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L3: Representations of functions



Representations of Boolean functions

« Boolean expression
— Two-level sum-of-product form, factorized form

 Truth tables
« Karnaugh maps

e Cubes
— (MIN,MAX) notation
— positional cube notation

« Binary Decision Diagrams
 Logic circuits
» Galois field GF(2) polynomials
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Two approaches

« Two fundamental approaches:

— keep representation canonical with respect to the
function
- tautology or SAT check is easy
 but representation may blow-up in space
« Examples: Truth tables, Karnaugh maps, BDDs

— keep representation non-canonical
« representation can remain compact

« tautology or SAT check is exponential (co-NP complete)
« Example: Boolean expressions, logic circuits
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Boolean formula

« Any Boolean function can be represented by a
formula defined as catenations of

— parentheses (, )
— variables x, y, z
— binary operations "+" (OR) and "-" (AND)
— unary operation negation, """
« Examples:
f(X{,X5,X35) = X' "X, + X{"X5

F(X15X2:X3) = (X4 + X, )" "Xg

p. 4 - Advanced Logic Design — L3 - Elena Dubrova



Canonical SOP form

« Every Boolean function f: {0,1}" - {0,1} has a
canonical sum-of-products (SOP) form of type:

on i : :

— u 1. I2I n I

F(X, 3 Xp5eey X ) = i C.*X, "X,2 . X"
1=0

where
— ¢, [J{0,1} is a constant
— (Iyl5,...,1.) 1S the binary expansion of i

— x k= x"ifi,= 0 and x k= x if i, = 1
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Deriving the canonical form

« The above form can be obtained from Shannon
decomposition theorem:

f(X1=X2v "'!Xn) = X'1'flx1=0 + Xy f|x1=1
where

f|X1=0 =1(0,X,, ....X.), fl,._; =1(1,X,, ...,.X.)

x1=1

are subfunctions (cofactors) of f
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Minimization of SOP

« The number of products in the SOP canonical
form is up to 2"

« It can be simplified using the axioms and
properties of Boolean algebra

— e.g. applying a + a' = 1 reduces the number of products
by one

— more generalruleisa-P+a -P=P, wherePis a
product-term
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Why minimizing SOP form?

« A SOP expression can be directly implemented
by a Programmable Logic Array (PLA):

— — — OR-plane
a a b b ¢ c
Cube table
|| T I
abc f.f.f,
- T I 10- 1~ ~
— — -11 1 ~ ~
- i — 0-0 ~ 1 ~
111 ~ 1 1
|| ||
00- ~ ~1
AND-plane o
- fLof f
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Summary of SOP forms

« Advantages:
— easy to manipulate and minimize
— many algorithms available (e.g.AND,OR,TAUTOLOGY)
— directly map into PLAs

« Disadvantages:

— poor representative for logic complexity for multi-level
implementation. For example

f=ad+ae+bd+be+cd+cef=a’b’'c’+d’'e’
these differ in their implementation by an inverter.
— difficult to estimate progress during optimization
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Factored forms

Factored forms are more compact representations of logic
functions than SOP forms

Example: if the factored form is
(a+b)(c+d(e+f(g+h+i+|)
when represented as a SOP form it is
ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+ bdfh+bdfi+bdfj

When measured in terms of number of inputs, there are
functions whose size is exponential in sum of products
representation, but polynomial in factored form.

Example: Achilles’ heel function i=n/2
has n literals in the factored form and N (%, +X,,)
(n/2)x272 literals in the SOP form i=1
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Factored forms

Advantages

« good representative for logic complexity for multi-level
Implementation.

f=ad+ae+bd+be+cd+ce f=a’b’c’+d’e’] f=(a+b+c)(d+e)

« in many designs (e.g. complex gate CMOS) the implementation
of a function corresponds directly to its factored form

« do not blow up easily
Disadvantages
« not as many algorithms available for manipulation
« hence often just convert into SOP before manipulation
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Factored forms

X=(a+b)c + d
Vad
dl Note:
| literal count = transistor count =
b ] area
al - however, area also depends on
| I_'7I = [>o—* — wiring
al bl d — gate size etc.
II:’_, - therefore very crude measure
C
“Gnd
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Factored forms

Definition: a factored form can be defined recursively by the
following rules. A factored form is either a product or sum
where:

« a product is either a single literal (variable or its
complement) or a product of factored forms

« a sum is either a single literal or a sum of factored forms

« Any logic function can be represented by a factored form,
and any factored form is a representation of some logic
function.
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Examples

Examples of factored forms:

a+b’c
((@a’+b)cd+e)(a+b’)+e’

(a+b)’c is not a factored form since
complementation is not allowed, except on literals.

