L3: Representations of functions
Representations of Boolean functions

- Boolean expression
 - Two-level sum-of-product form, factorized form
- Truth tables
- Karnaugh maps
- Cubes
 - (MIN,MAX) notation
 - positional cube notation
- Binary Decision Diagrams
- Logic circuits
- Galois field GF(2) polynomials
Two approaches

• Two fundamental approaches:
 – keep representation canonical with respect to the function
 • tautology or SAT check is easy
 • but representation may blow-up in space
 • Examples: Truth tables, Karnaugh maps, BDDs
 – keep representation non-canonical
 • representation can remain compact
 • tautology or SAT check is exponential (co-NP complete)
 • Example: Boolean expressions, logic circuits
Boolean formula

- Any Boolean function can be represented by a formula defined as catenations of
 - parentheses (,)
 - variables x, y, z
 - binary operations "+" (OR) and "∙" (AND)
 - unary operation negation, "′"

- Examples:
 \[f(x_1, x_2, x_3) = x_1' \cdot x_2 + x_1 \cdot x_3 \]
 \[f(x_1, x_2, x_3) = (x_1 + x_2)' \cdot x_3 \]
Canonical SOP form

- Every Boolean function \(f: \{0,1\}^n \rightarrow \{0,1\} \) has a canonical sum-of-products (SOP) form of type:

\[
f(x_1, x_2, \ldots, x_n) = \sum_{i=0}^{2^n-1} c_i \cdot x_1^{i_1} \cdot x_2^{i_2} \cdots \cdot x_n^{i_n}
\]

where

- \(c_i \in \{0,1\} \) is a constant
- \((i_1, i_2, \ldots, i_n)\) is the binary expansion of \(i \)
- \(x_k^{i_k} = x' \) if \(i_k = 0 \) and \(x_k^{i_k} = x \) if \(i_k = 1 \)
Deriving the canonical form

- The above form can be obtained from Shannon decomposition theorem:

\[f(x_1, x_2, \ldots, x_n) = x'_1 \cdot f|_{x_1=0} + x_1 \cdot f|_{x_1=1} \]

where

\[f|_{x_1=0} := f(0, x_2, \ldots, x_n), \quad f|_{x_1=1} := f(1, x_2, \ldots, x_n) \]

are subfunctions (cofactors) of \(f \)
Minimization of SOP

- The number of products in the SOP canonical form is up to 2^n
- It can be simplified using the axioms and properties of Boolean algebra
 - e.g. applying $a + a' = 1$ reduces the number of products by one
 - more general rule is $a \cdot P + a' \cdot P = P$, where P is a product-term
Why minimizing SOP form?

