
L2: Computational Complexity
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Reading material

• de Micheli pp. 42 - 53
• Garey & Johnson “Computers and 

Intractability: a guide to the theory of NP-
completeness”, pp. 1 - 45
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Computational complexity

• Computational complexity is an abstract 
measure of the time and space necessary 
to execute an algorithm as function of its 
input size
– the input is the graph G(V,E)

• input size = |V| and |E|

– the input is the truth table of an n-variable 
Boolean function

• input size = 2n
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Time and space complexity

• Time complexity is expressed in elementary 
computational steps
– example: addition (or multiplication, or value 

assignment etc.) is one step
– normally, by "most efficient" algorithm we mean 

the fastest

• Space complexity is expressed in memory 
locations 
– e.g. in bits, bytes, words
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• f = O(g), if two constants n0 and K can be 
found such that for all n ≥ n0 :

f (n) ≤ K ⋅ g(n)

• Examples:
2n2 = O(n2)

2n2 + 3n +1 = O(n2)

Big-O notation
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Examples of big-O for algorithms

• February 29th birthday problem - O(n)
• Two people with the same birthday problem 

- O(n2)
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Exponential Time Complexity

• An algorithm has an exponential time 
complexity if its execution time is given by 
the formula

execution time = k1·(k2)n

where n is the size of the input data and k1

and k2  are constants
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Exponential Time Complexity

• The execution time grows so fast that even 
the fastest computers cannot solve 
problems of practical sizes in a reasonable 
time

• The problem is called intractable if the best 
algorithm known to solve this problem 
requires exponential time

• Many CAD problems are intractable
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Time complexity comparison

    input size
function

10 20 30 40 50 60

n .00001s .00002s .00003s .00004s .00005s .00006s

n2 .0001s .0004s .0009s .0016s .0025s .0036s

2n .001s 1.0s 17.9min 12.7days 35.7years 366centures
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Why do we need to know time          
complexity of the algorithm?

• Suppose you are a chief algorithm designer 
in some company

• You boss wants you to develop an efficient 
algorithm for solving some problem

• You are finding out that the problem is 
intractable 
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Solution 1

• You are going to your boss and saying:       
“I can’t find an efficient algorithm, I guess    
I am too dump”
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Solution 2

• You are going to your boss and saying:       
“I can’t find an efficient algorithm, because 
no such algorithm exists”
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Optimization and decision problems

• Optimization problems ask to find a solution 
which has minimum “cost” among all other 
solutions
– e.g. mind a minimal sum-or-product expression 

for a given function

• Decision problems have only two possible 
solutions: “yes” or “no”
– e.g. can a given function be represented as a 

sum of 3 products?
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The satisfiability problem

• PROBLEM DEFINITION:
Given a product-of-sum Boolean expression C 
of n variables which consists of m sums, is 
there a satisfying truth assignment for the 
variables?

• Example: n=4, m=2

C = (x1 + x2 + x4 )( x1 + x2 + x'3 )

the answer is “yes”, if (1101) then C = 1 
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Complexity classes

• Class P contains those problems that can 
be solved in polynomial time (the number  
of computation steps necessary can be 
expressed as a polynomial of the input   
size n).

• The computer concerned is a deterministic 
Turing machine
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Deterministic Turing machine

• Turing machine is a mathematical model of 
a universal computer 

• any computation that needs polynomial 
time on a Turing machine can also be 
performed in polynomial time on any other 
machine

• deterministic means that each step in a 
computation is predictable
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Deterministic one-tape Turing 
machine

0-1-2 321-3

... ...
Tape

Finite 
state 

control

Read-write head
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Non-deterministic Turing machine

• If solution checking for some problem can 
be done in polynomial time on a 
deterministic machine, then the problem 
can be solved in polynomial time on a non-
deterministic Turing machine

• non-deterministic - 2 stages:
– make a guess what the solution is
– check whether the guess is correct
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All 
problems

NP

NP-class

• Class NP contains those problems that can 
be solved in polynomial time on a non-
deterministic Turing machine

P
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NP-complete problems

• An question which is still not answered:

P ⊂ NP  or  P ≠ NP 

• There is a strong belief that P≠ NP, due to 
the existence of NP-complete (NPC) 
problems (NPC)
– all NPC problems in have the same degree of 

difficulty: if one of them could be solved in 
polynomial time, all of them would have a 
polynomial time solution.
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NP-complete problems

• A problem is NP-complete if and only if
– it is in NP
– some known NP-complete problem can be 

transformed to it in polynomial time

Cook’s theorem: 

SATISFIABILITY is NP-complete
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World of NP, assuming P ≠≠≠≠ NP

NP

P

NPC
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NP-hard problems

• Any decision problem (inside or outside of 
NP) to which we can transform an NP-
complete problem it in polynomial time will 
have a property that it cannot be solved in 
polynomial time, unless  P = NP

• Such problems are called NP-hard
– “as hard as the NP-complete problems”
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Practical consequences

• Many problems in CAD for VLSI are NP-
complete or NP-hard. Therefore:
– exact solutions to such problems can only be 

found when the problem size is small.
– one should otherwise be satisfied with sub-

optimal solutions found by:
• approximation algorithms: they can guarantee a 

solution within e.g. 20% of the optimum
• heuristics: nothing can be said a priori about the 

quality of the solution
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Example

• Tractable and intractable problems can be 
very similar:
– the SHORTEST-PATH problem for undirected 

graphs is in P
– the LONGEST-PATH problem for undirected 

graphs is NP-complete
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Examples of NP complete problems

• Clique: 
instance: Graph G = (V,E), positive integer  K ≤ |V|
question: Does G contain a clique of size K or more?

