

KUNGL
TEKNISKA
HÖGSKOLAN

Inte
Master Pr

in System-on-Chip Design

L3: Representations of functions

Representations of Boolean functions

- Boolean expression
 - Two-level sum-of-product form, factorized form
- Truth tables
- Karnaugh maps
- Cubes
 - (MIN,MAX) notation
 - positional cube notation
- Binary Decision Diagrams
- Logic circuits
- Galois field GF(2) polynomials

Two approaches

- Two fundamental approaches:
 - keep representation canonical with respect to the function
 - tautology or SAT check is easy
 - but representation may blow-up in space
 - Examples: Truth tables, Karnaugh maps, BDDs
 - keep representation non-canonical
 - representation can remain compact
 - tautology or SAT check is exponential (co-NP complete)
 - Example: Boolean expressions, logic circuits

Boolean formula

- Any Boolean function can be represented by a formula defined as catenations of
 - parentheses (,)
 - variables x, y, z
 - binary operations "+" (OR) and " \cdot " (AND)
 - unary operation negation, " \prime "
- Examples:

$$f(x_1, x_2, x_3) = x_1' \cdot x_2 + x_1 \cdot x_3$$

$$f(x_1, x_2, x_3) = (x_1 + x_2)' \cdot x_3$$

Canonical SOP form

- Every Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ has a canonical sum-of-products (SOP) form of type:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=0}^{2^n-1} c_i \cdot x_1^{i_1} \cdot x_2^{i_2} \cdot \dots \cdot x_n^{i_n}$$

where

- $c_i \in \{0,1\}$ is a constant
- (i_1, i_2, \dots, i_n) is the binary expansion of i
- $x_k^{i_k} = x'$ if $i_k = 0$ and $x_k^{i_k} = x$ if $i_k = 1$

Deriving the canonical form

- The above form can be obtained from Shannon decomposition theorem:

$$f(x_1, x_2, \dots, x_n) = x'_1 \cdot f|_{x_1=0} + x_1 \cdot f|_{x_1=1}$$

where

$$f|_{x_1=0} := f(0, x_2, \dots, x_n), f|_{x_1=1} := f(1, x_2, \dots, x_n)$$

are subfunctions (cofactors) of f

Minimization of SOP

- The number of products in the SOP canonical form is up to 2^n
- It can be simplified using the axioms and properties of Boolean algebra
 - e.g. applying $a + a' = 1$ reduces the number of products by one
 - more general rule is $a \cdot P + a' \cdot P = P$, where P is a product-term

Why minimizing SOP form?

- A SOP expression can be directly implemented by a Programmable Logic Array (PLA):

Summary of SOP forms

- **Advantages:**
 - easy to manipulate and minimize
 - many algorithms available (e.g. AND, OR, TAUTOLOGY)
 - directly map into PLAs
- **Disadvantages:**
 - poor representative for logic complexity for multi-level implementation. For example
$$f = ad + ae + bd + be + cd + ce \quad f' = a'b'c' + d'e'$$
these differ in their implementation by an inverter.
 - difficult to estimate progress during optimization

Factored forms

- Factored forms are more **compact** representations of logic functions than SOP forms
- Example:** if the factored form is

$$(a+b)(c+d(e+f(g+h+i+j))$$

when represented as a SOP form it is

$$ac+ade+adfg+adf+adfi+adfj+bc+bde+bdfg+ bdfh+bdfi+bdfj$$

- When measured in terms of number of inputs, there are functions whose size is **exponential** in sum of products representation, but **polynomial** in factored form.
- Example:** Achilles' heel function has n literals in the factored form and $(n/2) \times 2^{n/2}$ literals in the SOP form

$$\bigwedge_{i=1}^{i=n/2} (x_{2i-1} + x_{2i})$$

Factored forms

Advantages

- good representative for logic complexity for multi-level implementation.

$$f = ad + ae + bd + be + cd + ce \quad f' = a'b'c' + d'e' \Rightarrow f = (a+b+c)(d+e)$$

- in many designs (e.g. complex gate CMOS) the **implementation** of a function corresponds directly to its factored form
- do not **blow up** easily

Disadvantages

- not as many algorithms available for **manipulation**
- hence often just **convert** into SOP before manipulation

Factored forms

$$X = (a+b)c + d$$

Note:

literal count \approx transistor count \approx area

- however, area also depends on
 - wiring
 - gate size etc.
- therefore very crude measure

Factored forms

Definition: a factored form can be defined recursively by the following rules. A factored form is either a product or sum where:

- a product is either a single **literal** (variable or its complement) or a **product** of factored forms
- a sum is either a single **literal** or a **sum** of factored forms
- Any logic function can be represented by a factored form, and any factored form is a representation of some logic function.