- A SOP expression can be directly implemented by a Programmable Logic Array (PLA):

```
<table>
<thead>
<tr>
<th>a</th>
<th>a'</th>
<th>b</th>
<th>b'</th>
<th>c</th>
<th>c'</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Cube table

<table>
<thead>
<tr>
<th>abc</th>
<th>f_1f_2f_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-</td>
<td>1 ~ ~</td>
</tr>
<tr>
<td>-11</td>
<td>1 ~ ~</td>
</tr>
<tr>
<td>0-0</td>
<td>~ 1 ~</td>
</tr>
<tr>
<td>111</td>
<td>~ 1 1</td>
</tr>
<tr>
<td>00-</td>
<td>~ ~ 1</td>
</tr>
</tbody>
</table>
Summary of SOP forms

- **Advantages:**
 - easy to manipulate and minimize
 - many algorithms available (e.g. AND, OR, TAUTOLOGY)
 - directly map into PLAs

- **Disadvantages:**
 - poor representative for logic complexity for multi-level implementation. For example
 \[f = ad + ae + bd + be + cd + ce \quad f' = a'b'c' + d'e' \]
 these differ in their implementation by an inverter.
 - difficult to estimate progress during optimization
Factored forms

- Factored forms are more compact representations of logic functions than SOP forms.
- **Example:** if the factored form is
 \[(a+b)(c+d(e+f(g+h+i+j))\]
 when represented as a SOP form it is
 \[ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+ bdfh+bdfi+bdfj\]
- When measured in terms of number of inputs, there are functions whose size is exponential in sum of products representation, but polynomial in factored form.
- **Example:** Achilles’ heel function has \(n\) literals in the factored form and \((n/2) \times 2^{n/2}\) literals in the SOP form.
Factored forms

Advantages

• good representative for logic complexity for multi-level implementation.

\[f = ad + ae + bd + be + cd + ce \quad f' = a'b'c' + d'e' \Rightarrow f = (a + b + c)(d + e) \]

• in many designs (e.g. complex gate CMOS) the implementation of a function corresponds directly to its factored form

• do not blow up easily

Disadvantages

• not as many algorithms available for manipulation

• hence often just convert into SOP before manipulation
Factored forms

\[X = (a+b)c + d \]

Note:

- literal count \(\approx \) transistor count \(\approx \) area
- however, area also depends on
 - wiring
 - gate size etc.
- therefore very crude measure
Factored forms

Definition: a factored form can be defined recursively by the following rules. A factored form is either a product or sum where:

• a product is either a single literal (variable or its complement) or a product of factored forms
• a sum is either a single literal or a sum of factored forms
• Any logic function can be represented by a factored form, and any factored form is a representation of some logic function.
Examples of factored forms:

- x
- y'
- abc'
- $a+b'c$
- $((a'+b)cd+e)(a+b')+e'$
- $(a+b)'c$

$(a+b)'c$ is not a factored form since complementation is not allowed, except on literals.

Three equivalent factored forms (factored forms are not unique): $ab+c(a+b)$ $bc+a(b+c)$ $ac+b(a+c)$
Size of factored forms

Definition:
The size of a factored form F (denoted $\rho(F)$) is the number of literals in the factored form.

Example: $\rho(((a+b)ca') = 4$ \hspace{1cm} $\rho((a+b+cd)(a'+b')) = 6$

Definition:
A factored form is optimal if no other factored form (for that function) has less literals.
Truth tables and maps

• The simplest way to represent an n-variable Boolean function is by giving a truth table containing 2^n rows, each specifying the value of the function for the corresponding values of the variables x_1, \ldots, x_n

• Table can be re-arranged in a rectangular n-dimensional Karnaugh map
Example

<table>
<thead>
<tr>
<th>$x_1x_2x_3$</th>
<th>f_1f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
</tr>
<tr>
<td>001</td>
<td>1-</td>
</tr>
<tr>
<td>010</td>
<td>10</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>101</td>
<td>-1</td>
</tr>
<tr>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>111</td>
<td>11</td>
</tr>
</tbody>
</table>

Truth table for a function

$f: \{0,1\}^3 \rightarrow \{0,1,-\}^2$

