g;g/nms& KUNGL
RS (ggl TEKNISKA
R ¢ HOGSKOLAN

>

et

L6: Two-level minimization

Reading material

» de Micheli pp. 269 - 343

p. 2 - Advanced Logic Design — L6 - Elena Dubrova

Formulation of the two-level
minimization problem

iInput: a Boolean function f(X;,X,, ...,X;)
output: a SOP expression for f of type

f(X1, X5, co0sXy) =P+ P+ ..+ Py

with the minimal number k of products P,

* minimal sum-of-product form has at most 2n-1
product-terms

p. 3 - Advanced Logic Design — L6 - Elena Dubrova

Goal of two-level minimization

To reduce the size of SOP, since the size of a
PLA is directly proportional to the size of a
SOP:

— the number of columns equals to the number of
products in SOP form

— the number of connections per column equals to
the number of variables in the products

p. 4 - Advanced Logic Design — L6 - Elena Dubrova

PLA

_ — OR-plane
a ab bococ Cube table
I abc f f.f,
10- 1 ~ ~
-11 1 ~ ~
| 0-0 ~1 ~
111 ~ 11
| 00- ~~1

\4 v
fi f2 fs

p. 5 - Advanced Logic Design — L6 - Elena Dubrova

Single vs multplie-output
functions

» The goal of two-level minimization of a single-
output function is to reduce the number of
products in the SOP form

* The goal of two-level minimization of a
multiple-output function is to reduce the total
number of products required to represent all
output functions

p. 6 - Advanced Logic Design — L6 - Elena Dubrova

Notation

» There is one-to-one correspondence between
the cube notation and Boolean expression
notation:

— cube = product-term
* 0-1lis acube; X," X5 is a product-term
— set of cubes = sum-of-product expression

» {0-1, -1-} is a set of cubes; x," X5 + X, iS the corresponding
sum-of-product expression

p. 7 - Advanced Logic Design — L6 - Elena Dubrova

Definitions: implicants

» A cube cis an implicant iff c O F;

* Prime implicant is an implicant which is not
contained in any other implicant

* A prime implicant is essential if there is a
minterm covered by that implicant, but no
other prime implicant
— Example: f = abc + bd + cd; all implicants are

prime; abc is essential, since abcd’ [abc, but not
in bd or cd

p. 8 - Advanced Logic Design — L6 - Elena Dubrova

Definitions: cover

A set of cubes S is called cover for fiff F; [
S UOF O Dy

Minimum cover is a cover with the minimum
number of cubes

Irredundant cover is a cover S such that for
any cubec O0S, F 1 S - {c}

Prime cover is a cover consisting of only
prime implicants

p. 9 - Advanced Logic Design — L6 - Elena Dubrova

Example

 Example: f = abc + bd + cd is minimum, prime
and irredundant cover for f

ab
caN_00 01 11 10

oo/ ofofolo
o1 01| I\ O
11 1D 1
10| O O\yO

p. 10 - Advanced Logic Design — L6 - Elena Dubrova

Exact minimization

* Quine’s Theorem: For any Boolean function,
there exists a minimum cover which is prime

Consequence: the search for a minimum
cover can be restricted to covers by prime
implicants only

p. 11 - Advanced Logic Design — L6 - Elena Dubrova

Quine-Mc Cluskey procedure

« Step 1: Compute all prime implicants P of F;
[Dy

« Step 2: Compute all minterms m of F;

« Step 3: Bulid a matrix B with columns
representing prime implicants and rows
representing minterms

B,=1ifm,OP,
= 0 otherwise

« Step 4: Solve the minimum column covering
problem for B

p. 12 - Advanced Logic Design — L6 - Elena Dubrova

Example

F;= a'b'c'd'+a'bcd'+ab'cd'+a'bcd
D;= b'd+abc+a'b'cd'+a'bc’d'+ ab’c'd’

ab
den 00 01 11 10
01 ¢ _ a'bed
TN 1| - |l = ab'cd’
10\\.) 0ol 0\ B a'bcd
Covering table solution:
Primes: b'+c+a'd' {1,2} = b'+c is a minimum

prime cover (also c +a'd’)

p. 13 - Advanced Logic Design — L6 - Elena Dubrova

Complexity analysis
Note: ~ 2" minterms, ~ 3"/n primes

primes

minterms 20

< 3n/n >

Thus O(2") rows and O(3"/n) columns AND minimum covering
problem is NP-complete. (Hence can probably be double
exponential in size of input, i.e. difficulty is O(23")

p. 14 - Advanced Logic Design — L6 - Elena Dubrova

Essential prime implicants

b _C_aC primes of F, O D

a'b'c'd'
a'bc'd
ab'c'd
a'bed

Minterms of F;

