

KUNGL
TEKNISKA
HÖGSKOLAN

Inte

Master Pr

in System-on-Chip Design

L10: Multiple-valued logic

Reading material

- Muzio & Wesselkamper “Multiple-valued switching theory”, p. 38 - 66
- Hudsson & Sasao, chapter 4

Completeness in MVL case

- Boolean algebras are not functionally complete for functions over the sets other than $B=\{0,1\}$
- We will generalize Boolean algebras to handle functions over $M = \{0,1,\dots,m-1\}$
- General conditions for completeness in MVL case were formulated by Ivo Rosenberg in 1965

Generalizing Shannon decomposition

- First, we extend Shannon decomposition theorem:

$$f(x_1, x_2, \dots, x_n) = x'_1 \cdot f|_{x_1=0} + x_1 \cdot f|_{x_1=1}$$

by generalizing the operations ', + and · to multiple-valued case

Generalizing complement

- We replace functions x and x' by m **literal** functions, defined by

$$J_i x = \begin{cases} 1, & \text{if } x = i \\ 0, & \text{otherwise} \end{cases}$$

So, for $m=2$ we get:

i.e. $J_0 x = x'$, $J_1 x = x$

x	$J_0 x$	$J_1 x$
0	1	0
1	0	1

Sum and product generalization

- We generalize the sum and product operations by specifying the properties we want them to have:
 - A binary operation “ \cdot ” over M is a **product-type** operation iff $\forall a \in M \ a \cdot 0 = 0 \cdot a = 0$ and $a \cdot 1 = 1 \cdot a = a$
 - A binary operation “ $+$ ” over M is a **sum-type** operation iff $\forall a \in M \ a + 0 = 0 + a = a$

Example for $m = 4$

$x+y$	0	1	2	3
0	0	1	2	3
1	1	-	-	-
2	2	-	-	-
3	3	-	-	-

$x \cdot y$	0	1	2	3
0	0	0	0	0
1	0	-	-	1
2	0	-	-	2
3	0	1	2	3

$$1 = 3, 0 = 0$$

Generalized Shannon decomposition theorem

- Every function $f: M^n \rightarrow M$ can be written in the form:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=0}^{m-1} J_i x_1 \cdot f_i(x_2, \dots, x_n)$$

where $f|_{x_1=i} := f(i, x_2, \dots, x_n)$, are subfunctions of f

Completeness theorem

- The set of operations $\{+, \cdot, J_i x\}$, $\forall i \in M$, defined as above is functionally complete for functions $f: M^n \rightarrow M$

Canonical form

- Every function $f: M^n \rightarrow M$ has a canonical form of type:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=0}^{m^n-1} c_i \cdot J_{i1}x_1 \cdot J_{i2}x_2 \cdot \dots \cdot J_{in}x_n$$

where

- $c_i \in M$ is a constant
- (i_1, i_2, \dots, i_n) is the m -ary expansion of i

Alternative decomposition

- Every function $f: M^n \rightarrow M$ can be written in the form:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=0}^{m-1} i \cdot J_i f (x_1, x_2, \dots, x_n)$$

where $J_i f$ is the i_{th} literal of f

Post algebra

- One example of an algebra, satisfying the above restrictions, is the chain-based **Post algebra** based on the set of operations corresponds to the first multiple-valued logic developed in 1921 by Emil Post

Definition of chain-based Post algebra

- $P := \langle M; +, \cdot, J; 0, 1 \rangle$
 - $M := \{0, 1, \dots, m - 1\}$ set whose elements form totally ordered chain $0 < 1 < \dots < m-1$
 - “+” is the binary operation maximum
 - “.” is the binary operation minimum
 - $J := \{J_0x, J_1x, \dots, J_{m-1}x\}$ is the set of literal operators (defined as on p.4)
 - $0 = 0, 1 = m-1$

MIN, MAX, literals for m=3

MAX	0	1	2
0	0	1	2
1	1	1	2
2	2	2	2

MIN	0	1	2
0	0	0	0
1	0	1	1
2	0	1	2

x	J_0x	J_1x	J_2x
0	2	0	0
1	0	2	0
2	0	0	2

Many other functionaly complete sets over M exist

- { m -valued Sheffer-stroke} (1935)
- {sum mod m , mult mod m }, m -prime (1960), m -power of prime (1974)
- {sum mod m , MIN} (1997)

