
L7: Multi­level optimization
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Reading material

• de Micheli pp. 343 ­ 408
• Curtis, “The design of switching circuits”, pp. 269 

­ 307
• Karp, “Functional decomposition and switching 

circuits design”, J. Appl. Math, vol 11, 1963, pp. 
291­335
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Outline

• Introduction and Motivation
• Basic ideas in multi­level optimization
• Theory behind multi­level optimization

– Boolean and algebraic factors
– Kernels and kernel extraction
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Two­level vs. multi­level

PLA
control logic
constrained layout
highly automatic
technology independent
Very predictable

Multi­level Logic
all logic
general (e.g. standard cell, FPGAs)
automatic
partially technology independent
Very hard to predict

E.g. Standard Cell LayoutE.g. Standard Cell Layout
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Optimization criteria for synthesis
The optimization criteria for multi­level logic is to minimize some function 

of:
– Area occupied by the logic gates and interconnect 

(approximated by literals = transistors in technology independent 
optimization)

– Critical path delay of the longest path through the logic
– Degree of testability of the circuit, measured in terms of the 

percentage of faults covered by a specified set of test vectors for 
an approximate fault model (e.g. single  or multiple stuck­at 
faults)

– Power consumed by the logic gates
– Noise Immunity
– Place­ability, Wire­ability

while simultaneously satisfying upper or lower bound constraints placed 
on these physical quantities
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Example: area­delay trade­off
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Network representation

Boolean network:
• directed acyclic graph (DAG)
• node logic function 

representation fj(x,y)

• node variable yj: yj= fj(x,y)

• edge (i,j) if fj depends explicitly 
on yi

Inputs x = (x1, x2,…,xn )

Outputs z = (z1, z2,…,zp )

External don’t cares d1(x),…,dp(x)
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Node representation

• Sum­of­products
• BDD
• factored forms
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Sum of Products (SOP)

• Advantages:
– easy to manipulate and minimize
– many algorithms available
– two­level theory applies

• Disadvantages:
– bad representative of logic complexity.  
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Reduced Ordered BDDs

• given an ordering, ROBDD is canonical, hence it 
is a good replacement for truth tables
– not really a good estimator for implementation 

complexity
• for a good ordering, BDDs remain reasonably 

small for complicated functions (e.g. not 
multipliers)

• manipulations are well defined and efficient
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Factored Forms

• Advantages
– good representative of logic complexity
– in many designs (e.g. complex gate CMOS) the 

implementation of a function corresponds directly to its 
factored form

– good estimator of logic implementation complexity
– doesn’t blow up easily

• Disadvantages
– not as many algorithms available for manipulation
– hence often just convert into SOP before manipulation
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Manipulation of Boolean Networks

• Basic Techniques:
– Global structural operations (change topology)

• algebraic
• Boolean

– Local node simplification (change node functions)
• don’t cares
• node minimization
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Boolean and algebraic methods

• Boolean methods
– exploit properties of Boolean algebra
– use don’t cares
– complex at times

• Algebraic methods
– treat functions symbolically as polynomials
– exploit properties of polynomial algebra
– simpler and faster, but weaker
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Boolean and Algebraic Methods

• In both methods, the goal is to reduce the number 
of literals in network representation by 
factorization

• “weaker” means that algebraic methods may not 
find the decomposition which is found by Boolean 
methods

• Contrary, Boolean methods will find all the 
decompositions found by algebraic methods
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Example

• Consider the function
f = ab + ac + ad + a′c +a′d 

• Using algebraic method, we get:
f = a(b + c + d) + a′(c + d),  7 literals

• Using Boolean method, we get
f = ab + c + d, by applying a+a′ = 1, 4 literals
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Boolean methods

• Based on the theory of Boolean decomposition
– Ashenhurst 1959: disjoint decomposition
– Curtis 1962: non­disjoint decomposition
– Roth, Karp 1963 : some extensions to MVL and 

practical algorithms
– von Stengel 1991: disjoint decomposition in MVL case
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Problem formulation

• Given a function f, express it as a composite 
function of some set of new functions

• Sometimes, a composite expression can be found 
in which the new functions are significantly 
simpler than f

• The problem of selecting the ''best'' 
decomposition is  too hard to be solved 
exhaustively
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Problem formulation

• All practical algorithms using decomposition 
theory in logic circuit synthesis restrict the type of 
decomposition

• The basis for the different types of decomposition 
is the simple disjunctive decomposition
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Simple disjunctive decomposition

• Let X := (x1, ... ,xn)

• Simple disjunctive decomposition of a function f: 
Bn → B is a representation of the form: 

f(X) = g(h(Y),Z) 

  where h: B|Y| → B, g: B|Z|+1 → B and Y, Z ⊆ X such 
that Y ∪ Z=X and Y∩ Z=∅

• Y is called bound set; Z is called free set
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Simple disjunctive decomposition

...

h

g

...Y

Z

...