Examples

Examples of factored forms:

x

y'

abc'

$a+b'c$

$((a'+b)cd+e)(a+b')+e'$

$(a+b)'c$ is not a factored form since
complementation is not allowed, except on literals.

Three equivalent factored forms (factored forms are not unique): $ab+c(a+b)$ $bc+a(b+c)$ $ac+b(a+c)$

Size of factored forms

Definition:

The **size** of a factored form F (denoted $\rho(F)$) is the number of literals in the factored form.

Example: $\rho((a+b)ca') = 4$ $\rho((a+b+cd)(a'+b')) = 6$

Definition:

A factored form is **optimal** if no other factored form **(for that function)** has less literals.

Truth tables and maps

- The simplest way to represent an n -variable Boolean function is by giving a **truth** table containing 2^n rows, each specifying the value of the function for the corresponding values of the variables x_1, \dots, x_n
- Table can be re-aranged in a rectangular n -dimensional Karnaugh map

Example

$x_1 x_2 x_3$	$f_1 f_2$
000	00
001	1-
010	10
011	11
100	00
101	-1
110	11
111	11

Truth table for a function

$$f: \{0,1\}^3 \rightarrow \{0,1,-\}^2$$

Karnaugh maps

Can we do better?

- Both, truth table and map, give a complete list of 2^n points in B^n and therefore can be used only for very small functions
- We can reduce the number of rows:
 - if we use don't care symbol for inputs:
 $000 + 001 = 00-$
 - if we don't show input combinations $(a_1, \dots, a_n) \in B^n$, for which $f(a_1, \dots, a_n) = 0$

Example

$x_1 x_2 x_3$	f
000	0
001	1
010	1
011	1
100	0
101	1
110	0
111	1

$x_1 x_2$	00	01	11	10
x_3	0	1	0	0
0	0	1	0	0
1	1	1	1	1

$x_1 x_2 x_3$	f
01-	1
--1	1

Cube terminology for $f: B^n \rightarrow B \cup \{-\}$

- An n -variable Boolean function is interpreted as a set of points in an n -dimensional Boolean space
- **Cube** is any k -dimensional subspace, $0 \leq k \leq n$
- operations on Boolean functions are performed as operations on sets

AND \equiv intersection “ \cap ”, OR \equiv union “ \cup ”

Boolean Space B^n

Karnaugh Maps:

Boolean space:

3-dimentional Boolean space

Minterm

- A point in an n -dimensional Boolean space is called a **minterm** (\equiv assignment $(a_1, \dots, a_n) \in B^n$ of values for the variables x_1, \dots, x_n of f)
- **Note:** it is not necessary that $f(a_1, \dots, a_n) = 1$ for a minterm (a_1, \dots, a_n) , any of 2^n assignments $(a_1, \dots, a_n) \in B^n$ is a minterm
- Recall that **cube** is any k -dimensional subspace, $0 \leq k \leq n$

Minterms and cubes

- Informally speaking, minterm is an n-tuple containing “0” and “1” only, while cube is an n-tuple which can contain “-” as well
 - Examples of minterms for n=3:

000, 010

- Examples of cubes for n=3:

000, -11, ---

Relation between SOPs and cubes

- There is one-to-one correspondence between the cube notation and sum-of-products notation:
 - cube = product-term
 - 0-1 is a cube; $x_1' x_3$ is a product-term
 - minterm = product-term with all variables present
 - 011 is a minterm; $x_1' x_2 x_3$ is a product-term
 - set of cubes = sum-of-product expression
 - {0-1, -1-} is a set of cubes representing the on-set of f; $x_1' x_3 + x_2$ is the corresponding sum-of-product expression for f

On-, off- and don't care-sets

- **On-set** F_f is subset of B^n containing all minterms mapped to “1”
- **Off-set** R_f is subset of B^n containing all minterms mapped to “0”
- **Don't care-set** D_f is subset of B^n containing all minterms mapped to “-”

$$F_f \cup R_f \cup D_f = B^n$$

Some definitions

- If $f = B^n$, then f is **tautology**
- If $f = \emptyset$, then f is **not satisfiable**
 - **satisfying truth assignment** is in assignment $(a_1, \dots, a_n) \in B^n$ for which $f(a_1, \dots, a_n) = 1$
- f and g are **equivalent** if $f(a_1, \dots, a_n) = g(a_1, \dots, a_n)$ for all $(a_1, \dots, a_n) \in B^n$
 - are two sub-circuits functionally identical?
 - is a particular change in the circuit valid?