Three equivalent factored forms (factored forms are not
unique): ab+c(a+b) bc+a(b+c) ac+b(a+c)
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Size of factored forms

Definition:
The size of a factored form F (denoted p(F )) is the number
of literals in the factored form.

Example: p((a+b)ca’) =4  p((a+b+cd)(a’+b’)) =6
Definition:

A factored form is optimal if no other factored form (for that
function) has less literals.
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Truth tables and maps

« The simplest way to represent an n-variable
Boolean function is by giving a truth table
containing 2" rows, each specifying the value of
the function for the corresponding values of the
variables x,, ... ,X

n

« Table can be re-aranged in a rectangular n-
dimensional Karnaugh map
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Example

XX,
XiXoXs  Tifa x\_00 01 11 10
000 00
010 10 111]1f|1]-]"
011 11
100 00 XX,
101 -1 x>\_00 01 11 10
110 11
111 11 019101110}
. 11 -1111]1
Truth table for a function

f:{0,1}® - {0,1,-}? Karnaugh maps
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Can we do better?

« Both, truth table and map, give a complete list of
2" points in B" and therefore can be used only for

very small functions

« We can reduce the number of rows:

— If we use don’t care symbol for inputs:
000 + 001 = 00-
— if we don’t show input combinations (a,, ... ,a,)lIB", for

which f(a,,...,a,) =0
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Example

XX,
x;\_00 01 11 10
_XiXoxz  f 0 O[NO 0
1 1@1 D
1
)
MM
104 1 01-
--1

111

p. 19 - Advanced Logic Design — L3 - Elena Dubrova



Cube terminology for f: B" - BO{-}

An n-variable Boolean function is interpreted as a
set of points in an n-dimentional Boolean space

Cube is any k-dimentional subspace, 0 <k <n

operations on Boolean functions are performed
as operations on sets
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BO

Bl

BZ

B3

B4

Boolean Space B"

Karnaugh Maps: Boolean space:
®
. o0
oD~

p. 21 - Advanced Logic Design — L3 - Elena Dubrova



3-dimentional Boolean space

011

010

110

/
O/om

00

«L-

e

11—

O-dimentional
subspace

1-dimentional
—~"subspace

01

2-dimentional

.— subspace
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Minterm

« A point in an n-dimentional Boolean space is
called a minterm (= assignment (a,, ... ,a,) [J B"of

values for the variables x,, ... ,x,, of f)

. it is not necessary that f(a,,...,a,) = 1 for a
minterm (a,, ... ,a), any of 2" assignments
(a,,...,a ) [ B"is a minterm

« Recall that cube is any k-dimentional subspace, 0
<k<n
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Minterms and cubes

 Informally speaking, minterm is an n-tuple
containing “0” and “1” only, while cube is an

n-tuple which can contain “-” as well
— Examples of minterms for n=3:

— Examples of cubes for n=3:
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Relation between SOPs and cubes

« There is one-to-one correspondence between the
cube notation and sum-of-products notation:

— cube = product-term
— minterm = product-term with all variables present

— set of cubes = sum-of-product expression
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On-, off- and don’t care-sets

« On-set F, is subset of B" containing all minterms
mapped to “1”

.« Off-set R, is subset of B" containing all minterms
mapped to “0”

- Don’t care-set D, is subset of B" containing all
minterms mapped to “-”

FOROD, =Br
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Some definitions

« Iff=Bn", then fis tautology

« Iff =101, then fis not satisfyable

— satisfying truth assignment is in assignment
(a;, ... ,a,) 0 B" for which f(a,, ... ,a,) = 1

. fand g are equivalent if f(a,, ... ,a,) = g(a,, ...

for all (a,, ... ,a,) [ B"

— are two sub-circuits functionally identical?
— IS a particular change in the circuit valid?
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Example of a 3-varable function

/ / F;={010,100,111}
R,={000,001,110}
/001 /101

000 100

011

010
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Cube representation

« We can represent any function of type f: B" -
BLI{-} by listing two out of three sets F, R,, D,

— since F, 0 R;J D, = B", the third one can be always
computed

— for example, if F, and D, are given (standard case), we
can compute R, as

Rf= Bn - (Ff ] Df)
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Espresso (or .pla) format

1 specifies the number of inputs

.0 specifies the number of outputs

cubes for F, and D, are listed as, for example for
n=4

0011 J\a space separates the input part
-010 1 from the output part

0110 ~ ~——means “unspecified” or “specified elsewhere”

.6 ends the description
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Example of espresso format

13
_XiXoXz f .0 1
01- 1 0o1- 1
--1 1 -1 1
.
Cube table for F; espresso format
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Basic operations on cubes

