
L6: Two-level minimization

p. 2 - Advanced Logic Design – L6 - Elena Dubrova

Reading material

• de Micheli pp. 269 - 343

p. 3 - Advanced Logic Design – L6 - Elena Dubrova

Formulation of the two-level
minimization problem

input: a Boolean function f(x1,x2, ...,xn)
output: a SOP expression for f of type

f(x1,x2, ...,xn) = P1 + P2 + ... + Pk

with the minimal number k of products Pk

• minimal sum-of-product form has at most 2n-1

product-terms

p. 4 - Advanced Logic Design – L6 - Elena Dubrova

Goal of two-level minimization

• To reduce the size of SOP, since the size of a
PLA is directly proportional to the size of a
SOP:
– the number of columns equals to the number of

products in SOP form
– the number of connections per column equals to

the number of variables in the products

p. 5 - Advanced Logic Design – L6 - Elena Dubrova

PLA

�� ����

� � � � � �

abc f1f2f3
10- 1 ~ ~

-11 1 ~ ~

0-0 ~ 1 ~

111 ~ 1 1

00- ~ ~ 1

Cube table

AND-plane

OR-plane

p. 6 - Advanced Logic Design – L6 - Elena Dubrova

Single vs multplie-output
functions

• The goal of two-level minimization of a single-
output function is to reduce the number of
products in the SOP form

• The goal of two-level minimization of a
multiple-output function is to reduce the total
number of products required to represent all
output functions

p. 7 - Advanced Logic Design – L6 - Elena Dubrova

Notation

• There is one-to-one correspondence between
the cube notation and Boolean expression
notation:
– cube = product-term

• 0-1 is a cube; x1′ x3 is a product-term

– set of cubes = sum-of-product expression
• {0-1, -1-} is a set of cubes; x1′ x3 + x2 is the corresponding

sum-of-product expression

p. 8 - Advanced Logic Design – L6 - Elena Dubrova

Definitions: implicants

• A cube c is an implicant iff c ⊆ Ff

• Prime implicant is an implicant which is not
contained in any other implicant

• A prime implicant is essential if there is a
minterm covered by that implicant, but no
other prime implicant
– Example: f = abc + bd + cd; all implicants are

prime; abc is essential, since abcd’ ∈ abc, but not
in bd or cd

p. 9 - Advanced Logic Design – L6 - Elena Dubrova

Definitions: cover

• A set of cubes S is called cover for f iff Ff ⊆
S ⊆ Ff ∪ Df

• Minimum cover is a cover with the minimum
number of cubes

• Irredundant cover is a cover S such that for
any cube c ∈ S, Ff ⊆ S - {c}

• Prime cover is a cover consisting of only
prime implicants

p. 10 - Advanced Logic Design – L6 - Elena Dubrova

Example

• Example: f = abc + bd + cd is minimum, prime
and irredundant cover for f

0

0

0

1

0

1

0

0

cd 00 01 11 10
00

01

ab

1

0

1

0

1

1

1

0

11

10

p. 11 - Advanced Logic Design – L6 - Elena Dubrova

Exact minimization

• Quine’s Theorem: For any Boolean function,
there exists a minimum cover which is prime

All
minimum
covers

All prime
covers

Consequence: the search for a minimum
cover can be restricted to covers by prime
implicants only

p. 12 - Advanced Logic Design – L6 - Elena Dubrova

Quine-Mc Cluskey procedure

• Step 1: Compute all prime implicants P of Ff
∪ Df

• Step 2: Compute all minterms m of Ff

• Step 3: Bulid a matrix B with columns
representing prime implicants and rows
representing minterms

Bab = 1 if ma∈ Pb

= 0 otherwise
• Step 4: Solve the minimum column covering

problem for B

p. 13 - Advanced Logic Design – L6 - Elena Dubrova

Example

010

011

110

101
b' c a’d’

ab'cd’
a'bcd

a'bcd’

a'b'c'd'

Covering table solution:
{1,2} � b'+c is a minimum
prime cover (also c + a'd')

1

-

-

1

0

-

-

1

dc 00 01 11 10
00

01

ab

-

-

1

0

-

0

-11

10

Ff = a'b'c'd'+a'bcd'+ab'cd'+a'bcd

Df = b’d+abc+a'b'cd'+a'bc’d'+ ab’c'd'

Primes: b'+c+a'd'

-

p. 14 - Advanced Logic Design – L6 - Elena Dubrova

Complexity analysis

Note: ~ 2n minterms, ~ 3n/n primes

Thus O(2n) rows and O(3n/n) columns AND minimum covering
problem is NP-complete. (Hence can probably be double
exponential in size of input, i.e. difficulty is O(23n)

