

KUNGL
TEKNISKA
HÖGSKOLAN

International Master Program in System-on-Chip Design

L2: Computational Complexity

Reading material

- de Micheli pp. 42 - 53
- Garey & Johnson “Computers and Intractability: a guide to the theory of NP-completeness”, pp. 1 - 45

Computational complexity

- **Computational complexity** is an abstract measure of the time and space necessary to execute an algorithm as function of its input size
 - the input is the graph $G(V, E)$
 - input size = $|V|$ and $|E|$
 - the input is the truth table of an n -variable Boolean function
 - input size = 2^n

p. 3 - Advanced Logic Design – L2 - Elena Dubrova

Time and space complexity

- **Time complexity** is expressed in elementary computational steps
 - example: addition (or multiplication, or value assignment etc.) is one step
 - normally, by "most efficient" algorithm we mean the fastest
- **Space complexity** is expressed in memory locations
 - e.g. in bits, bytes, words

p. 4 - Advanced Logic Design – L2 - Elena Dubrova

Big-O notation

- $f = O(g)$, if two constants n_0 and K can be found such that for all $n \geq n_0$:

$$f(n) \leq K \cdot g(n)$$

- Examples:

$$2n^2 = O(n^2)$$

$$2n^2 + 3n + 1 = O(n^2)$$

Examples of big-O for algorithms

- February 29th birthday problem - $O(n)$
- Two people with the same birthday problem - $O(n^2)$

Exponential Time Complexity

- An algorithm has an exponential time complexity if its execution time is given by the formula

$$\text{execution time} = k_1 \cdot (k_2)^n$$

where n is the size of the input data and k_1 and k_2 are constants

Exponential Time Complexity

- The execution time grows so fast that even the fastest computers cannot solve problems of practical sizes in a reasonable time
- The problem is called **intractable** if the best algorithm known to solve this problem requires exponential time
- Many CAD problems are intractable

Time complexity comparison

input size function	10	20	30	40	50	60
n	.00001s	.00002s	.00003s	.00004s	.00005s	.00006s
n^2	.0001s	.0004s	.0009s	.0016s	.0025s	.0036s
2^n	.001s	1.0s	17.9min	12.7days	35.7years	366centuries

p. 9 - Advanced Logic Design – L2 - Elena Dubrova

Why do we need to know time complexity of the algorithm?

- Suppose you are a chief algorithm designer in some company
- Your boss wants you to develop an efficient algorithm for solving some problem
- You are finding out that the problem is intractable

p. 10 - Advanced Logic Design – L2 - Elena Dubrova

Solution 1

- You are going to your boss and saying:
*“I can’t find an efficient algorithm, I guess
I am too dump”*

p. 11 - Advanced Logic Design – L2 - Elena Dubrova

Solution 2

- You are going to your boss and saying:
*“I can’t find an efficient algorithm, because
no such algorithm exists”*

p. 12 - Advanced Logic Design – L2 - Elena Dubrova

Optimization and decision problems

- Optimization problems ask to find a solution which has minimum “cost” among all other solutions
 - e.g. mind a minimal sum-or-product expression for a given function
- Decision problems have only two possible solutions: “yes” or “no”
 - e.g. can a given function be represented as a sum of 3 products?

p. 13 - Advanced Logic Design – L2 - Elena Dubrova

The satisfiability problem

- PROBLEM DEFINITION:
Given a product-of-sum Boolean expression C of n variables which consists of m sums, is there a satisfying truth assignment for the variables?
- Example: n=4, m=2

$$C = (x_1 + x_2 + x_4)(x_1 + x_2 + x'_3)$$

the answer is “yes”, if (1101) then C = 1

p. 14 - Advanced Logic Design – L2 - Elena Dubrova

Complexity classes

- **Class P** contains those problems that can be solved in polynomial time (the number of computation steps necessary can be expressed as a polynomial of the input size n).
- The computer concerned is a deterministic Turing machine

