
L3: Representations of functions
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Representations of Boolean functions
• Boolean expression

– Two­level sum­of­product form, factorized form
• Truth tables
• Karnaugh maps
• Cubes

– (MIN,MAX) notation
– positional cube notation

• Binary Decision Diagrams
• Logic circuits
• Galois field GF(2) polynomials
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Two approaches

• Two fundamental approaches:
– keep representation canonical with respect to the 

function
• tautology or SAT check is easy
• but representation may blow­up in space
• Examples:  Truth tables, Karnaugh maps, BDDs

– keep representation non­canonical
• representation can remain compact
• tautology or SAT check is exponential (co­NP complete)
• Example: Boolean expressions, logic circuits
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Boolean formula 

•  Any Boolean function can be represented by a 
formula defined as catenations of
– parentheses (, )
– variables x, y, z
– binary operations  "+" (OR) and "∙" (AND)
– unary operation negation, "′"

• Examples:
f(x1,x2,x3) = x′1∙x2 +  x1∙x3 
f(x1,x2,x3) = (x1 + x2 )′∙x3
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i = 0

2n -1

Canonical SOP form

• Every Boolean function f: {0,1}n → {0,1} has a 
canonical sum­of­products (SOP) form of type:

f(x1,x2,..., xn) =  ∑ ci ∙x1
i1∙x2

i2 ∙... ∙xn
in

   where 
– ci ∈ {0,1} is a constant         
– (i1,i2,..., in) is the binary expansion of i 
– xk

ik = x′ if ik = 0 and xk
ik = x if ik = 1 
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Deriving the canonical form

• The above form can be obtained from Shannon 
decomposition theorem:

f(x1,x2, ...,xn) = x'1∙f|x1=0 + x1∙ f|x1=1

where 

f|x1=0 := f(0,x2, ...,xn), f|x1=1 := f(1,x2, ...,xn) 

  are subfunctions (cofactors) of f
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Minimization of SOP

• The number of products in the SOP canonical 
form is up to 2n

• It can be simplified using the axioms and 
properties of Boolean algebra
– e.g. applying a + a′ = 1 reduces the number of products 

by one
– more general rule is a ∙ P + a′ ∙ P = P,  where P is a 

product­term 
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Why minimizing SOP form?
• A SOP expression can be directly implemented 

by a Programmable Logic Array (PLA):

f2 f3f1

a a b b c c

abc  f1f2f3

10-  1 ~ ~

-11  1 ~ ~

0-0  ~ 1 ~

111  ~ 1 1

00-  ~ ~ 1

Cube table

AND-plane

OR-plane
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Summary of SOP forms

• Advantages:
– easy to manipulate and minimize
– many algorithms available (e.g.AND,OR,TAUTOLOGY)
– directly map into PLAs

• Disadvantages:
– poor representative for logic complexity for multi­level 

implementation. For example
f=ad+ae+bd+be+cd+ce f’=a’b’c’+d’e’

    these differ in their implementation by an inverter.
– difficult to estimate progress during optimization
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Factored forms
• Factored forms are more compact representations of logic 

functions than SOP forms
• Example: if the factored form is

(a+b)(c+d(e+f(g+h+i+j)
when represented as a SOP form it is 

ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+ bdfh+bdfi+bdfj
• When measured in terms of number of inputs, there are 

functions whose size is exponential in sum of products 
representation, but polynomial in factored form.

• Example: Achilles’ heel function                                        
has n literals in the factored form and                       
(n/2)×2n/2 literals in the SOP form

/ 2

2 1 2
1

( )
i n

i i
i

x x






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Factored forms
Advantages
• good representative for logic complexity for multi­level 

implementation. 
f=ad+ae+bd+be+cd+ce f’=a’b’c’+d’e’ ⇒ f=(a+b+c)(d+e)
• in many designs (e.g. complex gate CMOS) the implementation 

of a function corresponds directly to its factored form
• do not blow up easily

Disadvantages
• not as many algorithms available for manipulation
• hence often just convert into SOP before manipulation
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Factored forms

Note: 
literal count  ≈ transistor count ≈ 
area 
• however, area also depends on 
– wiring
– gate size etc.