« Next, we define some basic operations of cubes
— intersection of two cubes
— complement of a cube
— containment
— supercube of two cubes

. Letn-tuplesA=(a,a,...a),B=(b,b,...0b ), C=
(c,c,...c,), a, b,c 0{0,1,-} be some n-dimensional
cubes

p. 32 - Advanced Logic Design — L3 - Elena Dubrova



Set operations
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Intersection of two cubes

« Intersection of cubes A and B is a cube C such
thatc. =a nb.lfanyof anb =0,then C=0

(empty intersection)
(a;...a,)n (b,...b)=(a,nb, ...a,n b,)

« Element-wise intersection is defined by:
N

0
1

0
’

[1O O P
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Example of intersection

X, X,
X;\_00 01 11 10 e
ol o D 11

N N

01
oivel kS

11 n1-0=01
11 n11-=111
1-0n 11-=110
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Complement of a cube

- Complementofacube A=(a,a,...a,), s aset of
cubes B" - A
« An easy way to compute a complement:
B~-A={C,C,....C}

« where cube C, has completented a, in the i,

positian and has “-"_elsewhere _
C,=(-...-),C,=(-a,-...-), C, = (-...-a,)
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Example of complement

« Complement of a cube (11-) = {C,,C,} :
— cube G, has completented a. in the i,, position and has

“” elsewhere
C,=(a;--), Cy=(-2a,-)

— don’t cares are skipped (3 position is don’t care)

XX,
X,\_00 01 11 10
010[{0)y1YO
110]0}1)0

(11-)

={(0--), (-0-);
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Containment

« Cube A is contained in cube B if and only if a, b,
for alli J{0,1,...,n}
« The containment relation is defined by:

RD = {(050)5 (05_)5 (1 51)5 (1 5_)}
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Example of containment

XX,
X3\ 00 01 11 10 e

0001D -11
DGR i

110 is contained in 1-0

N N
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Supercube of two cubes

« A supercube of two cubes A and B is the
smallest cube containing both A and B

« sup(A,B) can be computed as:
sup(A,B) = (a,lb, ... a b,)
« Element-wise union [ is defined by:
Ulg - 1
0(0 - -

11- - 1
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Example of supercube

X, X,
X;\_00 01 11 10 e
ol o D 11

N N

01
oivel kS

sup(-11,11-) = -1-
sup(1-0,11-) = 1--
sup(-11,1-0) = ---
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Problem caused by cubes

» Use of cubes reduces the number of rows in a
truth table
« However, since we introduce the 3rd symbol “-”,

we will need more bits (2 instead of 1) to code
each element of the row in computer's memory

« There are 2 conventions for coding: parallel and
sequential
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Parallel coding

« Use a pair of integers (min, max) to represent a
cube

— min is the integer = binary encoding of the cube, when

all “-” are replaced by “0”

— max is the integer = binary encoding of the cube, when
all “-” are replaced by “1”
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Parallel coding

« Function is stored dynamically as 3 lists of cubes
(for the sets F,, R,, D))

 Lists are represented by a stucture declared as:
typedef struct ListofCubes {
long int min;
long int max;
struct ListofCubes *next;
} one_cube;
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Parallel coding

« Parallel coding allows a fast bit-wise
implementation of many basic operations
— e.g. max for supercube = bit-wise OR “|” of max parts
of cubes
« Functions of up to 32 inputs can be represented
in this way (32 = long int)
— can handle larger functions by storing each of min and
max in 2 or more words
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Sequential coding = positional cube
hotation

« Cube is represented by substituting each of the
symbols {0,1,-} by a 2-bit field:

L 100
0 10
1101
- 111

« empty set stands for a non-allowed symbol
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Sequential coding

« Sequential coding allows a fast bit-wise
implementation of many basic operations

— e.g. intersection of two cubes = bit-wise AND “&” of two
cubes

« No restriction on the number on inputs/outputs
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A possible project topic

« Develop an algorithm which reads in a list of
cubes (in espresso format) representing an AND-
OR expression of a Boolean function f and
compute a minimal AND-XOR expression for f.
Give the in the form of the list of cubes whose

XOR gives us f

« Example:
— Read in cubes {01,10} corresponding to a’b + ba.
— Read out cubes {-1,1-} correspondingtoa [l b
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Multiple-output functions

 All the theory we considered so far applies to
single-output functions only

« Most of the real-life functions are multiple-output

« A multiple-output function can be treated by
performing the operations on each output
separately

— but then the optimality is often lost, e.g. cubes common
for several functions will not be found
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f, X, f, X, fy X, f, X,
XN 0 1 XN_0 1 XN 0 1 XN 0 1
) )
0/0/1 Oy1y O 0.1/0 0101/
1 (A1) 1 (1) D 1{0]0 1|00