Representation of multiple-valued functions

- Generalized Karnaugh maps
- Sum-of-products expressions over P
- Multiple-Valued Decision Diagrams (MDD)

Karnaugh maps & expressions

	x_1	0	1	2
x_2	0	0	1	0
1	0	0	0	0
2	2	0	2	2

$$f(x_1, x_2) = 1 \cdot x_1^1 \cdot x_2^0 + 2 \cdot x_1^1 \cdot x_2^2 + 2^2 x_1^2 \cdot x_2^2$$

	x_1	0	1	2
x_2	0	0	1	0
1	0	1	0	0
2	2	2	2	2

$$f(x_1, x_2) = 1 \cdot x_1^1 + 2 \cdot x_2^2$$

$1 + 2 = 2$ since “+” = MAX

Minimizing MVL expressions

- Properties of the operations of Post algebra can be used to simplify the expressions
 - for example, we can use the property:

$$x^0 + x^1 + \dots + x^{m-1} = m-1$$

$$x' + x = 1$$

$$x^0 \cdot Y + x^1 \cdot Y + \dots + x^{m-1} \cdot Y = Y$$

$$x' \cdot Y + x \cdot Y = Y$$

- another powerful property is: for any $a, b \in M$

$$a + b = a \text{ if } a > b$$

$$1 + 0 = 1$$

Previous example

	x_1	0	1	2
x_2	0	0	1	0
1	0	1	0	
2	2	2	2	

$$2 \cdot x_1^0 \cdot x_2^2 + 2 \cdot x_1^1 \cdot x_2^2 + 2 \cdot x_1^2 \cdot x_2^2 = 2 \cdot x_2^2$$

$$1 \cdot x_1^1 \cdot x_2^0 + 1 \cdot x_1^1 \cdot x_2^1 + 2 \cdot x_1^2 \cdot x_2^1 = 1 \cdot x_1^1$$

Extension - set literal

	x_1	0	1	2
x_2	0	0	1	0
1	0	1	0	
2	2	0	2	

$$\begin{aligned}f(x_1, x_2) &= 1^0 x_1 x_2 + 1^1 x_1 x_2 + 2^0 x_1 x_2 + 2^2 x_1 x_2 \\&= 1 \cdot x_1 \cdot x_2 + 2 \cdot x_1 \cdot x_1\end{aligned}$$

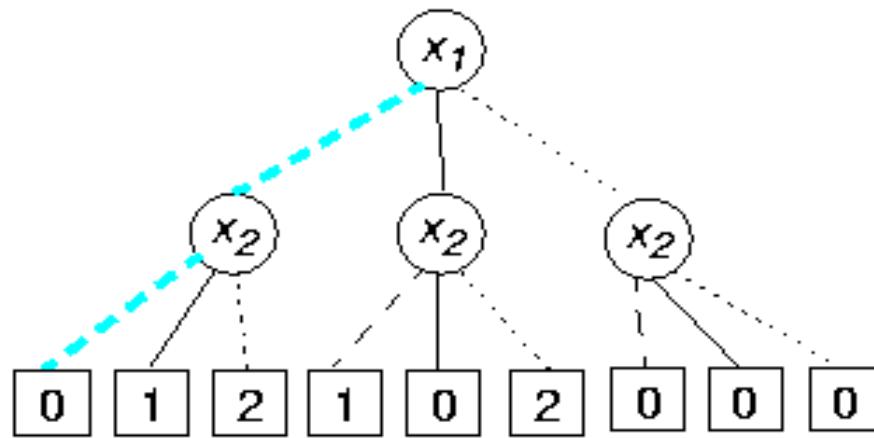
set literal $x = \begin{cases} m-1, & x \in S \\ 0, & \text{otherwise} \end{cases}$

