
L2: Computational Complexity

p. 2 - Advanced Logic Design – L2 - Elena Dubrova

Reading material

• de Micheli pp. 42 - 53
• Garey & Johnson “Computers and

Intractability: a guide to the theory of NP-
completeness”, pp. 1 - 45

p. 3 - Advanced Logic Design – L2 - Elena Dubrova

Computational complexity

• Computational complexity is an abstract
measure of the time and space necessary
to execute an algorithm as function of its
input size
– the input is the graph G(V,E)

• input size = |V| and |E|

– the input is the truth table of an n-variable
Boolean function

• input size = 2n

p. 4 - Advanced Logic Design – L2 - Elena Dubrova

Time and space complexity

• Time complexity is expressed in elementary
computational steps
– example: addition (or multiplication, or value

assignment etc.) is one step
– normally, by "most efficient" algorithm we mean

the fastest

• Space complexity is expressed in memory
locations
– e.g. in bits, bytes, words

p. 5 - Advanced Logic Design – L2 - Elena Dubrova

• f = O(g), if two constants n0 and K can be
found such that for all n ≥ n0 :

f (n) ≤ K ⋅ g(n)

• Examples:
2n2 = O(n2)

2n2 + 3n +1 = O(n2)

Big-O notation

p. 6 - Advanced Logic Design – L2 - Elena Dubrova

Examples of big-O for algorithms

• February 29th birthday problem - O(n)
• Two people with the same birthday problem

- O(n2)

p. 7 - Advanced Logic Design – L2 - Elena Dubrova

Exponential Time Complexity

• An algorithm has an exponential time
complexity if its execution time is given by
the formula

execution time = k1·(k2)n

where n is the size of the input data and k1

and k2 are constants

p. 8 - Advanced Logic Design – L2 - Elena Dubrova

Exponential Time Complexity

• The execution time grows so fast that even
the fastest computers cannot solve
problems of practical sizes in a reasonable
time

• The problem is called intractable if the best
algorithm known to solve this problem
requires exponential time

• Many CAD problems are intractable

p. 9 - Advanced Logic Design – L2 - Elena Dubrova

Time complexity comparison

 input size
function

10 20 30 40 50 60

n .00001s .00002s .00003s .00004s .00005s .00006s

n2 .0001s .0004s .0009s .0016s .0025s .0036s

2n .001s 1.0s 17.9min 12.7days 35.7years 366centures

p. 10 - Advanced Logic Design – L2 - Elena Dubrova

Why do we need to know time
complexity of the algorithm?

• Suppose you are a chief algorithm designer
in some company

• You boss wants you to develop an efficient
algorithm for solving some problem

• You are finding out that the problem is
intractable

p. 11 - Advanced Logic Design – L2 - Elena Dubrova

Solution 1

• You are going to your boss and saying:
“I can’t find an efficient algorithm, I guess
I am too dump”

p. 12 - Advanced Logic Design – L2 - Elena Dubrova

Solution 2

• You are going to your boss and saying:
“I can’t find an efficient algorithm, because
no such algorithm exists”

p. 13 - Advanced Logic Design – L2 - Elena Dubrova

Optimization and decision problems

• Optimization problems ask to find a solution
which has minimum “cost” among all other
solutions
– e.g. mind a minimal sum-or-product expression

for a given function

• Decision problems have only two possible
solutions: “yes” or “no”
– e.g. can a given function be represented as a

sum of 3 products?

p. 14 - Advanced Logic Design – L2 - Elena Dubrova

The satisfiability problem

• PROBLEM DEFINITION:
Given a product-of-sum Boolean expression C
of n variables which consists of m sums, is
there a satisfying truth assignment for the
variables?

• Example: n=4, m=2

C = (x1 + x2 + x4)(x1 + x2 + x'3)

the answer is “yes”, if (1101) then C = 1

p. 15 - Advanced Logic Design – L2 - Elena Dubrova

Complexity classes

• Class P contains those problems that can
be solved in polynomial time (the number
of computation steps necessary can be
expressed as a polynomial of the input
size n).