• therefore very crude measure
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Factored forms
Definition: a factored form can be defined recursively by the 
following rules. A factored form is either a product or sum 
where:
• a product is either a single literal (variable or its 

complement) or a product of factored forms
• a sum is either a single literal or a sum of factored forms

• Any logic function can be represented by a factored form, 
and any factored form is a representation of some logic 
function. 
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Examples
Examples of factored forms:

x
y’
abc’
a+b’c
((a’+b)cd+e)(a+b’)+e’
(a+b)’c is not a factored form since 

complementation is  not allowed, except on literals. 
Three equivalent factored forms (factored forms are not 
unique):   ab+c(a+b)  bc+a(b+c) ac+b(a+c)
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Size of factored forms
Definition:
The size of a factored form F (denoted ρ(F )) is the number 

of literals in the factored form.

Example: ρ((a+b)ca’) = 4      ρ((a+b+cd)(a’+b’)) = 6

Definition:
A factored form is optimal if no other factored form (for that 

function) has less literals.
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Truth tables and maps

• The simplest way to represent an n­variable 
Boolean function is by giving a truth table 
containing 2n rows, each specifying the value of 
the function for the corresponding values of the 
variables x1, ... ,xn 

• Table can be re­aranged in a rectangular n­
dimensional Karnaugh map
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Example

x1x2x3 f1f2
000 00
001 1­
010 10
011 11
100 00
101 ­1
110 11
111 11

Truth table for a function          
f: {0,1}3 → {0,1,­}2 

0

1

1

1

0

1

0

-

x1x2

x3 00  01  11  10

0

1
f1

0

-

0

1

1

1

0

1

x1x2

x3 00  01  11  10

0

1
f2

Karnaugh maps 
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Can we do better?

• Both, truth table and map, give a complete list of 
2n points in Bn and therefore can be used only for 
very small functions

• We can reduce the number of rows:
– if we use don’t care symbol for inputs: 

000 + 001 = 00­ 

– if we don’t show input combinations (a1, ... ,an)∈Bn, for 
which f(a1,...,an) = 0
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x1x2x3 f
000 0
001 1
010 1
011 1
100 0
101 1
110 0
111 1

Example

x1x2x3 f
01­ 1
­­1 1

0

1

1

1

0

1

0

1

x1x2

x3 00  01  11  10

0

1
f1
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Cube terminology for f: Bn → B∪{­} 

• An n­variable Boolean function is interpreted as a 
set of points in an n­dimentional Boolean space

• Cube is any k­dimentional subspace, 0 ≤ k ≤ n
• operations on Boolean functions are performed 

as operations on sets
 AND ≡ intersection “∩”, OR ≡ union “∪”
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Boolean Space Bn

BB00

BB11

BB22

BB33

BB44

Karnaugh Maps: Boolean space:
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3­dimentional Boolean space

0 0 0 100

010

101

110

011 111

001

0-dimentional 
subspace

1-dimentional 
subspace

2-dimentional 
subspace



p. 23 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Minterm

• A point in an n­dimentional Boolean space is 
called a minterm (≡ assignment (a1, ... ,an) ∈ Bn of 
values for the variables x1, ... ,xn of f)

• Note: it is not necessary that f(a1,...,an) = 1 for a 
minterm (a1, ... ,an), any of 2n assignments 
(a1,...,an) ∈ Bn is a minterm

• Recall that cube is any k­dimentional subspace, 0 
≤ k ≤ n
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Minterms and cubes

• Informally speaking, minterm is an n­tuple 
containing “0” and “1” only, while cube is an        
n­tuple which can contain “­” as well
– Examples of minterms for n=3: 
          000, 010     
– Examples of cubes for n=3: 
          000, ­11, ­­­
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Relation between SOPs and cubes

• There is one­to­one correspondence between the 
cube notation and sum­of­products notation:
– cube = product­term

• 0­1 is a cube; x1′ x3 is a product­term

– minterm = product­term with all variables present
• 011 is a minterm; x1′ x2 x3 is a product­term

– set of cubes = sum­of­product expression
• {0­1, ­1­} is a set of cubes representing the on­set of f;    x1′ x3 

+ x2 is the corresponding sum­of­product expression for f
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On­, off­ and don’t care­sets

• On­set Ff is subset of Bn containing all minterms 
mapped to “1”