<— Row singleton
Essential prime

Definition: Prime implicant is essential if there is a
minterm covered by that implicant, but no other
prime implicant

p. 15 - Advanced Logic Design — L6 - Elena Dubrova

Row and Column Dominance

Definition: A row i; whose set of primes is contained in
the set of primes of row i, is said to dominate i,

Example:

i, dominates i,

We can remove row i,, because we have to choose a
prime to cover i;, and any such prime also covers i,.
So i, is automatically covered.

p. 16 - Advanced Logic Design — L6 - Elena Dubrova

Row and Column Dominance

Definition: A column j; whose rows are a superset of
another column j, is said to dominate j,

Example:

j, dominates j,

We can remove column j, since j; covers all those
rows and more. We never choose j, in a minimum
cover since it can always be replaced by j;.

p. 17 - Advanced Logic Design — L6 - Elena Dubrova

Pruning the covering table

1. Remove all rows covered by essential columns (columns in

row singletons). Put these columns in the cover G.

2. Remove dominated rows. For equal rows, keep one row to

represent them.

3. Remove dominated columns. For equal columns, keep one

column to represent them.

4. Newly formed row singletons define n-ary essential primes.

5. Goto 1 if covering table decreased.

» The resulting reduced covering table is called the
cyclic core. This has to be solved. A minimum
solution is added to G -the set of n-ary essential
primes. The resulting G is a minimum cover.

p. 18 - Advanced Logic Design — L6 - Elena Dubrova

Example

Essential Prime and
Column Dominance

G=P1
n-ary Essential Prime
and
L Column Dominance
G=P1 + P3
Cyclic Row dominance
Core —

p. 19 - Advanced Logic Design — L6 - Elena Dubrova

Quine-McCluskey Summary

Q-M:
1. Generate cover of all primes for F fU D _f
2. Make it irredundant (in optimum way)

Note: Q-M is exact i.e. it gives an exact minimum

Heuristic Methods:

1. Generate a cover using some of the primes
2. Make it irredundant (may be not optimally)
3. Keep best result - try again (i.e. go to 1)

p. 20 - Advanced Logic Design — L6 - Elena Dubrova

Heuristic minimization algorithms

* Provide irredundant covers with reasonably
small cardinality
 aclose to optimal instead of optimal solution
» Fast and therefore applicable to large
practical functions
» Avoid problems of exact minimization:

* generation and storage of all prime implicants
e minimum covering problem (NP-complete)

e All minimization tools use heuristics

p. 21 - Advanced Logic Design — L6 - Elena Dubrova

Heuristic minimization principles:

e Given an initial cover:
— Make it prime
— Make it irredundant

— lterate to decrease the size of the cover by
modifying the implicants

p. 22 - Advanced Logic Design — L6 - Elena Dubrova

Heuristic minimization procedures

Reduce()

 reduces the size of each implicant which preserving the
cover

Expand()

« makes implicants prime

e removes covered implicants
Irredundant()

e makes the cover irredundant
Reshape()

« modifies implicant pairs by enlarging one and reducing
the other

p. 23 - Advanced Logic Design — L6 - Elena Dubrova

Purpose of applying the
procedures

* Reduce()

— attempts to cover a minterm with minimum
(possibly just one) number of implicants

— some implicants may get eliminated

— the resulting cover is of the same size or less than
the original cover

® on
® off

@® don't care

p. 24 - Advanced Logic Design — L6 - Elena Dubrova

Purpose of applying the

procedures
» Expand()
— results in merging many implicants to form prime
implicants

— reduces the size of the cover (and hence the PLA)

p. 25 - Advanced Logic Design — L6 - Elena Dubrova

Purpose of applying the
procedures

* Irredundant()

