
L6: Two-level minimization
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Reading material

• de Micheli pp. 269 - 343
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Formulation of the two-level 
minimization problem

input: a Boolean function f(x1,x2, ...,xn)
output: a SOP expression for f of type

f(x1,x2, ...,xn) = P1 + P2 + ... + Pk

with the minimal number k of products Pk

• minimal sum-of-product form has at most 2n-1

product-terms
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Goal of two-level minimization

• To reduce the size of SOP, since the size of a 
PLA is directly proportional to the size of a 
SOP:
– the number of columns equals to the number of 

products in SOP form
– the number of connections per column equals to 

the number of variables in the products
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PLA
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abc  f1f2f3
10- 1 ~ ~

-11  1 ~ ~

0-0  ~ 1 ~

111  ~ 1 1

00- ~ ~ 1

Cube table

AND-plane

OR-plane
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Single vs multplie-output 
functions

• The goal of two-level minimization of a single-
output function is to reduce the number of 
products in the SOP form 

• The goal of two-level minimization of a 
multiple-output function is to reduce the total 
number of products required to represent all 
output functions 
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Notation

• There is one-to-one correspondence between 
the cube notation and Boolean expression 
notation:
– cube = product-term

• 0-1 is a cube; x1′ x3 is a product-term

– set of cubes = sum-of-product expression
• {0-1, -1-} is a set of cubes; x1′ x3 + x2 is the corresponding 

sum-of-product expression
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Definitions: implicants

• A cube c is an implicant iff c ⊆ Ff

• Prime implicant is an implicant which is not 
contained in any other implicant

• A prime implicant is essential if there is a
minterm covered by that implicant, but no 
other prime implicant
– Example: f = abc + bd + cd; all implicants are 

prime; abc is essential, since abcd’ ∈ abc, but not 
in bd or cd
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Definitions: cover

• A set of cubes S is called cover for f iff   Ff ⊆
S ⊆ Ff  ∪ Df

• Minimum cover is a cover with the minimum 
number of cubes

• Irredundant cover is a cover S such that for 
any cube c ∈ S, Ff ⊆ S - {c}

• Prime cover is a cover consisting of only 
prime implicants
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Example

• Example: f = abc + bd + cd is minimum, prime 
and irredundant cover for f
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Exact minimization

• Quine’s Theorem: For any Boolean function, 
there exists a minimum cover which is prime

All 
minimum 
covers

All prime 
covers

Consequence: the search for a minimum   
cover can be restricted to covers by prime
implicants only
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Quine-Mc Cluskey procedure

• Step 1: Compute all prime implicants P of Ff  
∪ Df

• Step 2: Compute all minterms m of Ff

• Step 3: Bulid a matrix B with columns 
representing prime implicants and rows 
representing minterms 

Bab = 1 if ma∈ Pb

= 0 otherwise
• Step 4: Solve the minimum column covering 

problem for B 
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Example

010

011

110

101
b' c a’d’

ab'cd’
a'bcd

a'bcd’

a'b'c'd'

Covering table solution:      
{1,2} � b'+c  is a minimum 
prime cover  (also c + a'd')
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dc 00  01  11  10
00

01

ab

-

-

1

0

-

0

-11

10

Ff = a'b'c'd'+a'bcd'+ab'cd'+a'bcd 

Df = b’d+abc+a'b'cd'+a'bc’d'+ ab’c'd'

Primes:  b'+c+a'd'

-

p. 14 - Advanced Logic Design – L6 - Elena Dubrova

Complexity analysis

Note: ~ 2n minterms, ~ 3n/n primes

Thus O(2n) rows and O(3n/n ) columns AND minimum covering 
problem is NP-complete. (Hence can probably be double 
exponential in size of input, i.e. difficulty is O(23n)

0

1

0

0

10

3n/n

minterms

primes

2n
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Essential prime implicants

Row singleton

Minterms of Ff

010

011

110

101
b' c a'c

ab'c'd
a'bcd

a'bc'd

a'b'c'd'
Primes of Ff  ∪ Df

Essential prime

Definition: Prime implicant is essential if there is a
minterm covered by that implicant, but no other 
prime implicant
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Row and Column Dominance

Definition: A row i1 whose set of primes is contained in 
the set of primes of row i2 is said to dominate i2.