• The computer concerned is a deterministic
Turing machine

p. 16 - Advanced Logic Design – L2 - Elena Dubrova

Deterministic Turing machine

• Turing machine is a mathematical model of
a universal computer

• any computation that needs polynomial
time on a Turing machine can also be
performed in polynomial time on any other
machine

• deterministic means that each step in a
computation is predictable

p. 17 - Advanced Logic Design – L2 - Elena Dubrova

Deterministic one-tape Turing
machine

0-1-2 321-3

... ...
Tape

Finite
state

control

Read-write head

p. 18 - Advanced Logic Design – L2 - Elena Dubrova

Non-deterministic Turing machine

• If solution checking for some problem can
be done in polynomial time on a
deterministic machine, then the problem
can be solved in polynomial time on a non-
deterministic Turing machine

• non-deterministic - 2 stages:
– make a guess what the solution is
– check whether the guess is correct

p. 19 - Advanced Logic Design – L2 - Elena Dubrova

All
problems

NP

NP-class

• Class NP contains those problems that can
be solved in polynomial time on a non-
deterministic Turing machine

P

p. 20 - Advanced Logic Design – L2 - Elena Dubrova

NP-complete problems

• An question which is still not answered:

P ⊂ NP or P ≠ NP

• There is a strong belief that P≠ NP, due to
the existence of NP-complete (NPC)
problems (NPC)
– all NPC problems in have the same degree of

difficulty: if one of them could be solved in
polynomial time, all of them would have a
polynomial time solution.

p. 21 - Advanced Logic Design – L2 - Elena Dubrova

NP-complete problems

• A problem is NP-complete if and only if
– it is in NP
– some known NP-complete problem can be

transformed to it in polynomial time

Cook’s theorem:

SATISFIABILITY is NP-complete

p. 22 - Advanced Logic Design – L2 - Elena Dubrova

World of NP, assuming P ≠≠≠≠ NP

NP

P

NPC

p. 23 - Advanced Logic Design – L2 - Elena Dubrova

NP-hard problems

• Any decision problem (inside or outside of
NP) to which we can transform an NP-
complete problem it in polynomial time will
have a property that it cannot be solved in
polynomial time, unless P = NP

• Such problems are called NP-hard
– “as hard as the NP-complete problems”

p. 24 - Advanced Logic Design – L2 - Elena Dubrova

Practical consequences

• Many problems in CAD for VLSI are NP-
complete or NP-hard. Therefore:
– exact solutions to such problems can only be

found when the problem size is small.
– one should otherwise be satisfied with sub-

optimal solutions found by:
• approximation algorithms: they can guarantee a

solution within e.g. 20% of the optimum
• heuristics: nothing can be said a priori about the

quality of the solution

p. 25 - Advanced Logic Design – L2 - Elena Dubrova

Example

• Tractable and intractable problems can be
very similar:
– the SHORTEST-PATH problem for undirected

graphs is in P
– the LONGEST-PATH problem for undirected

graphs is NP-complete

p. 26 - Advanced Logic Design – L2 - Elena Dubrova

Examples of NP complete problems

• Clique:
instance: Graph G = (V,E), positive integer K ≤ |V|
question: Does G contain a clique of size K or more?

• Minimum cover
instance: collection C of subsets of a finite set S, positive

integer K ≤ |C|
question: Does C contain a cover for S of size K or less?

Functions

p. 28 - Advanced Logic Design – L2 - Elena Dubrova

Reading material

• de Micheli pp. 67 - 95, 288 - 294
• Muzio & Wesselkamper “Multiple-valued

switching theory”, p. 7 - 19

p. 29 - Advanced Logic Design – L2 - Elena Dubrova

Binary relation

• Let A and B be sets. A binary relation R
between A and B is a subset of the
Cartesian product A x B

• Example: If A = {0,1}, B = {0,1,2}, then
A x B = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}.
If we define R as

(a,b) ∈ R iff a = b
then, R = {(0,0),(1,1)}

p. 30 - Advanced Logic Design – L2 - Elena Dubrova

Function

• A function f: A → B from A to B is a relation,
which has the property that every element
a ∈ A is the first element of exactly one
ordered pair (a, b) of the relation

• So, f: A → B is a mapping assigning to
each element a ∈ A a unique element
b = f(a) in B, called image of a

p. 31 - Advanced Logic Design – L2 - Elena Dubrova

Examples of functions

• Examples:
– R1 = {(0,0),(1,1),(2,2)} is a function
– R2 = {(0,0),(0,1),(2,2)} is not function

A B

p. 32 - Advanced Logic Design – L2 - Elena Dubrova

Some terminology

• A is called the domain of f and B is called
the co-domain of f

• The range of f is the set of all images of
elements of A (may not be the same as co-
domain)

• A function f: A → B can be specified by
using a rule a |→ f(a), assigning to each
element a ∈ A, its image f(a) in B

p. 33 - Advanced Logic Design – L2 - Elena Dubrova

Example of specifying a function

• Example:
– R1 = {(0,0),(1,1),(2,2)} is a function from A =

{0,1,2} to B = {0,1,2}, which can be specified as
a |→ a

p. 34 - Advanced Logic Design – L2 - Elena Dubrova

Binary operation

• A binary operation • on A is any function of
type A x A → A

• So, a binary operation assigns to each
ordered pair of elements (a,b) ∈ A x A a
uniquely defined third element c = a • b in
the same set A