• Off­set Rf is subset of Bn containing all minterms 
mapped to “0”

• Don’t care­set Df is subset of Bn containing all 
minterms mapped to “­”

Ff ∪ Rf ∪ Df = Bn



p. 27 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Some definitions

• If f = Bn, then f is tautology   
• If f = ∅, then f is not satisfyable  

– satisfying truth assignment is in assignment               
(a1, ... ,an) ∈ Bn for which f(a1, ... ,an) = 1

• f and g are equivalent if f(a1, ... ,an) = g(a1, ... ,an) 
for all (a1, ... ,an) ∈ Bn   
– are two sub­circuits functionally identical?
– is a particular change in the circuit valid?
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Example of a 3­varable function

0 0 0 100

010

101

110

011 111

001

Ff = {010,100,111}
Df = {011,101}
Rf = {000,001,110}



p. 29 ­ Advanced Logic Design – L3 ­ Elena Dubrova

• We can represent any function of type f: Bn → 
B∪{­} by listing two out of three sets Ff, Rf, Df 
– since Ff ∪ Rf ∪ Df = Bn , the third one can be always 

computed
– for example, if Ff  and  Df are given (standard case), we 

can compute Rf  as  

Rf = Bn ­ (Ff  ∪ Df)

Cube representation
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Espresso (or .pla) format 

• .i   specifies the number of inputs
• .o  specifies the number of outputs
• cubes for Ff  and  Df are listed as, for example for 

n=4  
0011  1
­ 010  1
0110  ~

• .e  ends the description

a space separates the input part 
from the output part

means “unspecified” or “specified elsewhere”
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Example of espresso format

.i  3

.o 1
01­ 1
­­1 1
.e

espresso format 

x1x2x3 f
01­ 1
­­1 1

Cube table for Ff 
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Basic operations on cubes

• Next, we define some basic operations of cubes
– intersection of two cubes
– complement of a cube
– containment 
– supercube of two cubes

• Let n­tuples A = (a1 a2 … an), B = (b1 b2 … bn), C = 
(c1 c2 … cn), ai, bi, ci ∈ {0,1,­} be some n­dimensional 
cubes
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Set operations

A
B

C
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• Intersection of cubes A and B is a cube C such 
that ci = ai ∩ bi. If any of  ai ∩ bi = ∅, then C = ∅ 
(empty intersection)
(a1 … an) ∩ (b1 … bn) = (a1 ∩ b1  … an ∩ bn) 

• Element­wise intersection is defined by:

Intersection of two cubes

0 ­ 1
0 0 0 ∅
­ 0 ­ 1
1 ∅ 1 1

∩
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Example of intersection

x1x2x3 f 
-11 1 
11- 1 
1-0 1 

 

 

0

0

0

1

1

1

1

0

x1x2

x3 00  01  11  10

0

1

-11 ∩ 1­0 = ∅ 

-11 ∩ 11­ = 111
1-0 ∩ 11­ = 110
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Complement of a cube

• Complement of a cube A = (a1 a2 … an), is a set of 
cubes Bn ­ A

• An easy way to compute a complement:
Bn ­ A = {C1,C2,…,Cn}

• where cube Ci has completented ai in the ith 
position and has “­” elsewhere
C1 = (a1 ­ …­), C2 = (­ a2 ­…­), Cn = (­­ …­an) 
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Example of complement

• Complement of a cube (11­) = {C1,C2} : 
– cube Ci has completented ai in the ith position and has 

“­” elsewhere
C1 = (a1 ­ ­), C2 = (­ a2 ­)
– don’t cares are skipped (3rd position is don’t care)

0

0

0

0

1

1

0

0

x1x2

x3 00  01  11  10

0

1

 (11­)’ = {(0­­), (­0­)}
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Containment

• Cube A is contained in cube B if and only if ai ⊆ bi 

for all i ∈ {0,1,…,n}
• The containment relation is defined by:

 R⊆ := {(0,0), (0,­), (1,1), (1,­)}
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Example of containment

x1x2x3 f 
-11 1 
110 1 
1-0 1 

 

 

0

0

0

1

1

1

1

0

x1x2

x3 00  01  11  10

0

1

110 is contained in 1­0 
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Supercube of two cubes