fX

n

co
st

|X||Y| |Z|
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Bound set existence condition
• Suppose f = g(h(Y),Z) is given by a Karnaugh map 

with the columns representing the variables from Y 
and the rows ­  from Z

• Column multiplicity k(Y/Z) is the number of distinct 
columns in such a map

0

1

1

1

0

1

0

1

x1x2

x3 00  01  11  10

0

1

Y = {x1,x2}

Z = {x3}
k(Y/Z) = 2
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Column multiplicity

h
x3 0    1

0

1

g(h,x3)

0

1 11

01 0

1

x1x2

x3
00  01  11  10

0

1

f(x1,x2,x3)
0   1    0    0h(x1,x2)

0

1

1

1

unique up to 

complementation
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Bound set existence condition

 Theorem (Ashenhurst, 1959): for f: Bn → B,  Y is a 
bound set if and only if  k(Y/Z) ≤ 2

• Brute­force method for finding all bound sets: 
– build Karanugh maps for all possible partitionings Y/Z 

an check column multiplicity 
– N of all partitionings is O(2n) for |X|= n 
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Finding bound sets from BDDs
• A more efficient way to check whether Y is a 

bound set is to build a BDD with the variables 
from Y on the top: 

• k(Y/Z) = = number of nodes in the lower block 
adjacent to the cut line

Y

Z

0 1

k(Y/Z) = 4
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Example

x1

x2

x3

0 1

k(Y/Z) = 2

Y

Z

0

1 11

10 0

1

x1x2

x3
00  01  11  10

0

1
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Multiple­valued functions

Theorem (Karp, 1963):  for f: Mn → M, Y   is a bound 
set if and only if  k(Y/Z) ≤ m

• If we have k(Y/Z) ≤ m for a Boolean function, we 
can decompose it as: 

f(X) = g(h(Y),Z) 

  with h: B|Y|→ M, g: B|Z| x M→ B, or 

f(X) = g(h1(Y), h2(Y),…, hlog2m(Y),Z)  
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Complex decompositions

• Once a decomposition f(X) = g(h(Y),Z) is found, 
either g, h, or both may be similarly decomposed, 
giving one of the following complex disjunctive 
decomposition types:

• multiple: f(X) = g(h(Y1), k(Y2), Z) 

• iterative:  f(X) = g(h(k(Y1), Z1), Z2) 

• tree­like : f(X) = g(h(k(Y1), Z1), l(Y2), Z2)
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Examples of complex 
decompositions

multiple

...
...

...

...
...

...

iterative tree-like

...
...

...
...
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The “best” decomposition

• The more f is decomposed, the more its cost is 
reduced

• often a function can be decomposed in several 
different ways depending on the bound set 
chosen

• since a function may have up to 2n bound sets, it 
is too long to consider all possible combinations
– a theory is needed to decide which is the best 
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Support set

• The set of variables on which the function f 
actually depends is called its support set sup(f) 

sup(f) = (xi | f|xi=0 ≠ f|xi=1)

• Example: Support set of 
f(x1,x2,x3,x4,x5) = x1 + x2

 is sup(f) = {x1,x2}
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• There are 3 possible ways for two bound sets, A 
and B, to be related:
– they are non­disjoint, i.e. A ∩ B = ∅

– A contains B , i.e. A ⊂ B

– they overlap, i.e. A ∩ B  ≠ ∅ as well as  A ⊄ B  and A ⊄ 
B 

Relation between bound sets

B

A

BA

BA
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Fundamental Lemma

Lemma (Ashenhurst, 1959):  If A∪B is a bound set 
and B∪C is a bound set, then A, B, C and 
A∪B∪C are bound sets

A B C

A∪B∪C

A B C

A

B

C
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Ordering 

• The bound sets A and B are ordered by inclusion 
if and only if A ⊃ B 

• Example: {a,b,c,d} ⊃ {b,d} ⊃ {d}
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Composition tree

Theorem (Ashenhurst, 1959):  Given a function f: Bn 
→ B with sup(f) = (x1,...,xn), the set of all its non­
overlapping bound sets, partially ordered by 
inclusion, form a tree

• The tree is unique for a given function (up to 
complemnetation)

• The number of nodes in the tree is O(n)
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Consequences

• some bound sets can be implied 
   A∪B ∧ B∪C  ⇒  A ∧ B ∧ C ∧ A∪B∪C

• if two composition trees are different, the 
functions they represent are not equivalent
– checking equivalence can be terminated earlier
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Example

1,2,3,4,5,6

1 2 5

1,2,3 5,6

3 4 6

f  = x1x2x3x4 + x'4(x5⊕x6) 

AND XOR

h = g x4 + x'4 d

dg
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Problem

• Some functions have trivial composition trees

1,2,…,n

1 2 n...
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Roth­Karp decomposition

Theorem (Karp, 1963):  For multiple­valued 
functions Mn → M, Y is a bound set if and only if  
k(Y/Z) ≤ m

• If we have k(Y/Z) ≤ m for a Boolean function, we 
can decompose it as: 

f(X) = g(h(Y),Z) 

  with h: B|Y|→ M, g: B|Z| x M→ B, or 

f(X) = g(h1(Y), h2(Y),…, hlog2m(Y),Z) 
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Example, k(Y/Z) = 4

...

fX

...

