
L3: Representations of functions

p. 2 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Representations of Boolean functions
• Boolean expression

– Two­level sum­of­product form, factorized form
• Truth tables
• Karnaugh maps
• Cubes

– (MIN,MAX) notation
– positional cube notation

• Binary Decision Diagrams
• Logic circuits
• Galois field GF(2) polynomials

p. 3 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Two approaches

• Two fundamental approaches:
– keep representation canonical with respect to the

function
• tautology or SAT check is easy
• but representation may blow­up in space
• Examples: Truth tables, Karnaugh maps, BDDs

– keep representation non­canonical
• representation can remain compact
• tautology or SAT check is exponential (co­NP complete)
• Example: Boolean expressions, logic circuits

p. 4 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Boolean formula

• Any Boolean function can be represented by a
formula defined as catenations of
– parentheses (,)
– variables x, y, z
– binary operations "+" (OR) and "∙" (AND)
– unary operation negation, "′"

• Examples:
f(x1,x2,x3) = x′1∙x2 + x1∙x3
f(x1,x2,x3) = (x1 + x2)′∙x3

p. 5 ­ Advanced Logic Design – L3 ­ Elena Dubrova

i = 0

2n -1

Canonical SOP form

• Every Boolean function f: {0,1}n → {0,1} has a
canonical sum­of­products (SOP) form of type:

f(x1,x2,..., xn) = ∑ ci ∙x1
i1∙x2

i2 ∙... ∙xn
in

 where
– ci ∈ {0,1} is a constant
– (i1,i2,..., in) is the binary expansion of i
– xk

ik = x′ if ik = 0 and xk
ik = x if ik = 1

p. 6 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Deriving the canonical form

• The above form can be obtained from Shannon
decomposition theorem:

f(x1,x2, ...,xn) = x'1∙f|x1=0 + x1∙ f|x1=1

where

f|x1=0 := f(0,x2, ...,xn), f|x1=1 := f(1,x2, ...,xn)

 are subfunctions (cofactors) of f

p. 7 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Minimization of SOP

• The number of products in the SOP canonical
form is up to 2n

• It can be simplified using the axioms and
properties of Boolean algebra
– e.g. applying a + a′ = 1 reduces the number of products

by one
– more general rule is a ∙ P + a′ ∙ P = P, where P is a

product­term

p. 8 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Why minimizing SOP form?
• A SOP expression can be directly implemented

by a Programmable Logic Array (PLA):

f2 f3f1

a a b b c c

abc f1f2f3

10- 1 ~ ~

-11 1 ~ ~

0-0 ~ 1 ~

111 ~ 1 1

00- ~ ~ 1

Cube table

AND-plane

OR-plane

p. 9 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Summary of SOP forms

• Advantages:
– easy to manipulate and minimize
– many algorithms available (e.g.AND,OR,TAUTOLOGY)
– directly map into PLAs

• Disadvantages:
– poor representative for logic complexity for multi­level

implementation. For example
f=ad+ae+bd+be+cd+ce f’=a’b’c’+d’e’

 these differ in their implementation by an inverter.
– difficult to estimate progress during optimization

p. 10 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Factored forms
• Factored forms are more compact representations of logic

functions than SOP forms
• Example: if the factored form is

(a+b)(c+d(e+f(g+h+i+j)
when represented as a SOP form it is

ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+ bdfh+bdfi+bdfj
• When measured in terms of number of inputs, there are

functions whose size is exponential in sum of products
representation, but polynomial in factored form.

• Example: Achilles’ heel function
has n literals in the factored form and
(n/2)×2n/2 literals in the SOP form

/ 2

2 1 2
1

()
i n

i i
i

x x







p. 11 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Factored forms
Advantages
• good representative for logic complexity for multi­level

implementation.
f=ad+ae+bd+be+cd+ce f’=a’b’c’+d’e’ ⇒ f=(a+b+c)(d+e)
• in many designs (e.g. complex gate CMOS) the implementation

of a function corresponds directly to its factored form
• do not blow up easily

Disadvantages
• not as many algorithms available for manipulation
• hence often just convert into SOP before manipulation

p. 12 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Factored forms

Note:
literal count ≈ transistor count ≈
area
• however, area also depends on
– wiring
– gate size etc.