•  A supercube of two cubes A and B is the 
smallest cube containing both A and B 

• sup(A,B) can be computed as:  

sup(A,B) = (a1∪b1  … an∪bn) 

• Element­wise union ∪ is defined by:
0 ­ 1

0 0 ­ ­
­ ­ ­ ­
1 ­ ­ 1

∪
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Example of supercube

x1x2x3 f 
-11 1 
11- 1 
1-0 1 

 

 

0

0

0

1

1

1

1

0

x1x2

x3 00  01  11  10

0

1

sup(-11,11­) = ­1­
sup(1-0,11­) = 1­­ 
sup(-11,1­0) = ­­­ 
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Problem caused by cubes

• Use of cubes reduces the number of rows in a 
truth table

• However, since we introduce the 3rd symbol  “­”, 
we will need more bits (2 instead of 1) to code 
each element of the row in computer’s memory

• There are 2 conventions for coding: parallel and 
sequential
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Parallel coding

• Use a pair of integers (min, max) to represent a 
cube
– min is the integer = binary encoding of the cube, when 

all “­” are replaced by “0”
• for example, min for the cube 1­0 is (100)2 = 4

– max is the integer = binary encoding of the cube, when 
all “­” are replaced by “1”

• for example, max for the cube 1­0 is (110)2 = 6
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Parallel coding

• Function is stored dynamically as 3 lists of cubes 
(for the sets Ff, Rf, Df)

• Lists are represented by a stucture declared as:
typedef struct ListofCubes {

long int min;    /* min value of the cube */
long int max;      /* max value of the cube */
struct ListofCubes *next; /* pointer to next cube */

} one_cube;      /* name of the new type */
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Parallel coding

• Parallel coding allows a fast bit­wise 
implementation of many basic operations 
– e.g. max for supercube = bit­wise OR “|” of max parts 

of cubes
• Functions of up to 32 inputs can be represented 

in this way (32 = long int)
– can handle larger functions by storing each of min and 

max in 2 or more words
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Sequential coding = positional cube 
notation

• Cube is represented by substituting each of the 
symbols {0,1,­} by a 2­bit field:

• empty set stands for a non­allowed symbol

∅ 00
0 10
1 01
­ 11
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Sequential coding

• Sequential coding allows a fast bit­wise 
implementation of many basic operations 
– e.g. intersection of two cubes = bit­wise AND “&” of two 

cubes
• No restriction on the number on inputs/outputs
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A possible project topic

• Develop an algorithm which reads in a list of 
cubes (in espresso format) representing an AND­
OR expression of a Boolean function f and 
compute a minimal AND­XOR expression for f. 
Give the in the form of the list of cubes whose 
XOR gives us f

• Example: 
– Read in cubes {01,10} corresponding to a’b + b’a.
– Read out cubes {­1,1­} corresponding to a ⊕ b
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Multiple­output functions

• All the theory we considered  so far applies to 
single­output functions only

• Most of the real­life functions are multiple­output
• A multiple­output function can be treated by 

performing the operations on each output 
separately
– but then the optimality is often lost, e.g. cubes common 

for several functions will not be found
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Example

0

1

1

1

x1
x2 0    1

0

1

1

1

0

1

x1
x2 0    1

0

1

1

0

0

0

x1
x2 0    1

0

1

0

0

1

0

x1
x2 0    1

0

1

f1 f2 f3 f4

4-output function: 

6 cubes if the functions are treated separately
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Extension of cube representation to 
multiple­output functions

• We will extend cubes to multiple­output Boolean 
functions f: Bn → (B∪{~})k by introducing “output” 
part of the cube
– what we called “cube” before, now we call “input part of 

cube” (a sub­space of Bn) 
– output part of a cube is “0”, “1” or “~” 

• “1” in the ith position of the output part means “the cube 
belongs to the function fi “

• “0” in the ith position of the output part means “the cube doesn’t 
belong to the function fi “

•  “~” in the ith position of the output part means “the cube is 
specified elsewhere for fi“ or “non­specified for fi” 
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Example I

x1x2x3 f1f2 
001 10 
-11 11 
101 01 
11- 11 

 

 