h

g

...Y

Z
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Non­disjoint decompositions

...

fX

...

h

g

...Y

Z

Y ∩ Z ≠ ∅
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Algorithms based on Boolean 
decomposition

• There are algorithms for finding all bound sets 
and deriving from them the decomposed 
expression for f
– mostly BDD based, quite fast

• For functions with no disjoint decomposition
– Roth & Karp decomposition is used
– Non­disjoint types of decompositions are used (harder 

to find)
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Relation to dominators
• Let X be a set primary inputs dominated by {v1,…,vk}
• Let X ∪ Y be a set primary inputs the transitive fan­in 
of {v1,…,vk}

YZ X
v1

vk

root

• Then, there exist a decomposition of type 
f(X,Y,Z) = h(g1(X,Y),…, gk(X,Y),Y,Z)
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Algebraic decomposition

• Algebraic methods provide faster algorithms, 
because they treat a function like a symbolic 
polynomial 
– AND = multiplication, OR = addition operation, x and x’ 

are two different variables
• There are fast methods for manipulating 

polynomials. The optimally is lost, but the results 
are quite good



p. 44 ­ Advanced Logic Design– L7 ­ Elena Dubrova

Main idea

• Given a SOP, how do we generate a “good” factored form
• Division operation:

– is central in many operations
– find a good divisor
– apply the actual division

• results in quotient and remainder
• Factorization

– factored forms have no inversion except at inputs
– number of literals is used as size metric
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Algebraic divisors and factors

• We say that fdivisor is an algebraic divisor of fdivident 
when: 
– fdivident = fdivisor ∙ fquotient + freminder

– fdivisor ∙ fquotient  ≠ 0

– sup(fdivisor) ∩ sup(fquotient ) = ∅

• If freminder = 0, then fdivisor  is called factor of fdivident 
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Example

• Algebraic division:
let fdivident= ac + ad + bc + bd + e and fdivisor = a + b  

then fquotient = c + d, freminder = e, because 

(a+b)(c+d) + e = fdivident and {a,b} ∩ {c,d} = ∅

• Boolean dvision: 
let gdivident = a + bc and  gdivisor = a + b 

gdivisor is NOT an algebraic divisor, even though

gdivident = gdivisor  ∙ gquotient  with gquotient = a + c

because {a,b} ∩ {a,c} ≠ ∅
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Why do we need to require                    
 sup(fdivisor) ∩ sup(fquotient ) = ∅ 

• It prevents generation of cubes that are contained in 
other cubes, as well as universal and void cubes

• Examples: 
1) {a,b} ∩ {c,d} = ∅: (a+b)(c+d) = ac + ad + bc + bd 
2) {a,b} ∩ {a,c} ≠ ∅: (a+b)(a+c) = aa + ac + ba + bc 

• aa (universal cube) cannot be eliminated in algebraic model

3) {a,b} ∩ {a,c} ≠ ∅: (a+b)(a’+c) = aa’ + ac + ba’ + bc 
• aa’ (void cube) cannot be eliminated in algebraic model
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Generation of divisors

• The number of Boolean divisors of a function can 
be very large 

• To find an optimal multi­level expression, we need 
to generate all possible divisors and choose an 
expression with the smallest number of literals

• Algebraic divisors are a subset of Boolean 
divisors, but this subset may still be large 
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Generation of divisors

• An important subset of algebraic divisors can be 
generated by treating cubes as divisors 

• The quotient in this process is called kernel and 
the cube used for division is called co­kernel

• kernels and co­kernels can be used to write 
expressions in factorized form
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Kernel

• Cube free expression is an expression which 
cannot be factored by a cube 
– single cubes are never cube­free 

• A kernel of an expression is the cube free 
quotient of the expression obtained by dividing 
it with a cube

• Cube used to get the kernel of the expression 
is called its co­kernel

• Kernel set K(f) is the set of all kernels of f
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Example

Let fx = ace + bce + de + g

1. By dividing fx by cube a we get ce
– ce is not cube free (can be divided by c or e), so it is 

not kernel

2. By dividing fx by e we get ac + bc + d
– ac + bc + d is cube free (cannot be divided by any cube 

without reminder), so it is a kernel, and e is a co­kernel 

3. K(fx)={(ace+bce+de+g),(ac+bc+d),(a+b)}
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Kernel set computation

• Naive method:
– divide function by elements in power set of its support 

set
– weed out non cube free quotients

• Smart way:
– use recursion 

• kernels of kernels are kernels
– exploit commutativity of multiplication

• ab = ba
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Example

Let fx = ace + bce + de + g
1. Select kernel ac + bc + d
2. Decompose fx as fx = fye + g, with fy= ac+bc+d
3. Recur on the quotient fy:

1. Select kernel a + b
2. Decompose fy as fy = fzc+d, with fz=a+b

4. Resulting factorized expression for fx:
fx = ((a+b)c + d)e + g
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Summary of algebraic methods

• Boolean function is treated symbolically as a 
polynomial

• fast manipulation algorithms
• some optimality is lost, because  some Boolean 

properties are neglected
• useful to reduce large networks