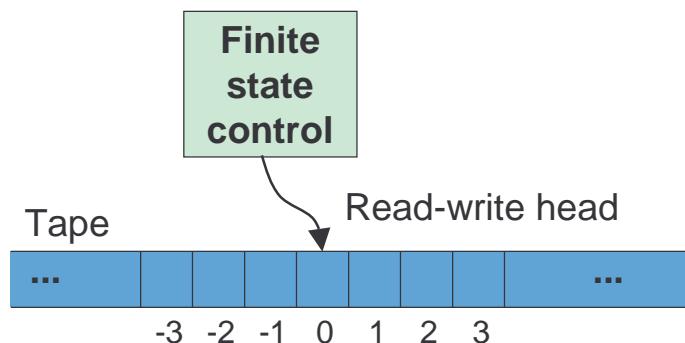
p. 15 - Advanced Logic Design – L2 - Elena Dubrova

Deterministic Turing machine

- Turing machine is a mathematical model of a universal computer
- any computation that needs polynomial time on a Turing machine can also be performed in polynomial time on any other machine
- deterministic means that each step in a computation is predictable

p. 16 - Advanced Logic Design – L2 - Elena Dubrova

Deterministic one-tape Turing machine



p. 17 - Advanced Logic Design – L2 - Elena Dubrova

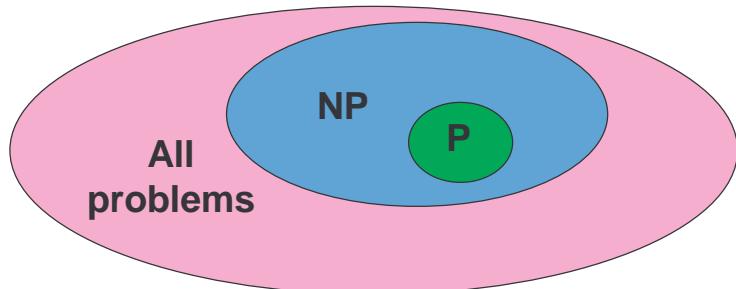
Non-deterministic Turing machine

- If **solution checking** for some problem can be done in polynomial time on a deterministic machine, then the problem can be **solved** in polynomial time on a non-deterministic Turing machine
- non-deterministic - 2 stages:
 - make a guess what the solution is
 - check whether the guess is correct

p. 18 - Advanced Logic Design – L2 - Elena Dubrova

NP-class

- **Class NP** contains those problems that can be solved in polynomial time on a non-deterministic Turing machine



p. 19 - Advanced Logic Design – L2 - Elena Dubrova

NP-complete problems

- An question which is still not answered:
$$P \subset NP \text{ or } P \neq NP$$
- There is a strong belief that $P \neq NP$, due to the existence of NP-complete (NPC) problems (NPC)
 - all NPC problems in have the same degree of difficulty: if one of them could be solved in polynomial time, all of them would have a polynomial time solution.

p. 20 - Advanced Logic Design – L2 - Elena Dubrova

NP-complete problems

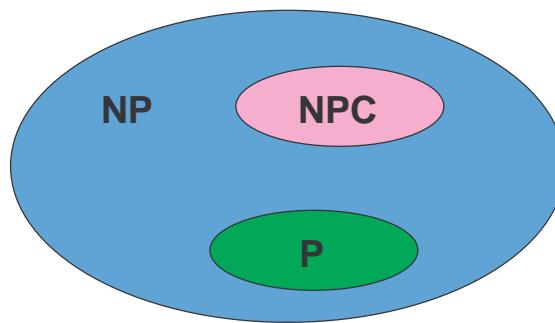
- A problem is **NP-complete** if and only if
 - it is in NP
 - some known NP-complete problem can be transformed to it in polynomial time

Cook's theorem:

SATISFIABILITY is NP-complete

p. 21 - Advanced Logic Design – L2 - Elena Dubrova

World of NP, assuming $P \neq NP$



p. 22 - Advanced Logic Design – L2 - Elena Dubrova

NP-hard problems

- Any decision problem (inside or outside of NP) to which we can transform an NP-complete problem in polynomial time will have a property that it cannot be solved in polynomial time, unless $P = NP$
- Such problems are called NP-hard
 - “as hard as the NP-complete problems”

p. 23 - Advanced Logic Design – L2 - Elena Dubrova

Practical consequences

- Many problems in CAD for VLSI are NP-complete or NP-hard. Therefore:
 - exact solutions to such problems can only be found when the problem size is small.
 - one should otherwise be satisfied with sub-optimal solutions found by:
 - **approximation algorithms**: they can guarantee a solution within e.g. 20% of the optimum
 - **heuristics**: nothing can be said a priori about the quality of the solution

p. 24 - Advanced Logic Design – L2 - Elena Dubrova

Example

- Tractable and intractable problems can be very similar:
 - the SHORTEST-PATH problem for undirected graphs is in P
 - the LONGEST-PATH problem for undirected graphs is NP-complete

p. 25 - Advanced Logic Design – L2 - Elena Dubrova

Examples of NP complete problems

- **Clique:**

instance: Graph $G = (V, E)$, positive integer $K \leq |V|$

question: Does G contain a clique of size K or more?