Karnaugh maps

\[
\begin{array}{c|cccc}
 x_3 & 00 & 01 & 11 & 10 \\
 \hline
 0 & 0 & 1 & 0 & 0 \\
 1 & 1 & 1 & 1 & - \\
\end{array}
\]

\[
\begin{array}{c|cccc}
 x_3 & 00 & 01 & 11 & 10 \\
 \hline
 0 & 0 & 0 & 1 & 0 \\
 1 & - & 1 & 1 & 1 \\
\end{array}
\]
Can we do better?

- Both, truth table and map, give a complete list of 2^n points in B^n and therefore can be used only for very small functions.

- We can reduce the number of rows:
 - if we use don’t care symbol for inputs:
 $000 + 001 = 00-$
 - if we don’t show input combinations $(a_1, \ldots, a_n) \in B^n$, for which $f(a_1, \ldots, a_n) = 0$
Example

\[x_1x_2x_3 \quad f \]

\begin{array}{cccc}
000 & 0 &
001 & 1 \\
010 & 1 &
011 & 1 \\
100 & 0 &
101 & 1 &
110 & 0 &
111 & 1 \\
\end{array}

\begin{array}{cccc}
000 & 01 & 11 & 10 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}

\[x_1x_2x_3 \quad f \]

\begin{array}{cccc}
01 & 1 &
--1 & 1 \\
\end{array}
Cube terminology for f: $B^n \rightarrow B \cup \{-\}$

- An n-variable Boolean function is interpreted as a set of points in an n-dimensional Boolean space.
- *Cube* is any k-dimensional subspace, $0 \leq k \leq n$.
- Operations on Boolean functions are performed as operations on sets:
 - $\text{AND} \equiv$ intersection “\cap”, $\text{OR} \equiv$ union “\cup”
Boolean Space B^n

Karnaugh Maps:

B^0

B^1

B^2

B^3

B^4

Boolean space:
3-dimensional Boolean space
Minterm

• A point in an n-dimensional Boolean space is called a minterm (\equiv assignment $(a_1, \ldots , a_n) \in B^n$ of values for the variables x_1, \ldots , x_n of f)

• Note: it is not necessary that $f(a_1, \ldots , a_n) = 1$ for a minterm (a_1, \ldots , a_n), any of 2^n assignments $(a_1, \ldots , a_n) \in B^n$ is a minterm

• Recall that cube is any k-dimensional subspace, $0 \leq k \leq n$
Minterms and cubes

- Informally speaking, minterm is an n-tuple containing “0” and “1” only, while cube is an n-tuple which can contain “-” as well.
 - Examples of minterms for n=3:
 - 000, 010
 - Examples of cubes for n=3:
 - 000, -11, ---
Relation between SOPs and cubes

• There is one-to-one correspondence between the cube notation and sum-of-products notation:
 – cube = product-term
 • 0-1 is a cube; \(x_1' x_3 \) is a product-term
 – minterm = product-term with all variables present
 • 011 is a minterm; \(x_1' x_2 x_3 \) is a product-term
 – set of cubes = sum-of-product expression
 • \{0-1, -1\} is a set of cubes representing the on-set of \(f \);
 \(x_1' x_3 + x_2 \) is the corresponding sum-of-product expression for \(f \)
On-, off- and don’t care-sets

- **On-set** F_f is subset of B^n containing all minterms mapped to “1”
- **Off-set** R_f is subset of B^n containing all minterms mapped to “0”
- **Don’t care-set** D_f is subset of B^n containing all minterms mapped to “-”

$$F_f \cup R_f \cup D_f = B^n$$
Some definitions

• If \(f = B^n \), then \(f \) is **tautology**

• If \(f = \emptyset \), then \(f \) is **not satisfyable**
 – **satisfying truth assignment** is in assignment
 \((a_1, \ldots, a_n) \in B^n\) for which \(f(a_1, \ldots, a_n) = 1 \)

• \(f \) and \(g \) are **equivalent** if \(f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n) \)
 for all \((a_1, \ldots, a_n) \in B^n\)
 – **are two sub-circuits functionally identical?**
 – **is a particular change in the circuit valid?**
Example of a 3-variable function

\[F_f = \{010, 100, 111\} \]
\[D_f = \{011, 101\} \]
\[R_f = \{000, 001, 110\} \]
CUBE REPRSENTATION

- We can represent any function of type $f: \mathbb{B}^n \rightarrow \mathbb{B} \cup \{-\}$ by listing two out of three sets F_f, R_f, D_f
 - since $F_f \cup R_f \cup D_f = \mathbb{B}^n$, the third one can be always computed
 - for example, if F_f and D_f are given (standard case), we can compute R_f as

\[
R_f = \mathbb{B}^n - (F_f \cup D_f)
\]
Espresso (or .pla) format

- `.i` specifies the number of inputs
- `.o` specifies the number of outputs
- cubes for F_f and D_f are listed as, for example for $n=4$