0

1

0

0

10

3n/n

minterms

primes

2n

p. 15 - Advanced Logic Design – L6 - Elena Dubrova

Essential prime implicants

Row singleton

Minterms of Ff

010

011

110

101
b' c a'c

ab'c'd
a'bcd

a'bc'd

a'b'c'd'
Primes of Ff ∪ Df

Essential prime

Definition: Prime implicant is essential if there is a
minterm covered by that implicant, but no other
prime implicant

p. 16 - Advanced Logic Design – L6 - Elena Dubrova

Row and Column Dominance

Definition: A row i1 whose set of primes is contained in
the set of primes of row i2 is said to dominate i2.

Example:
i1 011010
i2 011110

i1 dominates i2

We can remove row i2, because we have to choose a
prime to cover i1, and any such prime also covers i2.
So i2 is automatically covered.

p. 17 - Advanced Logic Design – L6 - Elena Dubrova

Row and Column Dominance

Definition: A column j1 whose rows are a superset of
another column j2 is said to dominate j2.

Example:

j1 dominates j2

We can remove column j2 since j1 covers all those
rows and more. We never choose j2 in a minimum
cover since it can always be replaced by j1.

j1 j2
1 0
0 0
1 1
0 0
1 1

p. 18 - Advanced Logic Design – L6 - Elena Dubrova

Pruning the covering table

1. Remove all rows covered by essential columns (columns in
row singletons). Put these columns in the cover G.

2. Remove dominated rows. For equal rows, keep one row to
represent them.

3. Remove dominated columns. For equal columns, keep one
column to represent them.

4. Newly formed row singletons define n-ary essential primes.

5. Go to 1 if covering table decreased.

• The resulting reduced covering table is called the
cyclic core. This has to be solved. A minimum
solution is added to G -the set of n-ary essential
primes. The resulting G is a minimum cover.

p. 19 - Advanced Logic Design – L6 - Elena Dubrova

Example

0001110

0001101

0000110

0001011

0011100

0110000

1100001

1000000

01110

01101

00110

01011

11100

10000

34567

Essential Prime and
Column Dominance

G=P1

n-ary Essential Prime
and

Column Dominance
G=P1 + P3

111

110

011

101

456

110

011

101

456

Row dominanceCyclic
Core

p. 20 - Advanced Logic Design – L6 - Elena Dubrova

Quine-McCluskey Summary

Q-M:
1. Generate cover of all primes for F_f U D_f
2. Make it irredundant (in optimum way)

Note: Q-M is exact i.e. it gives an exact minimum

Heuristic Methods:
1. Generate a cover using some of the primes
2. Make it irredundant (may be not optimally)
3. Keep best result - try again (i.e. go to 1)

p. 21 - Advanced Logic Design – L6 - Elena Dubrova

Heuristic minimization algorithms

• Provide irredundant covers with reasonably
small cardinality

• a close to optimal instead of optimal solution

• Fast and therefore applicable to large
practical functions

• Avoid problems of exact minimization:
• generation and storage of all prime implicants

• minimum covering problem (NP-complete)

• All minimization tools use heuristics

p. 22 - Advanced Logic Design – L6 - Elena Dubrova

Heuristic minimization principles:

• Given an initial cover:
– Make it prime
– Make it irredundant
– Iterate to decrease the size of the cover by

modifying the implicants

p. 23 - Advanced Logic Design – L6 - Elena Dubrova

Heuristic minimization procedures

• Reduce()
• reduces the size of each implicant which preserving the

cover

• Expand()
• makes implicants prime

• removes covered implicants

• Irredundant()
• makes the cover irredundant

• Reshape()
• modifies implicant pairs by enlarging one and reducing

the other

p. 24 - Advanced Logic Design – L6 - Elena Dubrova

Purpose of applying the
procedures

• Reduce()
– attempts to cover a minterm with minimum

(possibly just one) number of implicants
– some implicants may get eliminated
– the resulting cover is of the same size or less than

the original cover

offoff

onon

don’t caredon’t care

p. 25 - Advanced Logic Design – L6 - Elena Dubrova

Purpose of applying the
procedures

• Expand()
– results in merging many implicants to form prime

implicants
– reduces the size of the cover (and hence the PLA)

p. 26 - Advanced Logic Design – L6 - Elena Dubrova

Purpose of applying the
procedures

• Irredundant()
– checks whether any of the implicant in the cover

can be dropped
– leads to the reduction in the size of the cover

p. 27 - Advanced Logic Design – L6 - Elena Dubrova

Purpose of applying the
procedures

• Reshape()
– generates a different cover of the same size
– gives the possibility of avoiding a local minima

p. 28 - Advanced Logic Design – L6 - Elena Dubrova

Example

Minterms
0000 1
0010 1
0100 1
0110 1
1000 1
1010 1
0101 1
0111 1
1001 1
1011 1
1101 1