— checks whether any of the implicant in the cover
can be dropped

— leads to the reduction in the size of the cover

p. 26 - Advanced Logic Design — L6 - Elena Dubrova

Purpose of applying the
procedures

* Reshape()
— generates a different cover of the same size
— gives the possibility of avoiding a local minima

p. 27 - Advanced Logic Design — L6 - Elena Dubrova

Example
Minterms
0000 1
00101 Prime implicants
0100 1 a 0-01
01101 b -0-01
1000 1 c 01-1
1010 1 d 10--1
01011 e 1-011
01111 g -1011
1001 1
10111
11011

p. 28 - Advanced Logic Design — L6 - Elena Dubrova

Example: Expansion

e Starting point: include all minterms in the cover
{0000,0010,0100,1000,1010,0101,0111,1001,1011,1101}
e Take every minterm in the cover and expand it to a prime
implicant.
* Drop the minterms covered by the generated prime
implicant
— Expand 0000 to a = 0--0. Drop 0100, 0010, 0110 from the
cover.
Expand 1000 to b = -0-0. Drop 1010 from the cover.
Expand 0101 to ¢ = 01--. Drop 0111 from the cover.
Expand 1001 to d = 10--. Drop 1011 from the cover.
Expand 1101 to e = 1-01.

* Resulting cover ={a, b, c, d, e}

p. 29 - Advanced Logic Design — L6 - Elena Dubrova

Example: Reduction

» Starting cover ={a, b, c, d, e}

» Pick up an implicant from the cover and replace a
don’t care "-" in it with a O or 1 in such a way that the
resulting implicant along with the other implicants in
the cover still give a valid cover

Reduce b =-0-0 to b” = 00-0

Reduce e =1-01to e" =1101

— Reduce a = 0--0 to nothing, i.e. remove it from the cover

— Itis not possible to reduce g and d

* Resulting cover ={b", c, d, €'}

p. 30 - Advanced Logic Design — L6 - Elena Dubrova

Example: Reshape

Starting cover = {b", ¢, d, e}

Pick up an implicant pair. Expand one and reduce the
other implicant in such a way that this modification
results in a valid cover. All pairs have to be tried twice
- expand first and reduce second, and vice versa

— Reshape the pair {b", d} by expanding b" and reducing d.

— b"=00-0is expanded to -0-0 = b

— d=10--isreduced to 10-1 =d’

Trying to reshape any other pair results in no change
Resulting cover = {b, c, d", €'}

p. 31 - Advanced Logic Design — L6 - Elena Dubrova

Example: Second Expansion

Starting cover = {b, ¢, d’, e’}
e Expand d" =10-1tod = 10--
e Expand e" =1101toe =1-01
Resulting cover ={b, c, d, e}

This sequence of procedures is use in MINI.
Expand, Reduce, Reshape are repeatedly
applied until there is no improvement

p. 32 - Advanced Logic Design — L6 - Elena Dubrova

Alternative example: Espresso

» Espresso uses a sequence of procedures
Expand, Reduce, Irredundant.

* They are repeatedly applied until there is no
improvement

» Espresso uses multiple-valued logic: a
multiple-output Boolean function f: B" -
(BO{-}k is treated as an (n+1)-variable 1-
output function of type

f:B"0{0,1,...,k-1} — BO{}

p. 33 - Advanced Logic Design — L6 - Elena Dubrova

Pseudocode of ESPRESSO

ESPRESSO(0) /ILASTGASP
{ G — REDUCE_GASP(F,D)
(F.D,R) — DECODE([) G — EXPAND(G,R)
F — EXPAND(FR) F — IRREDUNDANT(F+G,D)
F —« IRREDUNDANT(F,D) /ILASTGASP
E « ESSENTIAL_PRIMES(F,D) ywhile G # [
F-FE D~D+E F. F+E D D-E
dof LOWER_OUTPUT(F,D)
dof RAISE_INPUTS(F,R)

F — REDUCE(F,D)
F - EXPAND(F.R) return (Ferror)
F — IRREDUNDANT(F,D)
}while fewer termsin F }
p. 34 - Advanced Logic Design — L6 - Elena Dubrova

eror — (F, 0F) or (FOF,,+D)

New Exact Methods

For 40 years, Q-M methods remained basically
unchanged. In1992, two fundamentally new methods
developed:

* McGeer’'s method

— based on essential signature cubes concept

e Coudert and Madre method

— implicit QM based on BDD’s

* In both cases, results are superior to ESPRESSO-
EXACT (both in speed and in the number of
problems solved)

p. 35 - Advanced Logic Design — L6 - Elena Dubrova