4-output function:
6 cubes if the functions are treated separately
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Extension of cube representation to
multiple-output functions

« We will extend cubes to multiple-output Boolean
functions f: B" - (BL{~})k by introducing “output”
part of the cube

— what we called “cube” before, now we call “input part of
cube” (a sub-space of B")

— output part of a cube is “0”, “1” or “~”

« “1”in the i, position of the output part means “the cube
belongs to the function f.*

. “0”in the i, position of the output part means “the cube doesn't
belong to the function f.*

. “~”inthe i, position of the output part means “the cube is
specified elsewhere for f* or “non-specified for f”
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X1X2X13 f1fo
000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11

Truth table

Example |

XX,
x;\_00 01 11 10

ojojof10]
1 (i)(jZ$:14 ol
X, X,

X\_00 01 11 10

Lo[ofxo] .
10@1\2

1
Karnaugh maps

X1XoX3  fifs

001 10
-11 11
101 O1
11- 11

Cube table for F;

p. 52 - Advanced Logic Design — L3 - Elena Dubrova



Example |

« We can always specify a multiple-output function
by listing all single-output functions with ”1” in the
corresponding output part and wiriting ”~” for all
other output parts

X1X2X3 flfz

c_)i)ll i: cube table for the
11- 1~ function from the
101 ~1 previous slide

11- ~1

-11 ~1
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Example of intersection and

supercube

X, X,

~X1X2Xz  fifa
x;\_00 01 11 10 11 10
010[{0)y1YO f 1-0 01
[o@jpo) " -

n for outputs is bit-wise AND:

X% 1110 n 1-001 = O
%\ 00 0L 11 10 1110 n 11-11 =111 10
o|o|oKal 1)

f,  sup for outputs is bit-wise OR:
L 0]O0NO 111001001 =--- 11
-1110011-11 = -1- 11
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Complement

« Complement of a multiple-output function can be
computed by taking complements for each output
separately

« Computing the complement of a set of cubes:

— compute complement for each cube

- for each cube, you get a set of cubes (up to the length of input
part)

— find the intersection of these sets
— remove cubes which are contained in other cubes
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X4
X3

0

1

Example of complement of a set of

X5

00 01 11 10

0|0

1

0

ot

DE

00 01 11 10

S
0
1

1

0

1

KO

f

cubes

(-11) = {(-0-), (-0)}
n -0- = 00-
n --0 =0-0
N -0- = -0-
n --0 =-00
-0- contains 00- and -00, so

the result is {(0-0), (-0-)}
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Example of complement for multiple-
output functions

« Compute complements for each output:

o fif B = (-11 10)’ = {(-0- 10), (--0 10)}
11 10 C = (1-0 01)’ = {(0-- 01), (-1 01)}
1-0 01
11- 11

for f, we get A n B = {(0-0 10), (-0- 10)}
for f, we get A n C ={(0-0 01), (0-1 01), (-01
01)}
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Example (cont.)

« Resulting complement for the functions is representing by
the following cube table

— recall, that “1” in the i,, position of the output part means “the cube
belongs to the function f.*

— note that the solution is non-optimal

_X1Xox3  fifz
X X5 XXz
O(')O 18 x;\_00 01 11 10 X3\ 00 01 11 10
] 0(0 D 11/0 0,004 1|1
0-0 01 f 1,
o1 o1 1]9f1|1]o]" 10 0f1(0]
-01 01

p. 58 - Advanced Logic Design — L3 - Elena Dubrova



Parallel coding for multiple-output
functions (incompletely specified f)

« Use two pairs of integers (min, max): one for the
iInput part and one for the output part of the cube

- ListofCubes stucture is modified as:
typedef struct ListofCubes {
long int min;
long int max;
long int omin;
long int omax;
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Simplified coding for multiple-output
functions (completely specified f)

« Use a single integer to represent the output part
of the cube

« ListofCubes stucture is modified as:
typedef struct ListofCubes {
long int min;
long int max;
long int output;
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An alternative way

« An alternative way to treat a multiple-output
Boolean function f: B . Bkis to consider it as an
(n+1)-variable 1-output function of type

f: B x {0,1,....k-1} - B

 All the theory we learned for single-output

Boolean functions applies to the functions of the
above type
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Example

f, X, fy X, f, X,
0 1 XN_0 1 XN\ 0 1 XN_ 0 1
o/1y  of1lo| of{1jo| olo(L
(101 1 (1] D 1|00 10| 0
X1X; 5 cubes
X,N\_00 01 11 10 ,
ololf1| 1) f,
1[1\QIV0 f
2l1/0lolo]t 3 cubes
s|0/o0fof1)f,
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