- **Minimum cover**

instance: collection C of subsets of a finite set S , positive integer $K \leq |C|$

question: Does C contain a cover for S of size K or less?

p. 26 - Advanced Logic Design – L2 - Elena Dubrova

KUNGL
TEKNISKA
HÖGSKOLAN

International Master Program in System-on-Chip Design

Functions

Reading material

- de Micheli pp. 67 - 95, 288 - 294
- Muzio & Wesselkamper “Multiple-valued switching theory”, p. 7 - 19

Binary relation

- Let A and B be sets. A **binary relation** R between A and B is a subset of the Cartesian product $A \times B$
- **Example:** If $A = \{0,1\}$, $B = \{0,1,2\}$, then $A \times B = \{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\}$. If we define R as

$$(a,b) \in R \text{ iff } a = b$$

then, $R = \{(0,0),(1,1)\}$

p. 29 - Advanced Logic Design – L2 - Elena Dubrova

Function

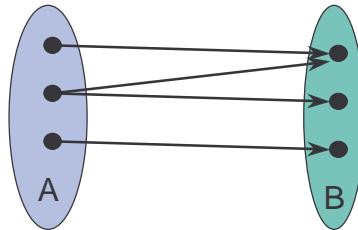
- A **function** $f: A \rightarrow B$ from A to B is a relation, which has the property that every element $a \in A$ is the first element of exactly one ordered pair (a, b) of the relation
- So, $f: A \rightarrow B$ is a mapping assigning to each element $a \in A$ a unique element $b = f(a)$ in B, called **image** of a

p. 30 - Advanced Logic Design – L2 - Elena Dubrova

Examples of functions

- **Examples:**

- $R_1 = \{(0,0), (1,1), (2,2)\}$ is a function
- $R_2 = \{(0,0), (0,1), (2,2)\}$ is not function



p. 31 - Advanced Logic Design – L2 - Elena Dubrova

Some terminology

- A is called the **domain** of f and B is called the **co-domain** of f
- The **range** of f is the set of all images of elements of A (may not be the same as co-domain)
- A function $f: A \rightarrow B$ can be specified by using a rule $a \mapsto f(a)$, assigning to each element $a \in A$, its image $f(a)$ in B

p. 32 - Advanced Logic Design – L2 - Elena Dubrova

Example of specifying a function

- **Example:**

- $R_1 = \{(0,0),(1,1),(2,2)\}$ is a function from $A = \{0,1,2\}$ to $B = \{0,1,2\}$, which can be specified as $a \mapsto a$

p. 33 - Advanced Logic Design – L2 - Elena Dubrova

Binary operation

- A **binary operation** \bullet on A is any function of type $A \times A \rightarrow A$
- So, a binary operation assigns to each ordered pair of elements $(a,b) \in A \times A$ a uniquely defined third element $c = a \bullet b$ in the same set A
- **Example:** 2-variable AND and OR are binary operations

p. 34 - Advanced Logic Design – L2 - Elena Dubrova

Functions used in this course

- **Boolean** functions $f: B^n \rightarrow B$ on a set $B=\{0,1\}$, where B^n denotes the Cartesian product $B \times B \times \dots \times B$
- **incompletely specified** Boolean functions $f: B^n \rightarrow B \cup \{-\}$, where “-” denotes a don’t-care value
- **multiple-output** Boolean functions $f: B^n \rightarrow B^m$, $f: B^n \rightarrow (B \cup \{-\})^k$

p. 35 - Advanced Logic Design – L2 - Elena Dubrova

Functions used in this course

- **Multiple-valued** functions $f: M^n \rightarrow M$ on a set $M = \{0, 1, \dots, m-1\}$
- **Multiple-valued input two-valued output** functions $f: M^n \rightarrow B$