• therefore very crude measure

p. 13 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Factored forms
Definition: a factored form can be defined recursively by the
following rules. A factored form is either a product or sum
where:
• a product is either a single literal (variable or its

complement) or a product of factored forms
• a sum is either a single literal or a sum of factored forms

• Any logic function can be represented by a factored form,
and any factored form is a representation of some logic
function.

p. 14 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Examples
Examples of factored forms:

x
y’
abc’
a+b’c
((a’+b)cd+e)(a+b’)+e’
(a+b)’c is not a factored form since

complementation is not allowed, except on literals.
Three equivalent factored forms (factored forms are not
unique): ab+c(a+b) bc+a(b+c) ac+b(a+c)

p. 15 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Size of factored forms
Definition:
The size of a factored form F (denoted ρ(F)) is the number

of literals in the factored form.

Example: ρ((a+b)ca’) = 4 ρ((a+b+cd)(a’+b’)) = 6

Definition:
A factored form is optimal if no other factored form (for that

function) has less literals.

p. 16 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Truth tables and maps

• The simplest way to represent an n­variable
Boolean function is by giving a truth table
containing 2n rows, each specifying the value of
the function for the corresponding values of the
variables x1, ... ,xn

• Table can be re­aranged in a rectangular n­
dimensional Karnaugh map

p. 17 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example

x1x2x3 f1f2
000 00
001 1­
010 10
011 11
100 00
101 ­1
110 11
111 11

Truth table for a function
f: {0,1}3 → {0,1,­}2

0

1

1

1

0

1

0

-

x1x2

x3 00 01 11 10

0

1
f1

0

-

0

1

1

1

0

1

x1x2

x3 00 01 11 10

0

1
f2

Karnaugh maps

p. 18 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Can we do better?

• Both, truth table and map, give a complete list of
2n points in Bn and therefore can be used only for
very small functions

• We can reduce the number of rows:
– if we use don’t care symbol for inputs:

000 + 001 = 00­

– if we don’t show input combinations (a1, ... ,an)∈Bn, for
which f(a1,...,an) = 0

p. 19 ­ Advanced Logic Design – L3 ­ Elena Dubrova

x1x2x3 f
000 0
001 1
010 1
011 1
100 0
101 1
110 0
111 1

Example

x1x2x3 f
01­ 1
­­1 1

0

1

1

1

0

1

0

1

x1x2

x3 00 01 11 10

0

1
f1

p. 20 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Cube terminology for f: Bn → B∪{­}

• An n­variable Boolean function is interpreted as a
set of points in an n­dimentional Boolean space

• Cube is any k­dimentional subspace, 0 ≤ k ≤ n
• operations on Boolean functions are performed

as operations on sets
 AND ≡ intersection “∩”, OR ≡ union “∪”

p. 21 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Boolean Space Bn

BB00

BB11

BB22

BB33

BB44

Karnaugh Maps: Boolean space:

p. 22 ­ Advanced Logic Design – L3 ­ Elena Dubrova

3­dimentional Boolean space

0 0 0 100

010

101

110

011 111

001

0-dimentional
subspace

1-dimentional
subspace

2-dimentional
subspace

p. 23 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Minterm

• A point in an n­dimentional Boolean space is
called a minterm (≡ assignment (a1, ... ,an) ∈ Bn of
values for the variables x1, ... ,xn of f)

• Note: it is not necessary that f(a1,...,an) = 1 for a
minterm (a1, ... ,an), any of 2n assignments
(a1,...,an) ∈ Bn is a minterm

• Recall that cube is any k­dimentional subspace, 0
≤ k ≤ n

p. 24 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Minterms and cubes

• Informally speaking, minterm is an n­tuple
containing “0” and “1” only, while cube is an
n­tuple which can contain “­” as well
– Examples of minterms for n=3:
 000, 010
– Examples of cubes for n=3:
 000, ­11, ­­­

p. 25 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Relation between SOPs and cubes

• There is one­to­one correspondence between the
cube notation and sum­of­products notation:
– cube = product­term

• 0­1 is a cube; x1′ x3 is a product­term

– minterm = product­term with all variables present
• 011 is a minterm; x1′ x2 x3 is a product­term

– set of cubes = sum­of­product expression
• {0­1, ­1­} is a set of cubes representing the on­set of f; x1′ x3

+ x2 is the corresponding sum­of­product expression for f

p. 26 ­ Advanced Logic Design – L3 ­ Elena Dubrova

On­, off­ and don’t care­sets

• On­set Ff is subset of Bn containing all minterms
mapped to “1”

• Off­set Rf is subset of Bn containing all minterms
mapped to “0”

