z) is given by a Karnaugh map
with the columns representing the variables from Y
and the rows - from Z

XX,

x;\_00 01 11 10

0|0

1

0

0

111

1

1

1

YEWX) yiz) = 2

Z = {Xg}

e Column multiplicity k(Y/Z) is the number of distinct

columns in such a map

p. 21 - Advanced Logic Design— L7 - Elena Dubrova



Column multiplicity

h(X1=X2)| O1 0 0 -——W

X, X
F(X1,X2,X3) )2 2 ‘ 00 01 11 10

3

0

0

1

0

0

1

1

1

1

1

h
3
0

1

\

h’ 3
a( X)N

A

0
0
1

N S

unigue up to

complementation

p. 22 - Advanced Logic Design— L7 - Elena Dubrova



Bound set existence condition

forf:B" -~ B, Yisa
bound set if and only if k(Y/Z) <2

« Brute-force method for finding all bound sets:

— build Karanugh maps for all possible partitionings Y/Z
an check column multiplicity

— N of all partitionings is O(2") for |X|=n

p. 23 - Advanced Logic Design— L7 - Elena Dubrova



Finding bound sets from BDDs

« A more efficient way to check whether Y is a
bound set is to build a BDD with the variables
from Y on the top:

k(Y/Z) = 4

A
"

« k(Y/Z) = = number of nodes in the lower block
adjacent to the cut line

p. 24 - Advanced Logic Design— L7 - Elena Dubrova



XX,
00 01 11 10

X3
010(0f1]0

111111

k(vyizy=2 1

p. 25 - Advanced Logic Design— L7 - Elena Dubrova



Multiple-valued functions

forf:M~ - M, Y is a bound
set if and only if k(Y/Z) <m

 If we have k(Y/Z) < m for a Boolean function, we
can decompose it as:

i(X) = g(h(Y),2)
with h: BY- M, g: B4x M- B, or

f(X) — g(h1(Y)= hZ(Y)ﬂ"'s h|OQom(Y)5Z)

p. 26 - Advanced Logic Design— L7 - Elena Dubrova



Complex decompositions

Once a decomposition f(X) = g(h(Y),Z) is found,
either g, h, or both may be similarly decomposed,
giving one of the following complex disjunctive
decomposition types:

multiple: f(X) = g(h(Y,), k(Y,), 2)
terative: f(X) = g(h(k(Y,), Z.), Z,)

tree-like : f(X) = g(h(k(Y,), Z,), I(Y,), Z,)

p. 27 - Advanced Logic Design— L7 - Elena Dubrova



Examples of complex
decompositions

multiple iterative tree-like

p. 28 - Advanced Logic Design— L7 - Elena Dubrova



The “best” decomposition

« The more f is decomposed, the more its cost is
reduced

 often a function can be decomposed in several
different ways depending on the bound set
chosen

 since a function may have up to 2" bound sets, it
Is too long to consider all possible combinations
— a theory is needed to decide which is the best

p. 29 - Advanced Logic Design— L7 - Elena Dubrova



Support set

The set of variables on which the function f
actually depends is called its support set sup(f)

sup(f) = (x| fl, o #fl, )
Support set of
f(X{,X5,X35X4,X5) = X4 + X,

IS sup(f) = {X;,X,}

p. 30 - Advanced Logic Design— L7 - Elena Dubrova



Relation between bound sets

* There are 3 possible ways for two bound sets, A

and B, to be related: -

— they are non-disjoint, i.e. An B =1 -

— Acontains B, i.e. ALl B -
— they overlap, i.e. An B # [

B

p. 31 - Advanced Logic Design— L7 - Elena Dubrova



Fundamental Lemma

Lemma (Ashenhurst, 1959): If ALB is a bound set
and B[IC is a bound set, then A, B, C and
A[IBLIC are bound sets

—
@l -8

C —

@ ® oo

p. 32 - Advanced Logic Design— L7 - Elena Dubrova



Ordering

« The bound sets A and B are ordered by inclusion
if andonly f ALl B

{a,b,c,d} O {b,d} I {d}

p. 33 - Advanced Logic Design— L7 - Elena Dubrova



Composition tree

Given a function f: B"
- B with sup(f) = (x,,...,X,), the set of all its non-

overlapping bound sets, partially ordered by
inclusion, form a tree

« The tree is unigque for a given function (up to
complemnetation)

« The number of nodes in the tree is O(n)

p. 34 - Advanced Logic Design— L7 - Elena Dubrova



Consequences

* some bound sets can be implied

* If two composition trees are different, the
functions they represent are not equivalent
— checking equivalence can be terminated earlier

p. 35 - Advanced Logic Design— L7 - Elena Dubrova



p. 36 - Advanced Logic Design— L7 - Elena Dubrova



Problem

« Some functions have trivial composition trees

p. 37 - Advanced Logic Design— L7 - Elena Dubrova



Roth-Karp decomposition
For multiple-valued
functions M" - M, Y is a bound set if and only if

k(Y/Z) < m

 |If we have k(Y/Z) < m for a Boolean function, we
can decompose it as:

with h: BM - M, g: B4x M- B, or

p. 38 - Advanced Logic Design— L7 - Elena Dubrova



X3

Example, k(Y/Z) = 4

p. 39 - Advanced Logic Design— L7 - Elena Dubrova



X4

Non-disjoint decompositions

YnZ#L[

p. 40 - Advanced Logic Design— L7 - Elena Dubrova



Algorithms based on Boolean
decomposition

« There are algorithms for finding all bound sets

and deriving from them the decomposed
expression for f

— mostly BDD based, quite fast
 For functions with no disjoint decomposition
— Roth & Karp decomposition is used