p. 36 - Advanced Logic Design – L2 - Elena Dubrova

Some terminology

- We say that $f(x_1, \dots, x_n)$ is an n -variable function
- Functions $f: M^n \rightarrow M$ are called **homogeneous**, as opposed to **heterogeneous** functions, where the variables x_i do not take values in the same set
- There are $m^{(m^n)}$ homogeneous n -variable m -valued functions

p. 37 - Advanced Logic Design – L2 - Elena Dubrova

KUNGL
TEKNISKA
HÖGSKOLAN

International Master Program in System-on-Chip Design

Boolean Algebra

Reading material

- de Micheli pp. 67 - 68, 288 - 294
- Muzio & Wesselkamper “Multiple-valued switching theory”, p. 25 - 28

p. 39 - Advanced Logic Design – L2 - Elena Dubrova

Boolean Algebra

- Let B be a set, $+$ and \cdot be binary operations, $'$ be unary operation
- $B = \langle B; +, \cdot, ' ; \mathbf{0}, \mathbf{1} \rangle$ is a **Boolean algebra** if the following set of axioms holds for $+$, \cdot , $'$ and some distinct elements $\mathbf{0}$ and $\mathbf{1}$ of B

p. 40 - Advanced Logic Design – L2 - Elena Dubrova

Axioms of Boolean algebra

A1: $a, b \in B \Rightarrow a+b, a \cdot b, a' \in B$

A2: $\forall a, b \in B, a \cdot b = b \cdot a, a + b = b + a$

A3: $\forall a, b, c \in B, a \cdot (b+c) = a \cdot b + a \cdot c, a + b \cdot c = (a+b) \cdot (a+c)$

A4: $\forall a \in B, a \cdot 1 = a, a + 0 = a$

A5: $\forall a \in B, a \cdot a' = 0, a + a' = 1$

A6: $0 \neq 1$

0 is called the **zero** and 1 the **unit** of B

p. 41 - Advanced Logic Design – L2 - Elena Dubrova

Properties

- The following properties follow from the axiom set:

P1: $\forall a \in B, (a')' = a$

P2: $\forall a, b, c \in B, a \cdot (b \cdot c) = (a \cdot b) \cdot c, (a + b) + c = a + (b + c)$

P3: $\forall a \in B, a \cdot 0 = 0, a + 1 = 1$

P4 (De Morgan's laws): $\forall a, b \in B, (a+b)' = a' \cdot b', (a \cdot b)' = a' + b'$

P5: $\forall a, b \in B, a \cdot (a+b) = a, a + a \cdot b = a$

P6: $\forall a \in B, a \cdot a = a, a + a = a$

P7: $0' = 1, 1' = 0$

p. 42 - Advanced Logic Design – L2 - Elena Dubrova

Example 1 of a Boolean algebra

If $B = \{0,1\}$
" $+$ " = OR
" \cdot " = AND
" \prime " = NOT
 $0 = 0$ and $1 = 1$

then all the axioms are satisfied and $\langle \{0,1\}; +, \cdot, \prime; 0,1 \rangle$ is a Boolean algebra

p. 43 - Advanced Logic Design – L2 - Elena Dubrova

Example 2 of a Boolean algebra

If $P(S)$ is the set of all subsets of some non-empty set S
" $+$ " = union \cup
" \cdot " = intersection \cap
" \prime " = complement \neg
 $0 = \emptyset$ and $1 = S$

then all the axioms are satisfied and $\langle P(E); \cup, \cap, \neg, \emptyset, S \rangle$ is a Boolean algebra

p. 44 - Advanced Logic Design – L2 - Elena Dubrova

Functionally complete sets

- A set of functions is called functionally complete if any other function can be composed from the functions in this set
- {AND, OR, NOT} is functionally complete for Boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$

p. 45 - Advanced Logic Design – L2 - Elena Dubrova

Examples of functionally complete sets for $f: \{0,1\}^n \rightarrow \{0,1\}$

- {AND, NOT} is functionally complete
 - follows from de Morgan's law; every “+” can be replaced using “.” and “” as $a+b = (a \cdot b)'$
- {OR, NOT} is functionally complete
 - follows from de Morgan's law
- {AND, XOR, 1} is functionally complete

p. 46 - Advanced Logic Design – L2 - Elena Dubrova