 0011 1 \hspace{2cm} \text{a space separates the input part from the output part}
 - 010 1
 0110 ~ \hspace{2cm} \text{means “unspecified” or “specified elsewhere”}

- `.e` ends the description
Example of espresso format

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>--1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

.i 3
.o 1
.01- 1
.01- 1
.--1 1
.e

Cube table for F_f espresso format
Basic operations on cubes

- Next, we define some basic operations of cubes
 - intersection of two cubes
 - complement of a cube
 - containment
 - supercube of two cubes

- Let n-tuples \(A = (a_1 \ a_2 \ldots \ a_n) \), \(B = (b_1 \ b_2 \ldots \ b_n) \), \(C = (c_1 \ c_2 \ldots \ c_n) \), \(a_i, b_i, c_i \in \{0,1,-\} \) be some n-dimensional cubes
Set operations

A

B

C
Intersection of two cubes

- Intersection of cubes A and B is a cube C such that $c_i = a_i \cap b_i$. If any of $a_i \cap b_i = \emptyset$, then $C = \emptyset$ (empty intersection)

$$(a_1 \ldots a_n) \cap (b_1 \ldots b_n) = (a_1 \cap b_1 \ldots a_n \cap b_n)$$

- Element-wise intersection is defined by:

<table>
<thead>
<tr>
<th>\cap</th>
<th>0</th>
<th>-</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\emptyset</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example of intersection

<table>
<thead>
<tr>
<th>(x_1x_2x_3)</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

\[-11 \cap 1-0 = \emptyset\]

\[-11 \cap 11- = 111\]

\[1-0 \cap 11- = 110\]
Complement of a cube

- Complement of a cube $A = (a_1, a_2, \ldots, a_n)$, is a set of cubes $B^n - A$
- An easy way to compute a complement:
 \[B^n - A = \{C_1, C_2, \ldots, C_n\} \]
 - where cube C_i has complemented a_i in the i^{th} position and has “-” elsewhere
 \[C_1 = (a_1, \ldots,), \quad C_2 = (\neg a_2, \ldots,), \quad C_n = (\neg \ldots, \neg a_n) \]
Example of complement

- Complement of a cube \((11-) = \{C_1, C_2\} :\)
 - cube \(C_i\) has complemented \(a_i\) in the \(i\)th position and has "-" elsewhere

 \(C_1 = (a_1 - -), \; C_2 = (- a_2 -)\)

 - don’t cares are skipped (3rd position is don’t care)

\[
\begin{array}{cccc}
 x_1 x_2 & \text{00} & 01 & 11 & 10 \\
 x_3 & 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\((11-)’ = \{(0--), (-0-)\}\)
Cube A is contained in cube B if and only if \(a_i \subseteq b_i \) for all \(i \in \{0,1,\ldots,n\} \).

The containment relation is defined by:

\[
R_{\subseteq} := \{(0,0), (0,-), (1,1), (1,-)\}
\]
Example of containment

110 is contained in 1-0
Supercube of two cubes

- A **supercube** of two cubes A and B is the smallest cube containing both A and B
- $\text{sup}(A,B)$ can be computed as:
 \[
 \text{sup}(A,B) = (a_1 \cup b_1 \ldots a_n \cup b_n)
 \]
- Element-wise union \cup is defined by:

<table>
<thead>
<tr>
<th>\cup</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Example of supercube

$$x_1 x_2 x_3$$

<table>
<thead>
<tr>
<th>x_1x_2</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$x_1x_2x_3$</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11</td>
<td>1</td>
</tr>
<tr>
<td>11-</td>
<td>1</td>
</tr>
<tr>
<td>1-0</td>
<td>1</td>
</tr>
</tbody>
</table>

$$\text{sup}(-11,11-) = -1-$$

$$\text{sup}(1-0,11-) = 1--$$

$$\text{sup}(-11,1-0) = ---$$
Problem caused by cubes

- Use of cubes reduces the number of rows in a truth table
- However, since we introduce the 3rd symbol “-”, we will need more bits (2 instead of 1) to code each element of the row in computer’s memory
- There are 2 conventions for coding: parallel and sequential
Parallel coding

- Use a pair of integers (min, max) to represent a cube
 - min is the integer = binary encoding of the cube, when all “-” are replaced by “0”
 - for example, min for the cube 1-0 is $100_2 = 4$
 - max is the integer = binary encoding of the cube, when all “-” are replaced by “1”
 - for example, max for the cube 1-0 is $110_2 = 6$
Parallel coding

- Function is stored dynamically as 3 lists of cubes (for the sets F_f, R_f, D_f
- Lists are represented by a structure declared as:

```c
typedef struct ListofCubes {
    long int min;       /* min value of the cube */
    long int max;       /* max value of the cube */
    struct ListofCubes *next; /* pointer to next cube */
} one_cube;        /* name of the new type */
```
Parallel coding

- Parallel coding allows a fast bit-wise implementation of many basic operations
 - e.g. max for supercube = bit-wise OR “|” of max parts of cubes
- Functions of up to 32 inputs can be represented in this way (32 = long int)
 - can handle larger functions by storing each of min and max in 2 or more words
Sequential coding = positional cube notation

• Cube is represented by substituting each of the symbols \{0,1,-\} by a 2-bit field:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>00</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>

• empty set stands for a non-allowed symbol
Sequential coding

• Sequential coding allows a fast bit-wise implementation of many basic operations
 – e.g. intersection of two cubes = bit-wise AND “&” of two cubes
• No restriction on the number on inputs/outputs
A possible project topic

• Develop an algorithm which reads in a list of cubes (in espresso format) representing an AND-OR expression of a Boolean function f and compute a minimal AND-XOR expression for f. Give the in the form of the list of cubes whose XOR gives us f.

• Example:
 – Read in cubes \{01, 10\} corresponding to \(a'b + b'a\).
 – Read out cubes \{-1, 1-\} corresponding to \(a \oplus b\).
Multiple-output functions

- All the theory we considered so far applies to single-output functions only
- Most of the real-life functions are multiple-output
- A multiple-output function can be treated by performing the operations on each output separately
 - but then the optimality is often lost, e.g. cubes common for several functions will not be found
Example

<table>
<thead>
<tr>
<th>f₁</th>
<th>x₁</th>
<th>x₂</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f₂</th>
<th>x₁</th>
<th>x₂</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f₃</th>
<th>x₁</th>
<th>x₂</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| f₄ | x₁ | x₂ | 0 | 1 |
|----|----|----|----|
| 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 |

4-output function:

6 cubes if the functions are treated separately
Extension of cube representation to multiple-output functions

- We will extend cubes to multiple-output Boolean functions $f: B^n \rightarrow (B \cup \{\sim\})^k$ by introducing “output” part of the cube
 - what we called “cube” before, now we call “input part of cube” (a sub-space of B^n)
 - output part of a cube is “0”, “1” or “~”
 - “1” in the i_{th} position of the output part means “the cube belongs to the function f_i”
 - “0” in the i_{th} position of the output part means “the cube doesn’t belong to the function f_i”
 - “~” in the i_{th} position of the output part means “the cube is specified elsewhere for f_i” or “non-specified for f_i”
Example I

<table>
<thead>
<tr>
<th>x₁x₂x₃</th>
<th>f₁f₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
</tr>
<tr>
<td>001</td>
<td>10</td>
</tr>
<tr>
<td>010</td>
<td>00</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
</tr>
<tr>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>111</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x₁x₂x₃</th>
<th>f₁f₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth table Karnaugh maps Cube table for \(F_f \)
Example II

- We can always specify a multiple-output function by listing all single-output functions with "1" in the corresponding output part and writing "~" for all other output parts.

<table>
<thead>
<tr>
<th>$x_1x_2x_3$</th>
<th>f_1f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1~</td>
</tr>
<tr>
<td>-11</td>
<td>1~</td>
</tr>
<tr>
<td>11-</td>
<td>1~</td>
</tr>
<tr>
<td>101</td>
<td>~1</td>
</tr>
<tr>
<td>11-</td>
<td>~1</td>
</tr>
<tr>
<td>-11</td>
<td>~1</td>
</tr>
</tbody>
</table>

cube table for the function from the previous slide
Example of intersection and supercube

<table>
<thead>
<tr>
<th>$x_1x_2x_3$</th>
<th>f_1</th>
<th>f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 01 11 10</td>
<td>0 1 0 1</td>
<td>0 1 1 0</td>
</tr>
</tbody>
</table>

For outputs is bit-wise AND:
- $-11 10 \cap 1-0 01 = \emptyset$
- $-11 10 \cap 11- 11 = 111 10$

For outputs is bit-wise OR:
- $-11 10 \cup 1-0 01 = - - - 11$
- $-11 10 \cup 11- 11 = -1- 11$
Complement

• Complement of a multiple-output function can be computed by taking complements for each output separately

• Computing the complement of a set of cubes:
 – compute complement for each cube
 • for each cube, you get a set of cubes (up to the length of input part)
 – find the intersection of these sets
 – remove cubes which are contained in other cubes
Example of complement of a set of cubes

\[(11^-)^\prime = \{(0--), (-0-)\}\]
\[(-11)^\prime = \{(-0-), (--0)\}\]

\[0-- \cap -0- = 00-\]
\[0-- \cap --0 = 00\]
\[-0- \cap -0- = -0-\]
\[-0- \cap --0 = 00\]

-0- contains 00- and 00-, so the result is \{((0-0), (-0-))\}
Example of complement for multiple-output functions

- Compute complements for each output:

<table>
<thead>
<tr>
<th>$x_1x_2x_3$</th>
<th>f_1f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11</td>
<td>10</td>
</tr>
<tr>
<td>1-0</td>
<td>01</td>
</tr>
<tr>
<td>11-</td>
<td>11</td>
</tr>
</tbody>
</table>

$A = (11-11)' = \{(0--11), (-0-11)\}$

$B = (-11\ 10)' = \{(-0-10), (--0\ 10)\}$

$C = (1-0\ 01)' = \{(0--\ 01), (--1\ 01)\}$

for f_1 we get $A \cap B = \{(0-0\ 10), (-0-10)\}$

for f_2 we get $A \cap C = \{(0-0\ 01), (0-1\ 01), (-01\ 01)\}$
Example (cont.)

- Resulting complement for the functions is representing by the following cube table
 - recall, that “1” in the i_{th} position of the output part means “the cube belongs to the function f_i“
 - note that the solution is non-optimal

<table>
<thead>
<tr>
<th>$x_1x_2x_3$</th>
<th>f_1f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0</td>
<td>10</td>
</tr>
<tr>
<td>-0-</td>
<td>10</td>
</tr>
<tr>
<td>0-0</td>
<td>01</td>
</tr>
<tr>
<td>0-1</td>
<td>01</td>
</tr>
<tr>
<td>-01</td>
<td>01</td>
</tr>
</tbody>
</table>

- Diagrams showing the cube table for f_1 and f_2
Parallel coding for multiple-output functions (incompletely specified f)

- Use two pairs of integers (min, max): one for the input part and one for the output part of the cube
- ListofCubes structure is modified as:

```c
typedef struct ListofCubes {
    long int min; /* min value of the input part */
    long int max; /* min value of the input part */
    long int omin; /* min value of the output part */
    long int omax; /* max value of the output part */
...
```
Simplified coding for multiple-output functions (completely specified f)

- Use a single integer to represent the output part of the cube
- ListofCubes structure is modified as:

```c
typedef struct ListofCubes {
    long int min; /* min value of the input part */
    long int max; /* min value of the input part */
    long int output; /* value of the output part */
    ...
```
An alternative way

• An alternative way to treat a multiple-output Boolean function $f: B^n \rightarrow B^k$ is to consider it as an $(n+1)$-variable 1-output function of type

$$f: B^n \times \{0,1,\ldots,k-1\} \rightarrow B$$

• All the theory we learned for single-output Boolean functions applies to the functions of the above type
Example

\[
\begin{array}{c|c|c}
 f_1 & x_1 & x_2 \\
\hline
 0 & 0 & 1 \\
 0 & 1 & 1 \\
 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 f_2 & x_1 & x_2 \\
\hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 f_3 & x_1 & x_2 \\
\hline
 0 & 0 & 1 \\
 0 & 1 & 1 \\
 1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 f_4 & x_1 & x_2 \\
\hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
\end{array}
\]

5 cubes

\[
\begin{array}{c|c|c|c|c}
 x_1 & x_2 & x_3 \\
\hline
 00 & 01 & 11 & 10 \\
 0 & 0 & 1 & 1 \\
 1 & 1 & 1 & 0 \\
 2 & 1 & 0 & 0 \\
 3 & 0 & 0 & 0 \\
\end{array}
\]

3 cubes

5 cubes