— Non-disjoint types of decompositions are used (harder
to find)

p. 41 - Advanced Logic Design— L7 - Elena Dubrova



Relation to dominators

. Let X be a set primary inputs dominated by {v.,...,v,}
e Let X 00 Y be a set primary inputs the transitive fan-in

of {v,,...,v,}
I

Z Y X

&

« Then, there exist a decomposition of type
f(X,Y,2) = h(g,(X,Y),..., 9.(X,Y),Y,Z)

p. 42 - Advanced Logic Design— L7 - Elena Dubrova



Algebraic decomposition

 Algebraic methods provide faster algorithms,
because they treat a function like a symbolic
polynomial
— AND = multiplication, OR = addition operation, x and x’

are two different variables

« There are fast methods for manipulating
polynomials. The optimally is lost, but the results
are quite good

p. 43 - Advanced Logic Design— L7 - Elena Dubrova



Main idea

« Given a SOP, how do we generate a “good” factored form
 Division operation:

— IS central in many operations

— find a good divisor

— apply the actual division
« results in quotient and remainder

« Factorization
— factored forms have no inversion except at inputs
— number of literals is used as size metric

p. 44 - Advanced Logic Design— L7 - Elena Dubrova



Algebraic divisors and factors

« We say that f
when:

IS an algebraic divisor of f ...

divisor

_ 1:divident = fdivisor . fquotient + 1:reminder

— 1:divisor . 1:quotient z0
— Sup(fdivisor) N Sup(fquo’[ient) = L
e Iff . ...=0,thenf, . is called factor of f ..

p. 45 - Advanced Logic Design— L7 - Elena Dubrova



Example

* Algebraic division:
let f 4on=2aC +ad +bc +bd +eandf,, ,=a+Db

then fquoﬁem= c+d,f .. =€, because

(a+b)(c+d) + e = f,....and {a,0} n {c,d} = O

* Boolean dvision:
|et gdivident =a+t bC and gdivisor= a + b

Javisor 1S NOT an algebraic divisor, even though

Qaivident P HivibsvaBesh eIty L f.n =@ Bubrova

| P f . 1LY f . Y 7 M



Why do we need to require
sup(f ) n sup(f

divisor quotient ) =

* It prevents generation of cubes that are contained in
other cubes, as well as universal and void cubes

« Examples:
1) (a+b)(c+d) = ac + ad + bc + bd
2) (a+b)(a+c) = aa + ac + ba + bc

 aa (universal cube) cannot be eliminated in algebraic model
3) (a+b)(a’'+c) =aa’ + ac + ba’ + bc

« aa’ (void cube) cannot be eliminated in algebraic model

p. 47 - Advanced Logic Design— L7 - Elena Dubrova



Generation of divisors

« The number of Boolean divisors of a function can
be very large

« To find an optimal multi-level expression, we need
to generate all possible divisors and choose an
expression with the smallest number of literals

 Algebraic divisors are a subset of Boolean
divisors, but this subset may still be large

p. 48 - Advanced Logic Design— L7 - Elena Dubrova



Generation of divisors

« An important subset of algebraic divisors can be
generated by treating cubes as divisors

« The quotient in this process is called kernel and
the cube used for division is called co-kernel

« kernels and co-kernels can be used to write
expressions in factorized form

p. 49 - Advanced Logic Design— L7 - Elena Dubrova



Kernel

Cube free expression is an expression which
cannot be factored by a cube

— single cubes are never cube-free

A kernel of an expression is the cube free
guotient of the expression obtained by dividing
it with a cube

Cube used to get the kernel of the expression
Is called its co-kernel

Kernel set K(f) is the set of all kernels of f

p. 50 - Advanced Logic Design— L7 - Elena Dubrova



Example

Letf =
1. By dividing f, by cube a we get
IS not cube free (can be divided by c or e), so it is
not kernel
2. By dividing f_ by e we get

IS cube free (cannot be divided by any cube
without reminder), so it is a kernel, and ¢ is a co-kernel

3. K(f,)={(ace+bce+de+g),(ac+bc+d),(a+b)}

p. 51 - Advanced Logic Design— L7 - Elena Dubrova



Kernel set computation

 Nailve method:

— divide function by elements in power set of its support
set

— weed out non cube free quotients

« Smart way:
— uSe recursion
o kernels of kernels are kernels

— exploit commutativity of multiplication
« ab=Dba

p. 52 - Advanced Logic Design— L7 - Elena Dubrova



Example

Letf =
1. Select kernel
2. Decompose f, as f, =1, , with f =
3. Recur on the quotient f:
1. Select kernel
2. Decompose f, as f, = f,c+d, with f,=

4. Resulting factorized expression for f.:

I = p- 53 “Advahted Togic Design— L7 - Elena Dubrova



Summary of algebraic methods

Boolean function is treated symbolically as a
polynomial

fast manipulation algorithms

some optimality is lost, because some Boolean
properties are neglected

useful to reduce large networks

p. 54 - Advanced Logic Design— L7 - Elena Dubrova