Example:
i1 011010
i2 011110

i1 dominates i2

We can remove row i2, because we have to choose a 
prime to cover i1, and any such prime also covers i2. 
So i2 is automatically covered.
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Row and Column Dominance

Definition: A column j1 whose rows are a superset of 
another column j2 is said to dominate j2.

Example:

j1 dominates j2

We can remove column j2 since j1 covers all those 
rows and more. We never choose j2 in a minimum 
cover since it can always be replaced by j1.

j1  j2
1 0
0 0
1 1
0 0
1 1
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Pruning the covering table

1. Remove all rows covered by essential columns (columns in 
row singletons). Put these columns in the cover G.

2. Remove dominated rows. For equal rows, keep one row to 
represent them.

3. Remove dominated columns. For equal columns, keep one 
column to represent them.

4. Newly formed row singletons define n-ary essential primes.

5. Go to 1 if covering table decreased. 

• The resulting reduced covering table is called the 
cyclic core. This has to  be solved. A minimum 
solution is added to G -the set of n-ary essential 
primes. The resulting G is a minimum cover. 
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Example

0001110

0001101

0000110

0001011

0011100

0110000

1100001

1000000

01110

01101

00110

01011

11100

10000

34567

Essential Prime and 
Column Dominance

G=P1

n-ary Essential Prime 
and

Column Dominance
G=P1 + P3

111

110

011

101

456

110

011

101

456

Row dominanceCyclic 
Core
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Quine-McCluskey Summary

Q-M:
1. Generate cover of all primes for F_f U D_f
2. Make it irredundant (in optimum way)

Note: Q-M is exact i.e. it gives an exact minimum

Heuristic Methods:
1. Generate a cover using some of the primes
2. Make it irredundant (may be not optimally)
3. Keep best result - try again (i.e. go to 1)
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Heuristic minimization algorithms

• Provide irredundant covers with reasonably 
small cardinality 

• a close to optimal instead of optimal solution

• Fast and therefore applicable to large 
practical functions

• Avoid problems of exact minimization:
• generation and storage of all prime implicants

• minimum covering problem (NP-complete)

• All minimization tools use heuristics
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Heuristic minimization principles:

• Given an initial cover:
– Make it prime
– Make it irredundant
– Iterate to decrease the size of the cover by 

modifying the implicants
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Heuristic minimization procedures

• Reduce()
• reduces the size of each implicant which preserving the 

cover

• Expand()
• makes implicants prime

• removes covered implicants

• Irredundant()
• makes the cover irredundant

• Reshape()
• modifies implicant pairs by enlarging one and reducing 

the other
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Purpose of applying the 
procedures

• Reduce()
– attempts to cover a minterm with minimum 

(possibly just one) number of implicants
– some implicants may get eliminated
– the resulting cover is of the same size or less than 

the original cover

offoff

onon

don’t caredon’t care



p. 25 - Advanced Logic Design – L6 - Elena Dubrova

Purpose of applying the 
procedures

• Expand()
– results in merging many implicants to form prime

implicants
– reduces the size of the cover (and hence the PLA)
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Purpose of applying the 
procedures 

• Irredundant()
– checks whether any of the implicant in the cover 

can be dropped
– leads to the reduction in the size of the cover
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Purpose of applying the 
procedures 

• Reshape()
– generates a different cover of the same size
– gives the possibility of avoiding a local minima
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Example

Minterms
0000 1
0010 1
0100 1
0110 1
1000 1
1010 1
0101 1
0111 1
1001 1
1011 1
1101 1