• Don’t care­set Df is subset of Bn containing all
minterms mapped to “­”

Ff ∪ Rf ∪ Df = Bn

p. 27 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Some definitions

• If f = Bn, then f is tautology
• If f = ∅, then f is not satisfyable

– satisfying truth assignment is in assignment
(a1, ... ,an) ∈ Bn for which f(a1, ... ,an) = 1

• f and g are equivalent if f(a1, ... ,an) = g(a1, ... ,an)
for all (a1, ... ,an) ∈ Bn
– are two sub­circuits functionally identical?
– is a particular change in the circuit valid?

p. 28 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of a 3­varable function

0 0 0 100

010

101

110

011 111

001

Ff = {010,100,111}
Df = {011,101}
Rf = {000,001,110}

p. 29 ­ Advanced Logic Design – L3 ­ Elena Dubrova

• We can represent any function of type f: Bn →
B∪{­} by listing two out of three sets Ff, Rf, Df
– since Ff ∪ Rf ∪ Df = Bn , the third one can be always

computed
– for example, if Ff and Df are given (standard case), we

can compute Rf as

Rf = Bn ­ (Ff ∪ Df)

Cube representation

p. 30 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Espresso (or .pla) format

• .i specifies the number of inputs
• .o specifies the number of outputs
• cubes for Ff and Df are listed as, for example for

n=4
0011 1
­ 010 1
0110 ~

• .e ends the description

a space separates the input part
from the output part

means “unspecified” or “specified elsewhere”

p. 31 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of espresso format

.i 3

.o 1
01­ 1
­­1 1
.e

espresso format

x1x2x3 f
01­ 1
­­1 1

Cube table for Ff

p. 32 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Basic operations on cubes

• Next, we define some basic operations of cubes
– intersection of two cubes
– complement of a cube
– containment
– supercube of two cubes

• Let n­tuples A = (a1 a2 … an), B = (b1 b2 … bn), C =
(c1 c2 … cn), ai, bi, ci ∈ {0,1,­} be some n­dimensional
cubes

p. 33 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Set operations

A
B

C

p. 34 ­ Advanced Logic Design – L3 ­ Elena Dubrova

• Intersection of cubes A and B is a cube C such
that ci = ai ∩ bi. If any of ai ∩ bi = ∅, then C = ∅
(empty intersection)
(a1 … an) ∩ (b1 … bn) = (a1 ∩ b1 … an ∩ bn)

• Element­wise intersection is defined by:

Intersection of two cubes

0 ­ 1
0 0 0 ∅
­ 0 ­ 1
1 ∅ 1 1

∩

p. 35 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of intersection

x1x2x3 f
-11 1
11- 1
1-0 1

0

0

0

1

1

1

1

0

x1x2

x3 00 01 11 10

0

1

-11 ∩ 1­0 = ∅

-11 ∩ 11­ = 111
1-0 ∩ 11­ = 110

p. 36 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Complement of a cube

• Complement of a cube A = (a1 a2 … an), is a set of
cubes Bn ­ A

• An easy way to compute a complement:
Bn ­ A = {C1,C2,…,Cn}

• where cube Ci has completented ai in the ith
position and has “­” elsewhere
C1 = (a1 ­ …­), C2 = (­ a2 ­…­), Cn = (­­ …­an)

p. 37 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of complement

• Complement of a cube (11­) = {C1,C2} :
– cube Ci has completented ai in the ith position and has

“­” elsewhere
C1 = (a1 ­ ­), C2 = (­ a2 ­)
– don’t cares are skipped (3rd position is don’t care)

0

0

0

0

1

1

0

0

x1x2

x3 00 01 11 10

0

1

 (11­)’ = {(0­­), (­0­)}

p. 38 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Containment

• Cube A is contained in cube B if and only if ai ⊆ bi

for all i ∈ {0,1,…,n}
• The containment relation is defined by:

 R⊆ := {(0,0), (0,­), (1,1), (1,­)}

p. 39 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of containment

x1x2x3 f
-11 1
110 1
1-0 1

0

0

0

1

1

1

1

0

x1x2

x3 00 01 11 10

0

1

110 is contained in 1­0

p. 40 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Supercube of two cubes

• A supercube of two cubes A and B is the
smallest cube containing both A and B

• sup(A,B) can be computed as:

sup(A,B) = (a1∪b1 … an∪bn)

