?@F VETgéfiW f\ﬁ TEKNISKA

%%\igzs;é/é HOGSKOLAN

L2: Computational Complexity

Reading material

« de Micheli pp. 42 - 53

* Garey & Johnson “Computers and
Intractability: a guide to the theory of NP-
completeness”, pp. 1 - 45

p. 2 - Advanced Logic Design — L2 - Elena Dubrova

Computational complexity

» Computational complexity is an abstract
measure of the time and space necessary
to execute an algorithm as function of its
input size
— the input is the graph G(V,E)

* input size = |V| and |E|
— the input is the truth table of an n-variable
Boolean function
* input size = 2"

p. 3 - Advanced Logic Design — L2 - Elena Dubrova

Time and space complexity

* Time complexity is expressed in elementary
computational steps

— example: addition (or multiplication, or value
assignment etc.) is one step

—normally, by "most efficient" algorithm we mean
the fastest

» Space complexity is expressed in memory
locations

—e.g. in bits, bytes, words

p. 4 - Advanced Logic Design — L2 - Elena Dubrova

Big-O notation

« f=0O(g), if two constants n, and K can be
found such that for alln=n,:

f(n) <K [g(n)

* Examples:
2n2= O(n?)
22+ 3n+1= 0O(n?

p. 5 - Advanced Logic Design — L2 - Elena Dubrova

Examples of big-O for algorithms

» February 29th birthday problem - O(n)

* Two people with the same birthday problem
- O(n?)

p. 6 - Advanced Logic Design — L2 - Elena Dubrova

Exponential Time Complexity

» An algorithm has an exponential time
complexity if its execution time is given by
the formula

execution time = Kk, -(k,)"

where n is the size of the input data and k,
and k, are constants

p. 7 - Advanced Logic Design — L2 - Elena Dubrova

Exponential Time Complexity

* The execution time grows so fast that even
the fastest computers cannot solve
problems of practical sizes in a reasonable
time

e The problem is called intractable if the best
algorithm known to solve this problem
requires exponential time

 Many CAD problems are intractable

p. 8 - Advanced Logic Design — L2 - Elena Dubrova

Time complexity comparison

input size 10 20 30 40 50 60
function
n .00001s|.00002s |.00003s | .00004s | .00005s .00006s
n? .0001s | .0004s | .0009s | .0016s .0025s .0036s
2" .001s 1.0s |17.9min|12.7days|35.7years | 366centures

p. 9 - Advanced Logic Design — L2 - Elena Dubrova

Why do we need to know time
complexity of the algorithm?

e Suppose you are a chief algorithm designer
In some company

* You boss wants you to develop an efficient
algorithm for solving some problem

* You are finding out that the problem is
intractable

p. 10 - Advanced Logic Design — L2 - Elena Dubrova

Solution 1

* You are going to your boss and saying:
“I can't find an efficient algorithm, | guess
| am too dump”

p. 11 - Advanced Logic Design — L2 - Elena Dubrova

Solution 2

* You are going to your boss and saying:
“l can’t find an efficient algorithm, because
no such algorithm exists”

p. 12 - Advanced Logic Design — L2 - Elena Dubrova

Optimization and decision problems

» Optimization problems ask to find a solution
which has minimum “cost” among all other
solutions
—e.g. mind a minimal sum-or-product expression

for a given function

» Decision problems have only two possible
solutions: “yes” or “no”

—e.g. can a given function be represented as a
sum of 3 products?

p. 13 - Advanced Logic Design — L2 - Elena Dubrova

The satisfiability problem

« PROBLEM DEFINITION:

Given a product-of-sum Boolean expression C
of n variables which consists of m sums, is
there a satisfying truth assignment for the
variables?

« Example: n=4, m=2
C=(Xg + X+ X4)(Xg + X, +X'3)

the answer is “yes”, if (1101) thenC =1

p. 14 - Advanced Logic Design — L2 - Elena Dubrova

Complexity classes

e Class P contains those problems that can
be solved in polynomial time (the number
of computation steps necessary can be
expressed as a polynomial of the input
size n).