Example of a 3-variable function

$$F_f = \{010, 100, 111\}$$

$$D_f = \{011, 101\}$$

$$R_f = \{000, 001, 110\}$$

Cube representation

- We can represent any function of type $f: B^n \rightarrow B \cup \{-\}$ by listing two out of three sets F_f, R_f, D_f
 - since $F_f \cup R_f \cup D_f = B^n$, the third one can be always computed
 - for example, if F_f and D_f are given (standard case), we can compute R_f as

$$R_f = B^n - (F_f \cup D_f)$$

Espresso (or .pla) format

- .i specifies the number of inputs
- .o specifies the number of outputs
- cubes for F_f and D_f are listed as, for example for $n=4$

0011 1

a space separates the input part

- 010 1

from the output part

0110 ~

means “unspecified” or “specified elsewhere”

- .e ends the description

Example of espresso format

<u>x_1</u>	<u>x_2</u>	<u>x_3</u>	<u>f</u>
0	1	-	1
--	1	1	

Cube table for F_f

.i 3
.o 1
01- 1
--1 1
.e

espresso format

Basic operations on cubes

- Next, we define some basic operations of cubes
 - intersection of two cubes
 - complement of a cube
 - containment
 - supercube of two cubes
- Let n -tuples $A = (a_1 a_2 \dots a_n)$, $B = (b_1 b_2 \dots b_n)$, $C = (c_1 c_2 \dots c_n)$, $a_i, b_i, c_i \in \{0, 1, -\}$ be some n -dimensional cubes

Set operations

Intersection of two cubes

- Intersection of cubes A and B is a cube C such that $c_i = a_i \cap b_i$. If any of $a_i \cap b_i = \emptyset$, then $C = \emptyset$ (empty intersection)

$$(a_1 \dots a_n) \cap (b_1 \dots b_n) = (a_1 \cap b_1 \dots a_n \cap b_n)$$

- Element-wise intersection is defined by:

\cap	0	-	1
0	0	0	\emptyset
-	0	-	1
1	\emptyset	1	1

Example of intersection

$x_1 x_2$	00	01	11	10
x_3	0	0	1	1
0	0	1	1	0
1	0	1	1	0

$x_1 x_2 x_3$	f
-11	1
11-	1
1-0	1

$$\textcolor{red}{-11} \cap \textcolor{magenta}{1-0} = \emptyset$$

$$\textcolor{red}{-11} \cap \textcolor{blue}{11-} = 111$$

$$\textcolor{magenta}{1-0} \cap \textcolor{blue}{11-} = 110$$

Complement of a cube

- Complement of a cube $A = (a_1 a_2 \dots a_n)$, is a set of cubes $B^n - A$
- An easy way to compute a complement:
$$B^n - A = \{C_1, C_2, \dots, C_n\}$$
- where cube C_i has complemented a_i in the i_{th} position and has “-” elsewhere
 - $C_1 = (a_1 - \dots -)$, $C_2 = (- a_2 - \dots -)$, $C_n = (-- \dots - a_n)$

Example of complement

- Complement of a cube $(11-) = \{C_1, C_2\}$:
 - cube C_i has complemented a_i in the i_{th} position and has “-” elsewhere
 - $C_1 = (a_1--)$, $C_2 = (-a_2-)$
 - don't cares are skipped (3rd position is don't care)

x_3	x_2	x_1	
	00	01	11
0	0	0	1
1	0	0	1

$$(11-)' = \{(0--), (-0-)\}$$

Containment

- Cube A is **contained** in cube B if and only if $a_i \subseteq b_i$ for all $i \in \{0, 1, \dots, n\}$
- The containment relation is defined by:

$$R_{\subseteq} := \{(0,0), (0,-), (1,1), (1,-)\}$$

Example of containment

$x_1 x_2$	00	01	11	10
x_3	0	0	1	1
0	0	1	1	0
1	0	1	1	0

$x_1 x_2 x_3$	f
-11	1
110	1
1-0	1

110 is contained in 1-0

Supercube of two cubes

- A **supercube** of two cubes A and B is the smallest cube containing both A and B
- $\text{sup}(A, B)$ can be computed as:

$$\text{sup}(A, B) = (a_1 \cup b_1 \ \dots \ a_n \cup b_n)$$

- Element-wise union \cup is defined by:

\cup	0	-	1
0	0	-	-
-	-	-	-
1	-	-	1

Example of supercube

x_3	x_1x_2	00	01	11	10
0	0	0	1	1	1
1	0	1	1	0	0

$x_1x_2x_3$	f
-11	1
11-	1
1-0	1

$$\text{sup}(-11, 11-) = -1-$$

$$\text{sup}(1-0, 11-) = 1--$$

$$\text{sup}(-11, 1-0) = ---$$

Problem caused by cubes

- Use of cubes reduces the number of rows in a truth table
- However, since we introduce the 3rd symbol “-”, we will need more bits (2 instead of 1) to code each element of the row in computer’s memory
- There are 2 conventions for coding: parallel and sequential

Parallel coding

- Use a pair of integers (min, max) to represent a cube
 - min is the integer = binary encoding of the cube, when all “-” are replaced by “0”
 - for example, min for the cube 1-0 is $(100)_2 = 4$
 - max is the integer = binary encoding of the cube, when all “-” are replaced by “1”
 - for example, max for the cube 1-0 is $(110)_2 = 6$

Parallel coding

- Function is stored dynamically as 3 lists of cubes (for the sets F_f , R_f , D_f)
- Lists are represented by a structure declared as:

```
typedef struct ListofCubes {  
    long int min;          /* min value of the cube */  
    long int max;          /* max value of the cube */  
    struct ListofCubes *next; /* pointer to next cube */  
} one_cube;                /* name of the new type */
```

Parallel coding

- Parallel coding allows a fast bit-wise implementation of many basic operations
 - e.g. max for supercube = bit-wise OR “|” of max parts of cubes
- Functions of up to 32 inputs can be represented in this way (32 = long int)
 - can handle larger functions by storing each of min and max in 2 or more words

Sequential coding = positional cube notation

- Cube is represented by substituting each of the symbols {0,1,-} by a 2-bit field:

\emptyset	00
0	10
1	01
-	11

- empty set stands for a non-allowed symbol

Sequential coding

- Sequential coding allows a fast bit-wise implementation of many basic operations
 - e.g. intersection of two cubes = bit-wise AND “`&`” of two cubes
- No restriction on the number on inputs/outputs

A possible project topic

- Develop an algorithm which reads in a list of cubes (in espresso format) representing an AND-OR expression of a Boolean function f and compute a minimal AND-XOR expression for f . Give the in the form of the list of cubes whose XOR gives us f
- Example:
 - Read in cubes $\{01,10\}$ corresponding to $a'b + b'a$.
 - Read out cubes $\{-1,1-\}$ corresponding to $a \oplus b$

Multiple-output functions

- All the theory we considered so far applies to single-output functions only
- Most of the real-life functions are multiple-output
- A multiple-output function can be treated by performing the operations on each output separately
 - but then the optimality is often lost, e.g. cubes common for several functions will not be found

Example

f_1	x_1	
x_2	0	1
0	0	1
1	1	1

f_2	x_1	
x_2	0	1
0	1	0
1	1	1

f_3	x_1	
x_2	0	1
0	1	0
1	0	0

f_4	x_1	
x_2	0	1
0	0	1
1	0	0

4-output function:

6 cubes if the functions are treated separately

Extension of cube representation to multiple-output functions

- We will extend cubes to multiple-output Boolean functions $f: B^n \rightarrow (B \cup \{\sim\})^k$ by introducing “output” part of the cube
 - what we called “cube” before, now we call “input part of cube” (a sub-space of B^n)
 - output part of a cube is “0”, “1” or “~”
 - “1” in the i_{th} position of the output part means “the cube belongs to the function f_i ”
 - “0” in the i_{th} position of the output part means “the cube doesn’t belong to the function f_i ”
 - “~” in the i_{th} position of the output part means “the cube is specified elsewhere for f_i ” or “non-specified for f_i ”

Example I

$x_1 x_2 x_3$	$f_1 f_2$
000	00
001	10
010	00
011	11
100	00
101	01
110	11
111	11

Truth table

Karnaugh maps

$x_1 x_2 x_3$	$f_1 f_2$
001	10
-11	11
101	01
11-	11

Cube table for F_f

Example II

- We can always specify a multiple-output function by listing all single-output functions with "1" in the corresponding output part and writing " \sim " for all other output parts