• Element­wise union ∪ is defined by:
0 ­ 1

0 0 ­ ­
­ ­ ­ ­
1 ­ ­ 1

∪

p. 41 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of supercube

x1x2x3 f
-11 1
11- 1
1-0 1

0

0

0

1

1

1

1

0

x1x2

x3 00 01 11 10

0

1

sup(-11,11­) = ­1­
sup(1-0,11­) = 1­­
sup(-11,1­0) = ­­­

p. 42 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Problem caused by cubes

• Use of cubes reduces the number of rows in a
truth table

• However, since we introduce the 3rd symbol “­”,
we will need more bits (2 instead of 1) to code
each element of the row in computer’s memory

• There are 2 conventions for coding: parallel and
sequential

p. 43 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Parallel coding

• Use a pair of integers (min, max) to represent a
cube
– min is the integer = binary encoding of the cube, when

all “­” are replaced by “0”
• for example, min for the cube 1­0 is (100)2 = 4

– max is the integer = binary encoding of the cube, when
all “­” are replaced by “1”

• for example, max for the cube 1­0 is (110)2 = 6

p. 44 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Parallel coding

• Function is stored dynamically as 3 lists of cubes
(for the sets Ff, Rf, Df)

• Lists are represented by a stucture declared as:
typedef struct ListofCubes {

long int min; /* min value of the cube */
long int max; /* max value of the cube */
struct ListofCubes *next; /* pointer to next cube */

} one_cube; /* name of the new type */

p. 45 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Parallel coding

• Parallel coding allows a fast bit­wise
implementation of many basic operations
– e.g. max for supercube = bit­wise OR “|” of max parts

of cubes
• Functions of up to 32 inputs can be represented

in this way (32 = long int)
– can handle larger functions by storing each of min and

max in 2 or more words

p. 46 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Sequential coding = positional cube
notation

• Cube is represented by substituting each of the
symbols {0,1,­} by a 2­bit field:

• empty set stands for a non­allowed symbol

∅ 00
0 10
1 01
­ 11

p. 47 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Sequential coding

• Sequential coding allows a fast bit­wise
implementation of many basic operations
– e.g. intersection of two cubes = bit­wise AND “&” of two

cubes
• No restriction on the number on inputs/outputs

p. 48 ­ Advanced Logic Design – L3 ­ Elena Dubrova

A possible project topic

• Develop an algorithm which reads in a list of
cubes (in espresso format) representing an AND­
OR expression of a Boolean function f and
compute a minimal AND­XOR expression for f.
Give the in the form of the list of cubes whose
XOR gives us f

• Example:
– Read in cubes {01,10} corresponding to a’b + b’a.
– Read out cubes {­1,1­} corresponding to a ⊕ b

p. 49 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Multiple­output functions

• All the theory we considered so far applies to
single­output functions only

• Most of the real­life functions are multiple­output
• A multiple­output function can be treated by

performing the operations on each output
separately
– but then the optimality is often lost, e.g. cubes common

for several functions will not be found

p. 50 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example

0

1

1

1

x1
x2 0 1

0

1

1

1

0

1

x1
x2 0 1

0

1

1

0

0

0

x1
x2 0 1

0

1

0

0

1

0

x1
x2 0 1

0

1

f1 f2 f3 f4

4-output function:

6 cubes if the functions are treated separately

p. 51 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Extension of cube representation to
multiple­output functions

• We will extend cubes to multiple­output Boolean
functions f: Bn → (B∪{~})k by introducing “output”
part of the cube
– what we called “cube” before, now we call “input part of

cube” (a sub­space of Bn)
– output part of a cube is “0”, “1” or “~”

• “1” in the ith position of the output part means “the cube
belongs to the function fi “

• “0” in the ith position of the output part means “the cube doesn’t
belong to the function fi “

• “~” in the ith position of the output part means “the cube is
specified elsewhere for fi“ or “non­specified for fi”

p. 52 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example I

x1x2x3 f1f2
001 10
-11 11
101 01
11- 11

Cube table for Ff

x1x2x3 f1f2
000 00
001 10
010 00
011 11
100 00
101 01
110 11
111 11

Truth table Karnaugh maps

0

1

0

1

1

1

0

0

x1x2

x3 00 01 11 10

0

1
f1

0

0

0

1

1

1

0

1

x1x2

x3 00 01 11 10

0

1
f2

p. 53 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example II

• We can always specify a multiple­output function
by listing all single­output functions with ”1” in the
corresponding output part and wiriting ”~” for all
other output parts