• Example: 2-variable AND and OR are
binary operations

p. 35 - Advanced Logic Design – L2 - Elena Dubrova

Functons used in this course

• Boolean functions f: Bn → B on a set
B={0,1}, where Bn denotes the Cartesian
product B x B x … x B

• incompletely specified Boolean functions
f: Bn → B∪{-}, where “-” denotes a don’t-
care value

• muliple-output Boolean functions
f: Bn → Bm, f: Bn → (B∪{-})k

p. 36 - Advanced Logic Design – L2 - Elena Dubrova

Functons used in this course

• Multiple-valued functions f: Mn → M on a
set M = {0,1,…,m-1}

• Multiple-valued input two-valued output
functions f: Mn → B

p. 37 - Advanced Logic Design – L2 - Elena Dubrova

Some terminology

• We say that f(x1, ... ,xn) is an n-variable
function

• Functions f: Mn → M are called
homogeneous, as opposed to
heterogeneous functions, where the
variables xi do not take values in the same
set

• There are m(mn) homogeneous n-variable
m-valued functions

Boolean Algebra

p. 39 - Advanced Logic Design – L2 - Elena Dubrova

Reading material

• de Micheli pp. 67 - 68, 288 - 294
• Muzio & Wesselkamper “Multiple-valued

switching theory”, p. 25 - 28

p. 40 - Advanced Logic Design – L2 - Elena Dubrova

Boolean Algebra

• Let B be a set , "+" and "·" be binary
operations, " ′ " be unary operation

• Β = �B; +, ·, ′; 0, 1 � is a Boolean algebra is
the following set of axioms holds for "+”, "·”,
" ′ " and some distinct elements 0 and 1 of
B

p. 41 - Advanced Logic Design – L2 - Elena Dubrova

Axioms of Boolean algebra

A1: a,b ∈ B � a+b, a·b, a′ ∈ B
A2: ∀a,b ∈ B, a·b = b ·a, a + b = b + a
A3: ∀a,b,c ∈ B, a·(b+c) = a·b+ a·c, a + b

·c = (a+b)·(a+c)
A4: ∀a ∈ B, a·1= a, a + 0 = a
A5: ∀a ∈ B, a·a′ = 0, a + a′ = 1
A6: 0 ≠≠≠≠ 1

0 is called the zero and 1 the unit of Β

p. 42 - Advanced Logic Design – L2 - Elena Dubrova

Properties

• The following properties follow from the axiom
set:
P1: ∀a ∈ B, (a′)′ = a
P2: ∀a,b,c ∈ B, a·(b·c) = (a·b)·c, (a + b) + c = a + (b + c)
P3: ∀a ∈ B, a·0 = 0, a + 1 = 1
P4 (De Morgan’s laws): ∀a,b ∈ B, (a+b)′ = a′·b′, (a ·b) ′ =

a′+ b′
P5: ∀a,b ∈ B, a·(a+b) = a, a + a·b = a
P6: ∀a ∈ B, a · a = a, a + a = a
P7: 0 ′= 1, 1′ = 0

p. 43 - Advanced Logic Design – L2 - Elena Dubrova

Example 1 of a Boolean algebra

If B = {0,1}
"+" = OR
"·" = AND

" ′ " = NOT
0 = 0 and 1 = 1

then all the axioms are satisfied and �{0,1}; +,
·, ′; 0,1� is a Boolean algebra

p. 44 - Advanced Logic Design – L2 - Elena Dubrova

Example 2 of a Boolean algebra

If P(S) is the set of all subsets of some non-
empty set S

"+" = union ∪
"·" = intersection ∩
" ′ " = complement ¬
0 = ∅ and 1 = S

then all the axioms are satisfied and �P(E);
∪,∩,¬, ∅,S� is a Boolean algebra

p. 45 - Advanced Logic Design – L2 - Elena Dubrova

Functionally complete sets

• A set of functions is called functionally
complete if any other function can be
composed from the functions in this set

• {AND, OR, NOT} is functionally complete
for Boolean functions f: {0,1}n → {0,1}

p. 46 - Advanced Logic Design – L2 - Elena Dubrova

Examples of functionally complete
sets for f: {0,1}n →→→→ {0,1}

• {AND, NOT} is functionally complete
– follows from de Morgan’s law; every “+” can be

replaced using “·” and “′” as a+b = (a′·b′)′
• {OR, NOT} is functionally complete

– follows from de Morgan’s law

• {AND, XOR, 1} is functionally complete