$x_1 x_2 x_3$	$f_1 f_2$
001	1 \sim
-11	1 \sim
11-	1 \sim
101	\sim 1
11-	\sim 1
-11	\sim 1

cube table for the
function from the
previous slide

Example of intersection and supercube

$x_1 x_2$	00	01	11	10
x_3	0	0	1	0
0	0	0	1	0
1	0	1	1	0

f_1

$x_1 x_2$	00	01	11	10
x_3	0	0	1	1
0	0	0	1	1
1	0	0	1	0

f_2

$x_1 x_2 x_3$	$f_1 f_2$
-11	10
1-0	01
11-	11

\cap for outputs is bit-wise AND:

$$-11\ 10 \cap 1-0\ 01 = \emptyset$$

$$-11\ 10 \cap 11-\ 11 = 111\ 10$$

\cup for outputs is bit-wise OR:

$$-11\ 10 \cup 1-0\ 01 = \dots\ \dots\ 11$$

$$-11\ 10 \cup 11-\ 11 = -1-\ 11$$

Complement

- Complement of a multiple-output function can be computed by taking complements for each output separately
- Computing the complement of a set of cubes:
 - compute complement for each cube
 - for each cube, you get a set of cubes (up to the length of input part)
 - find the intersection of these sets
 - remove cubes which are contained in other cubes

Example of complement of a set of cubes

f

$$(11-)' = \{(0--), (-0-)\}$$

$$(-11)' = \{(-0-), (--0)\}$$

$$0-- \cap -0- = 00-$$

$$0-- \cap --0 = 0-0$$

$$-0- \cap -0- = -0-$$

$$-0- \cap --0 = -00$$

$-0-$ contains $00-$ and -00 , so
the result is $\{(0-0), (-0-)\}$

f'

Example of complement for multiple-output functions

- Compute complements for each output:

<u>$x_1 x_2 x_3$</u>	<u>$f_1 f_2$</u>
-11	10
1-0	01
<u>11-</u>	<u>11</u>

$$A = (11- 11)' = \{(0-- 11), (-0- 11)\}$$

$$B = (-11 10)' = \{(-0- 10), (--0 10)\}$$

$$C = (1-0 01)' = \{(0-- 01), (-1 01)\}$$

for f_1 we get $A \cap B = \{(0-0 10), (-0- 10)\}$

for f_2 we get $A \cap C = \{(0-0 01), (0-1 01), (-01 01)\}$

Example (cont.)

- Resulting complement for the functions is represented by the following cube table
 - recall, that “1” in the i_{th} position of the output part means “the cube belongs to the function f_i “
 - note that the solution is non-optimal

$x_1 x_2 x_3$	$f_1 f_2$
0-0	10
-0-	10
0-0	01
0-1	01
-01	01

Parallel coding for multiple-output functions (incompletely specified f)

- Use two pairs of integers (min, max): one for the input part and one for the output part of the cube
- ListofCubes structure is modified as:

```
typedef struct ListofCubes {  
    long int min;      /* min value of the input part */  
    long int max;      /* min value of the input part */  
    long int omin;     /* min value of the output part */  
    long int omax;     /* max value of the output part */  
    ...  
}
```

Simplified coding for multiple-output functions (completely specified f)

- Use a single integer to represent the output part of the cube
- ListofCubes structure is modified as:

```
typedef struct ListofCubes {  
    long int min;      /* min value of the input part */  
    long int max;      /* min value of the input part */  
    long int output;   /* value of the output part */  
    ...  
};
```

An alternative way

- An alternative way to treat a multiple-output Boolean function $f: B^n \rightarrow B^k$ is to consider it as an $(n+1)$ -variable 1-output function of type

$$f: B^n \times \{0, 1, \dots, k-1\} \rightarrow B$$

- All the theory we learned for single-output Boolean functions applies to the functions of the above type

Example

f_1	x_1	0	1
x_2	0	0	1
1	1	1	1

f_2	x_1	0	1
x_2	0	1	0
1	1	1	1

f_3	x_1	0	1
x_2	0	1	0
1	0	0	0

f_4	x_1	0	1
x_2	0	0	1
1	0	0	0

x_3	$x_1 x_2$	00	01	11	10
0	0	1	1	1	1
1	1	1	1	1	0
2	1	0	0	0	0
3	0	0	0	0	1

5 cubes

3 cubes

f_1
 f_2
 f_3
 f_4