x1x2x3 f1f2
001 1~
-11 1~
11- 1~
101 ~1
11- ~1
-11 ~1

cube table for the
function from the
previous slide

p. 54 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of intersection and
supercube

x1x2x3 f1f2
­11 10
1­0 01
11­ 11

0

0

0

1

1

1

0

0

x1x2

x3 00 01 11 10

0

1
f1

0

0

0

0

1

1

1

0

x1x2

x3 00 01 11 10

0

1
f2

∩ for outputs is bit­wise AND:
-11 10 ∩ 1­0 01 = ∅
-11 10 ∩ 11­ 11 = 111 10
sup for outputs is bit­wise OR:
-11 10 ∪ 1­0 01 = ­ ­ ­ 11
-11 10 ∪ 11­ 11 = ­1­ 11

p. 55 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Complement

• Complement of a multiple­output function can be
computed by taking complements for each output
separately

• Computing the complement of a set of cubes:
– compute complement for each cube

• for each cube, you get a set of cubes (up to the length of input
part)

– find the intersection of these sets
– remove cubes which are contained in other cubes

p. 56 ­ Advanced Logic Design – L3 ­ Elena Dubrova

(11­)’ = {(0­­), (­0­)}
(­11)’ = {(­0­), (­­0)}
0­­ ∩ ­0­ = 00­
0­­ ∩ ­­0 = 0­0
­0­ ∩ ­0­ = ­0­
­0­ ∩ ­­0 = ­00
­0­ contains 00­ and ­00, so
the result is {(0­0), (­0­)}

Example of complement of a set of
cubes

0

0

0

1

1

1

0

0

x1x2

x3 00 01 11 10

0

1
f

0

0

0

1

1

1

0

0

x1x2

x3 00 01 11 10

0

1
f’

p. 57 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example of complement for multiple­
output functions

• Compute complements for each output:

A = (11­ 11)’ = {(0­­ 11), (­0­ 11)}
B = (­11 10)’ = {(­0­ 10), (­­0 10)}
C = (1­0 01)’ = {(0­­ 01), (­­1 01)}

x1x2x3 f1f2
­11 10
1­0 01
11­ 11

for f1 we get A ∩ B = {(0­0 10), (­0­ 10)}
for f2 we get A ∩ C = {(0­0 01), (0­1 01), (­01
01)}

p. 58 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example (cont.)
• Resulting complement for the functions is representing by

the following cube table
– recall, that “1” in the ith position of the output part means “the cube

belongs to the function fi “
– note that the solution is non­optimal

x1x2x3 f1f2
0­0 10
­0­ 10
0­0 01
0­1 01
­01 01

0

0

0

1

1

1

0

0

x1x2

x3 00 01 11 10

0

1
f1

0

0

0

0

1

1

1

0

x1x2

x3 00 01 11 10

0

1
f2

p. 59 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Parallel coding for multiple­output
functions (incompletely specified f)

• Use two pairs of integers (min, max): one for the
input part and one for the output part of the cube

• ListofCubes stucture is modified as:
typedef struct ListofCubes {

long int min; /* min value of the input part */
long int max; /* min value of the input part */
long int omin; /* min value of the output part */
long int omax; /* max value of the output part */
...

p. 60 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Simplified coding for multiple­output
functions (completely specified f)

• Use a single integer to represent the output part
of the cube

• ListofCubes stucture is modified as:
typedef struct ListofCubes {

long int min; /* min value of the input part */
long int max; /* min value of the input part */
long int output; /* value of the output part */
...

p. 61 ­ Advanced Logic Design – L3 ­ Elena Dubrova

An alternative way

• An alternative way to treat a multiple­output
Boolean function f: Bn → Bk is to consider it as an
(n+1)­variable 1­output function of type

f: Bn x {0,1,…,k­1} → B
• All the theory we learned for single­output

Boolean functions applies to the functions of the
above type

p. 62 ­ Advanced Logic Design – L3 ­ Elena Dubrova

Example

0

1

1

1

x1
x2 0 1

0

1

1

1

0

1

x1
x2 0 1

0

1

1

0

0

0

x1
x2 0 1

0

1

0

0

1

0

x1
x2 0 1

0

1

f1 f2 f3 f4

5 cubes

0

1

1

1

1

1

1

0

x3 00 01 11 10
0

1

f1

x1x2

1

0

0

0

0

0

0

1

2

3 f4

f2

f3
3 cubes