Prime implicants
a   0--0 1
b   -0-0 1
c   01-- 1 
d   10-- 1
e   1-01 1
g   -101 1
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Example: Expansion

• Starting point: include all minterms in the cover
{0000,0010,0100,1000,1010,0101,0111,1001,1011,1101}
• Take every minterm in the cover and expand it to a prime 

implicant. 
• Drop the minterms covered by the generated prime 

implicant
– Expand 0000 to a = 0--0. Drop 0100, 0010, 0110 from the 

cover. 
– Expand 1000 to b = -0-0. Drop 1010 from the cover.
– Expand 0101 to c = 01--. Drop 0111 from the cover.
– Expand 1001 to d = 10--. Drop 1011 from the cover.
– Expand 1101 to e = 1-01. 

• Resulting cover = {a, b, c, d, e}
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Example: Reduction

• Starting cover = {a, b, c, d, e}
• Pick up an implicant from the cover and replace a 

don’t care "-" in it with a 0 or 1 in such a way that the 
resulting implicant along with the other implicants in 
the cover still give a valid cover
– Reduce b = -0-0 to b´ = 00-0

– Reduce e = 1-01 to e´ = 1101
– Reduce a = 0--0 to nothing, i.e. remove it from the cover

– It is not possible to reduce g and d

• Resulting cover = {b´, c, d, e´}
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Example: Reshape

• Starting cover = {b´, c, d, e´}
• Pick up an implicant pair. Expand one and reduce the 

other implicant in such a way that this modification 
results in a valid cover. All pairs have to be tried twice 
- expand first and reduce second, and vice versa
– Reshape the pair {b´, d} by expanding b´ and reducing d.

– b´ = 00-0 is expanded to -0-0 = b
– d = 10-- is reduced to 10-1 = d´

– Trying to reshape any other pair results in no change

• Resulting cover = {b, c, d´, e´} 
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Example: Second Expansion

• Starting cover = {b, c, d´, e´}
• Expand d´ = 10-1 to d = 10--

• Expand e´ = 1101 to e = 1-01

• Resulting cover = {b, c, d, e}
• This sequence of procedures is use in MINI. 

Expand, Reduce, Reshape are repeatedly 
applied until there is no improvement
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Alternative example: Espresso

• Espresso uses a sequence of procedures 
Expand, Reduce, Irredundant.

• They are repeatedly applied until there is no 
improvement

• Espresso uses multiple-valued logic: a 
multiple-output Boolean function f: Bn →
(B∪{-})k is treated as an (n+1)-variable    1-
output function of type 

f: Bn ∪ {0,1,…,k-1} → B∪{-}
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Pseudocode of ESPRESSO

ESPRESSO( )

{

    (F,D,R) DECODE( )

    F EXPAND(F,R)

    F IRREDUNDANT(F,D)

    E ESSENTIAL_PRIMES(F,D)

    F F-E;  D D E

    do{

        do{

        F REDUCE(F,D)

            F EXPAND(F,R)

          

    

  F IR

←

ℑ

← ℑ
←
←
←

+

←
←

← ←

        }while few

REDUND

er ter

ANT

ms 

(F,D)

in F

 //LASTGASP

        G REDUCE_GASP(F,D)

        G EXPAND(G,R)

        F IRREDUNDANT(F G,D)

        

       

    }while G         

    F F E;  D D-E

    LOWER_OUTPUT(F,D)

    RAISE_I

//LASTGASP

NPUTS(F,R)

    erro

←
←

≠ ∅
← + ←

← +

on oldr (F F) or (F F D)

    return (F,error)

}

← ⊄ ⊄ +
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New Exact Methods

For 40 years, Q-M methods remained basically 
unchanged. In1992, two fundamentally new methods 
developed:

• McGeer’s method
– based on essential signature cubes concept

• Coudert and Madre method
– implicit QM based on BDD’s   

• In both cases, results are superior to ESPRESSO-
EXACT (both in speed and in the number of 
problems solved)