Prime implicants
a 0--0 1
b -0-0 1
c 01-- 1
d 10-- 1
e 1-01 1
g -101 1

p. 29 - Advanced Logic Design – L6 - Elena Dubrova

Example: Expansion

• Starting point: include all minterms in the cover
{0000,0010,0100,1000,1010,0101,0111,1001,1011,1101}
• Take every minterm in the cover and expand it to a prime

implicant.
• Drop the minterms covered by the generated prime

implicant
– Expand 0000 to a = 0--0. Drop 0100, 0010, 0110 from the

cover.
– Expand 1000 to b = -0-0. Drop 1010 from the cover.
– Expand 0101 to c = 01--. Drop 0111 from the cover.
– Expand 1001 to d = 10--. Drop 1011 from the cover.
– Expand 1101 to e = 1-01.

• Resulting cover = {a, b, c, d, e}

p. 30 - Advanced Logic Design – L6 - Elena Dubrova

Example: Reduction

• Starting cover = {a, b, c, d, e}
• Pick up an implicant from the cover and replace a

don’t care "-" in it with a 0 or 1 in such a way that the
resulting implicant along with the other implicants in
the cover still give a valid cover
– Reduce b = -0-0 to b´ = 00-0

– Reduce e = 1-01 to e´ = 1101
– Reduce a = 0--0 to nothing, i.e. remove it from the cover

– It is not possible to reduce g and d

• Resulting cover = {b´, c, d, e´}

p. 31 - Advanced Logic Design – L6 - Elena Dubrova

Example: Reshape

• Starting cover = {b´, c, d, e´}
• Pick up an implicant pair. Expand one and reduce the

other implicant in such a way that this modification
results in a valid cover. All pairs have to be tried twice
- expand first and reduce second, and vice versa
– Reshape the pair {b´, d} by expanding b´ and reducing d.

– b´ = 00-0 is expanded to -0-0 = b
– d = 10-- is reduced to 10-1 = d´

– Trying to reshape any other pair results in no change

• Resulting cover = {b, c, d´, e´}

p. 32 - Advanced Logic Design – L6 - Elena Dubrova

Example: Second Expansion

• Starting cover = {b, c, d´, e´}
• Expand d´ = 10-1 to d = 10--

• Expand e´ = 1101 to e = 1-01

• Resulting cover = {b, c, d, e}
• This sequence of procedures is use in MINI.

Expand, Reduce, Reshape are repeatedly
applied until there is no improvement

p. 33 - Advanced Logic Design – L6 - Elena Dubrova

Alternative example: Espresso

• Espresso uses a sequence of procedures
Expand, Reduce, Irredundant.

• They are repeatedly applied until there is no
improvement

• Espresso uses multiple-valued logic: a
multiple-output Boolean function f: Bn →
(B∪{-})k is treated as an (n+1)-variable 1-
output function of type

f: Bn ∪ {0,1,…,k-1} → B∪{-}

p. 34 - Advanced Logic Design – L6 - Elena Dubrova

Pseudocode of ESPRESSO

ESPRESSO()

{

 (F,D,R) DECODE()

 F EXPAND(F,R)

 F IRREDUNDANT(F,D)

 E ESSENTIAL_PRIMES(F,D)

 F F-E; D D E

 do{

 do{

 F REDUCE(F,D)

 F EXPAND(F,R)

 F IR

←

ℑ

← ℑ
←
←
←

+

←
←

← ←

 }while few

REDUND

er ter

ANT

ms

(F,D)

in F

 //LASTGASP

 G REDUCE_GASP(F,D)

 G EXPAND(G,R)

 F IRREDUNDANT(F G,D)

 }while G

 F F E; D D-E

 LOWER_OUTPUT(F,D)

 RAISE_I

//LASTGASP

NPUTS(F,R)

 erro

←
←

≠ ∅
← + ←

← +

on oldr (F F) or (F F D)

 return (F,error)

}

← ⊄ ⊄ +

p. 35 - Advanced Logic Design – L6 - Elena Dubrova

New Exact Methods

For 40 years, Q-M methods remained basically
unchanged. In1992, two fundamentally new methods
developed:

• McGeer’s method
– based on essential signature cubes concept

• Coudert and Madre method
– implicit QM based on BDD’s

• In both cases, results are superior to ESPRESSO-
EXACT (both in speed and in the number of
problems solved)