• Minimum cover
instance: collection C of subsets of a finite set S, positive 

integer K ≤ |C|
question: Does C contain a cover for S of size K or less?



Functions
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Reading material

• de Micheli pp. 67 - 95, 288 - 294
• Muzio & Wesselkamper  “Multiple-valued 

switching theory”, p. 7 - 19
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Binary relation

• Let A and B be sets. A binary relation R 
between A and B is a subset of the 
Cartesian  product A x B 

• Example: If A = {0,1}, B = {0,1,2}, then       
A x B = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}. 
If we define R as

(a,b) ∈ R iff a = b
then, R = {(0,0),(1,1)} 
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Function

• A function f: A → B from A to B is a relation, 
which has the property that every element  
a ∈ A is the first element of exactly one 
ordered pair  (a, b) of the relation

• So, f: A → B is a mapping assigning to 
each element  a ∈ A a unique element 
b = f(a) in B, called image of a
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Examples of functions

• Examples:
– R1 = {(0,0),(1,1),(2,2)} is a function
– R2 = {(0,0),(0,1),(2,2)} is not function

A B
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Some terminology

• A is called the domain of f and B is called 
the co-domain of f 

• The range of f is the set of all images of 
elements of A (may not be the same as co-
domain)

• A function f: A → B can be specified by 
using a rule a |→ f(a), assigning to each 
element a ∈ A, its image f(a) in B
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Example of specifying a function

• Example:
– R1 = {(0,0),(1,1),(2,2)} is a function from A = 

{0,1,2} to B = {0,1,2}, which can be specified as  
a |→ a
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Binary operation

• A binary operation • on A is any function of 
type  A x A → A 

• So, a binary operation assigns to each 
ordered pair of elements (a,b) ∈ A x A  a 
uniquely defined third element c = a • b in 
the same  set A

• Example: 2-variable AND and OR are 
binary operations
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Functons used in this course

• Boolean functions f: Bn → B on a set 
B={0,1}, where Bn denotes the Cartesian 
product  B x B x … x B 

• incompletely specified Boolean functions              
f: Bn → B∪{-}, where “-” denotes a don’t-
care value

• muliple-output Boolean functions                
f: Bn → Bm, f: Bn → (B∪{-})k
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Functons used in this course

• Multiple-valued functions f: Mn → M on a 
set M = {0,1,…,m-1} 

• Multiple-valued input two-valued output 
functions f: Mn → B 
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Some terminology

• We say that f(x1, ... ,xn) is an n-variable 
function

• Functions f: Mn → M are called 
homogeneous, as opposed to 
heterogeneous functions, where the 
variables xi do not take values in the same 
set

• There are m(mn) homogeneous n-variable 
m-valued functions

Boolean Algebra
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Reading material

• de Micheli pp. 67 - 68, 288 - 294
• Muzio & Wesselkamper  “Multiple-valued 

switching theory”, p. 25 - 28
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Boolean Algebra

• Let B be a set , "+" and "·" be binary 
operations,  " ′ " be unary operation 

• Β = �B; +, ·, ′; 0, 1 � is a Boolean algebra is 
the following set of axioms holds for "+”, "·”, 
" ′ "  and some distinct elements 0 and 1 of 
B 
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Axioms of Boolean algebra

A1: a,b ∈ B   � a+b, a·b, a′ ∈ B
A2: ∀a,b ∈ B,  a·b = b ·a, a + b = b + a
A3: ∀a,b,c ∈ B,  a·(b+c) = a·b+ a·c, a + b 

·c = (a+b)·(a+c)
A4: ∀a ∈ B,  a·1= a, a + 0 =  a
A5: ∀a ∈ B,  a·a′ = 0, a + a′ = 1
A6: 0 ≠≠≠≠ 1

0 is called the zero and 1 the unit of Β
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Properties

• The following properties follow from the axiom 
set:
P1: ∀a ∈ B, (a′)′ = a
P2: ∀a,b,c ∈ B,  a·(b·c) = (a·b)·c, (a + b) + c = a + (b + c)
P3: ∀a ∈ B,  a·0 = 0, a + 1 = 1
P4 (De Morgan’s laws): ∀a,b ∈ B,  (a+b)′ = a′·b′, (a ·b) ′ = 

a′+ b′
P5: ∀a,b ∈ B,  a·(a+b) = a, a + a·b = a
P6: ∀a ∈ B,  a · a = a, a + a = a
P7: 0 ′= 1, 1′ = 0
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Example 1 of a Boolean algebra

If   B = {0,1} 
"+" = OR
"·" = AND

" ′ " = NOT
0 = 0 and 1 = 1

then all the axioms are satisfied and �{0,1}; +, 
·, ′; 0,1� is a Boolean algebra
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Example 2 of a Boolean algebra

If  P(S) is the set of all subsets of some non-
empty set S

"+" = union ∪
"·" = intersection ∩
" ′ " = complement ¬
0 = ∅ and 1 = S

then all the axioms are satisfied and �P(E); 
∪,∩,¬, ∅,S� is a Boolean algebra
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Functionally complete sets

• A set of functions is called functionally 
complete if any other function can be 
composed from the functions in this set

• {AND, OR, NOT} is functionally complete 
for Boolean functions  f: {0,1}n → {0,1}
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Examples of functionally complete 
sets for f: {0,1}n →→→→ {0,1}

• {AND, NOT} is functionally complete
– follows from de Morgan’s law; every “+” can be 

replaced using “·” and “′” as  a+b = (a′·b′)′
• {OR, NOT} is functionally complete

– follows from de Morgan’s law

• {AND, XOR, 1} is functionally complete