* The computer concerned is a deterministic
Turing machine

p. 15 - Advanced Logic Design — L2 - Elena Dubrova

Deterministic Turing machine

e Turing machine is a mathematical model of
a universal computer

e any computation that needs polynomial
time on a Turing machine can also be
performed in polynomial time on any other
machine

» deterministic means that each step in a
computation is predictable

p. 16 - Advanced Logic Design — L2 - Elena Dubrova

Deterministic one-tape Turing
machine

Finite
state
control

Read-write head

Tape

3-2-10 1 2 3

p. 17 - Advanced Logic Design — L2 - Elena Dubrova

Non-deterministic Turing machine

* If solution checking for some problem can
be done in polynomial time on a
deterministic machine, then the problem
can be solved in polynomial time on a non-
deterministic Turing machine

* non-deterministic - 2 stages:
— make a guess what the solution is
— check whether the guess is correct

p. 18 - Advanced Logic Design — L2 - Elena Dubrova

NP-class

e Class NP contains those problems that can
be solved in polynomial time on a non-
deterministic Turing machine

All
problems

p. 19 - Advanced Logic Design — L2 - Elena Dubrova

NP-complete problems

* An question which is still not answered:
P /7 NP or PZNP

e There is a strong belief that PZNP, due to
the existence of NP-complete (NPC)
problems (NPC)

—all NPC problems in have the same degree of
difficulty: if one of them could be solved in

polynomial time, all of them would have a
polynomial time solution.

p. 20 - Advanced Logic Design — L2 - Elena Dubrova

NP-complete problems

* A problem is NP-complete if and only if
—itisin NP
— some known NP-complete problem can be
transformed to it in polynomial time

Cook’s theorem:
SATISFIABILITY is NP-complete

p. 21 - Advanced Logic Design — L2 - Elena Dubrova

World of NP, assuming P # NP

p. 22 - Advanced Logic Design — L2 - Elena Dubrova

NP-hard problems

» Any decision problem (inside or outside of
NP) to which we can transform an NP-
complete problem it in polynomial time will
have a property that it cannot be solved in
polynomial time, unless P = NP

» Such problems are called NP-hard
—“as hard as the NP-complete problems”

p. 23 - Advanced Logic Design — L2 - Elena Dubrova

Practical consequences

* Many problems in CAD for VLSI are NP-
complete or NP-hard. Therefore:

— exact solutions to such problems can only be
found when the problem size is small.

— one should otherwise be satisfied with sub-
optimal solutions found by:

« approximation algorithms: they can guarantee a
solution within e.g. 20% of the optimum

* heuristics: nothing can be said a priori about the
quality of the solution

p. 24 - Advanced Logic Design — L2 - Elena Dubrova

Example

e Tractable and intractable problems can be
very similar:
—the SHORTEST-PATH problem for undirected
graphsisin P
—the LONGEST-PATH problem for undirected
graphs is NP-complete

p. 25 - Advanced Logic Design — L2 - Elena Dubrova

Examples of NP complete problems

 Clique:
instance: Graph G = (V,E), positive integer K <|V]|
guestion: Does G contain a clique of size K or more?
* Minimum cover

instance: collection C of subsets of a finite set S, positive
integer K < |C|
guestion: Does C contain a cover for S of size K or less?

p. 26 - Advanced Logic Design — L2 - Elena Dubrova

?@F VETgéfiW f\ﬁ TEKNISKA

%%\igzs;é/é HOGSKOLAN

Functions

Reading material

» de Micheli pp. 67 - 95, 288 - 294

* Muzio & Wesselkamper “Multiple-valued
switching theory”, p. 7 - 19

p. 28 - Advanced Logic Design — L2 - Elena Dubrova

Binary relation

* Let A and B be sets. A binary relation R
between A and B is a subset of the
Cartesian product A x B

* Example: If A={0,1}, B ={0,1,2}, then
A x B ={(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}.
If we define R as

(a,b) ORIiffa=b
then, R ={(0,0),(1,1)}

p. 29 - Advanced Logic Design — L2 - Elena Dubrova

Function

o Afunctionf: A - B from Ato B is a relation,
which has the property that every element
a [A is the first element of exactly one
ordered pair (a, b) of the relation

* So, f: A - B is a mapping assigning to
each element a [J A a unique element
b =f(a) in B, called image of a

p. 30 - Advanced Logic Design — L2 - Elena Dubrova

Examples of functions

* Examples:
-R; ={(0,0),(1,1),(2,2)} is a function
- R, ={(0,0),(0,1),(2,2)} is not function

A B

p. 31 - Advanced Logic Design — L2 - Elena Dubrova

Some terminology

* Ais called the domain of f and B is called
the co-domain of f

* The range of f is the set of all images of
elements of A (may not be the same as co-
domain)

» A function f: A - B can be specified by
using a rule a |- f(a), assigning to each
element a [A, its image f(a) in B

p. 32 - Advanced Logic Design — L2 - Elena Dubrova

Example of specifying a function

* Example:

- R; ={(0,0),(1,1),(2,2)} is a function from A =
{0,1,2} to B = {0,1,2}, which can be specified as
al- a

p. 33 - Advanced Logic Design — L2 - Elena Dubrova

Binary operation

» A binary operation ¢ on A is any function of
type AXA - A

* S0, a binary operation assigns to each
ordered pair of elements (a,b) HAXA a
uniquely defined third elementc=a -« b in
the same set A

« Example: 2-variable AND and OR are
binary operations

p. 34 - Advanced Logic Design — L2 - Elena Dubrova

Functons used in this course

e Boolean functions f: B" - B on a set
B={0,1}, where B"denotes the Cartesian

product BxB x ... xB

* incompletely specified Boolean functions
f: B" - BU{-}, where “-" denotes a don't-
care value

* muliple-output Boolean functions
f.B" - B™M, f: B" - (BO{-})*

p. 35 - Advanced Logic Design — L2 - Elena Dubrova

Functons used in this course

e Multiple-valued functions f: M" -~ M on a
setM={0,1,...,m-1}

» Multiple-valued input two-valued output
functions f: M" . B

p. 36 - Advanced Logic Design — L2 - Elena Dubrova

Some terminology

« We say that f(x,, ... ,X,) IS an n-variable
function

e Functions f: M" - M are called
homogeneous, as opposed to
heterogeneous functions, where the
variables x; do not take values in the same
set

« There are m™") homogeneous n-variable
m-valued functions

p. 37 - Advanced Logic Design — L2 - Elena Dubrova

%ETENSK;\;\B, & KUNGL

OCH TEKNISKA
%%\gzsié/ HOGSKOLAN

Boolean Algebra

Reading material

» de Micheli pp. 67 - 68, 288 - 294

* Muzio & Wesselkamper “Multiple-valued
switching theory”, p. 25 - 28

p. 39 - Advanced Logic Design — L2 - Elena Dubrova

Boolean Algebra

 Let B be aset, "+"and "-" be binary
operations, "' " be unary operation

« B=(B;+,-';0,1)Iis aBoolean algebra is
the following set of axioms holds for "+”, ".”,
""" and some distinct elements 0 and 1 of
B

p. 40 - Advanced Logic Design — L2 - Elena Dubrova

Axioms of Boolean algebra

Al:a,b0B = atb,ab,a OB

A2:0a,b 0B, asb=b-a,a+b=b+a

A3: a,b,c OB, a:(b+c)=a-b+a-c,a+b
-c = (a+b)-(a+c)

A4:JallB, a:l1=a,a+0= a

Ab:[JalB, asa’'=0,a+a' =1

A6:0#£1

O is called the zero and 1 the unit of B

p. 41 - Advanced Logic Design — L2 - Elena Dubrova

Properties

» The following properties follow from the axiom
set:
PlL.0alB, (@) =a
P2: Oa,b,c OB, a:(b-c)=(ab)c,(a+b)+c=a+(b+c)
P3:JalJB, a0=0,a+1=1
P4 (De Morgan’s laws): a,b [0 B, (at+b) =a'-b’, (a-b)’
a+b'
P5: 0a,b 0B, a(ath)=a,a+ab=a
P6:JaldB, a-a=a,ata=a
P7:0'=1,1"=0

p. 42 - Advanced Logic Design — L2 - Elena Dubrova

Example 1 of a Boolean algebra

If B={0,1}
"+"= OR
"." = AND
"= NOT
O=0and1=1

then all the axioms are satisfied and ({0,1}; +,
-, ', 0,1) is a Boolean algebra

p. 43 - Advanced Logic Design — L2 - Elena Dubrova

Example 2 of a Boolean algebra

If P(S) is the set of all subsets of some non-
empty set S

"+" = union [
"." = intersection n
" " = complement -
O=0Oand1=S
then all the axioms are satisfied and (P(E);
,n,~, 0,S) is a Boolean algebra

p. 44 - Advanced Logic Desigh — L2 - Elena Dubrova

Functionally complete sets

» A set of functions is called functionally
complete if any other function can be
composed from the functions in this set

* {AND, OR, NOT} is functionally complete
for Boolean functions f: {0,1}" - {0,1}

p. 45 - Advanced Logic Design — L2 - Elena Dubrova

Examples of functionally complete
sets for f: {0,1}" - {0,1}
* {AND, NOT} is functionally complete
— follows from de Morgan’s law; every “+” can be
replaced using “-” and “” as a+b = (a'-b")’
* {OR, NOT} is functionally complete
— follows from de Morgan’s law

* {AND, XOR, 1} is functionally complete

p. 46 - Advanced Logic Design — L2 - Elena Dubrova