Cube table  for Ff 

x1x2x3 f1f2
000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11

Truth table Karnaugh maps 

0

1

0

1

1

1

0

0

x1x2

x3 00  01  11  10

0

1
f1

0

0

0

1

1

1

0

1

x1x2

x3 00  01  11  10

0

1
f2
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Example II

• We can always specify a multiple­output function 
by listing all single­output functions with ”1” in the 
corresponding output part and wiriting ”~” for all 
other output parts

x1x2x3 f1f2 
001 1~   
-11 1~ 
11- 1~ 
101 ~1 
11- ~1 
-11 ~1 

 

 

cube table for the 
function from the 
previous slide 
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Example of intersection and 
supercube

x1x2x3 f1f2
­11 10
1­0 01
11­ 11

0

0

0

1

1

1

0

0

x1x2

x3 00  01  11  10

0

1
f1

0

0

0

0

1

1

1

0

x1x2

x3 00  01  11  10

0

1
f2

∩ for outputs is bit­wise AND:
-11 10 ∩ 1­0 01 = ∅ 
-11 10 ∩ 11­ 11 = 111 10
sup for outputs is bit­wise OR:
-11 10 ∪ 1­0 01 = ­ ­ ­ 11
-11 10 ∪ 11­ 11 =  ­1­ 11
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Complement

• Complement of a multiple­output function can be 
computed by taking complements for each output 
separately 

• Computing the complement of a set of cubes:
– compute complement for each cube

• for each cube, you get a set of cubes (up to the length of input 
part)

– find the intersection of these sets
– remove cubes which are contained in other cubes
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(11­)’ = {(0­­), (­0­)}
(­11)’ = {(­0­), (­­0)}
0­­ ∩ ­0­ = 00­ 
0­­ ∩ ­­0 = 0­0
­0­ ∩ ­0­ = ­0­
­0­ ∩ ­­0 = ­00
­0­ contains 00­ and ­00, so
the result is {(0­0), (­0­)}

Example of complement of a set of 
cubes

0

0

0

1

1

1

0

0

x1x2

x3 00  01  11  10

0

1
f

0

0

0

1

1

1

0

0

x1x2

x3 00  01  11  10

0

1
f’
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Example of complement for multiple­
output functions

• Compute complements for each output:

A = (11­ 11)’ = {(0­­ 11), (­0­ 11)}
B = (­11 10)’ = {(­0­ 10), (­­0 10)}
C = (1­0 01)’ = {(0­­ 01), (­­1 01)}

x1x2x3 f1f2
­11 10
1­0 01
11­ 11

for f1 we get A ∩ B = {(0­0 10), (­0­ 10)}
for f2 we get A ∩ C = {(0­0 01), (0­1 01), (­01 
01)}
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Example (cont.)
• Resulting complement for the functions is representing by 

the following cube table
– recall, that “1” in the ith position of the output part means “the cube 

belongs to the function fi “
– note that the solution is non­optimal

x1x2x3 f1f2
0­0 10
­0­ 10
0­0 01
0­1 01
­01 01

0

0

0

1

1

1

0

0

x1x2

x3 00  01  11  10

0

1
f1

0

0

0

0

1

1

1

0

x1x2

x3 00  01  11  10

0

1
f2
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Parallel coding for multiple­output 
functions (incompletely specified f)

• Use two pairs of integers (min, max): one for the 
input part and one for the output part of the cube

• ListofCubes stucture is modified as:
typedef struct ListofCubes {

long int min;  /* min value of the input part  */
long int max; /* min value of the input part  */ 
long int omin; /* min value of the output part */
long int omax; /* max value of the output part */
...
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Simplified coding for multiple­output 
functions (completely specified f)

• Use a single integer to represent the output part 
of the cube

• ListofCubes stucture is modified as:
typedef struct ListofCubes {

long int min;  /* min value of the input part  */
long int max; /* min value of the input part  */ 
long int output;  /* value of the output part */
...
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An alternative way

• An alternative way to treat a multiple­output 
Boolean function f: Bn → Bk is to consider it as an 
(n+1)­variable 1­output function of type 

f: Bn x {0,1,…,k­1} → B
• All the theory we learned for single­output 

Boolean functions applies to the functions of the 
above type
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Example
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5 cubes
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0
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0

1
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3 cubes