Multiple-Valued Decision Diagrams

truth table

x_1	x_2	f
0	0	0
0	1	1
0	2	2
1	0	1
1	1	0
1	2	2
2	0	0
2	1	0
2	2	0

decision diagram



- + ordering rules + reduction rules to get Reduced Ordered MDD

Minimization of MVL functions

- As in Boolean case, we can use the properties of the operations of Post algebra to simplify the expressions
 - For literals, the following rules hold:

$$P1: \forall i, j \in M, J_i x \cdot J_j x = 0$$

$m-1$

$$P2: \sum_{i=0}^{m-1} J_i x = m-1$$

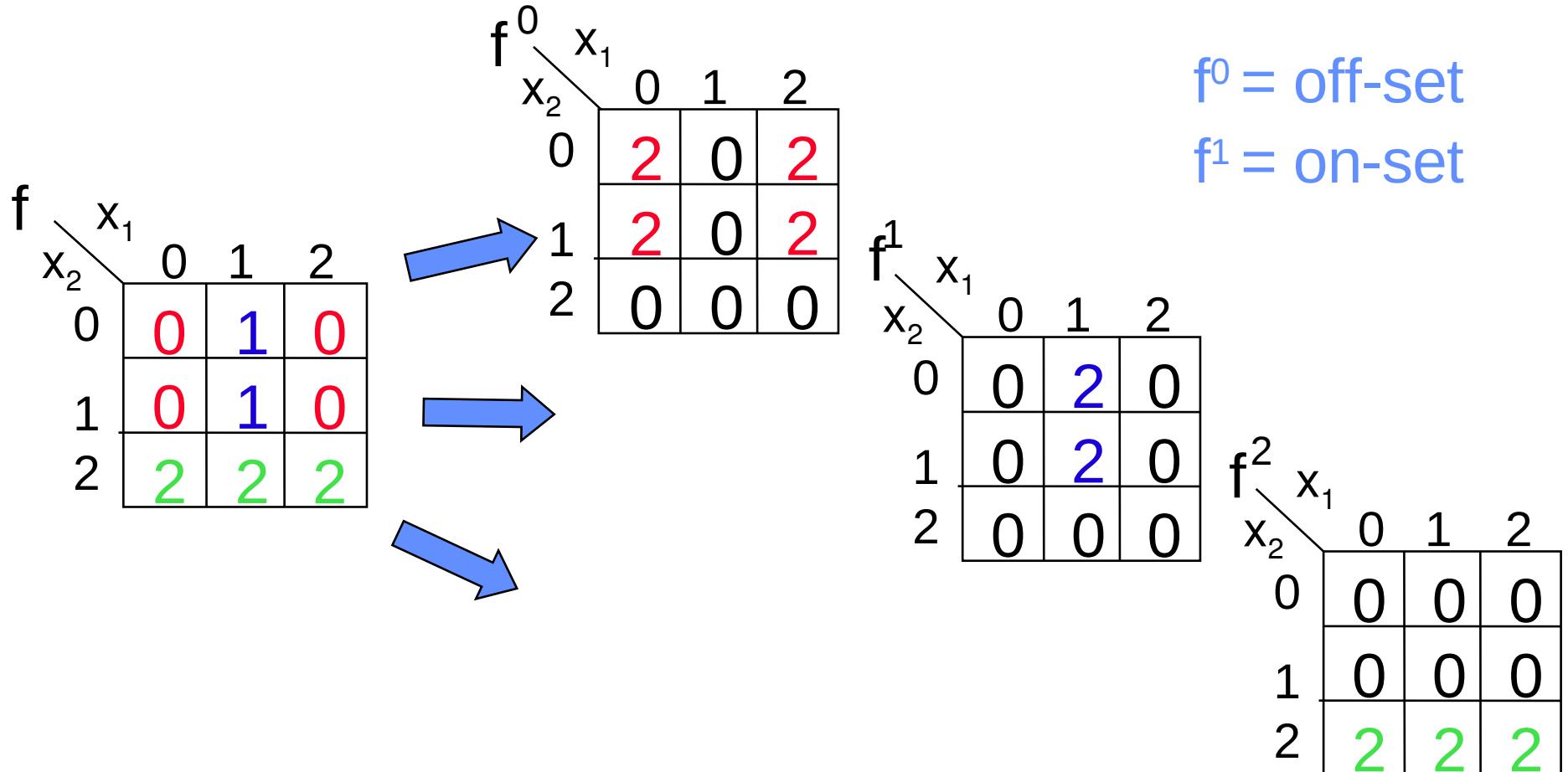
$$P3: \forall i \in M, (J_i x)' = \sum_{j=0, j \neq i}^{m-1} J_j x$$

Minimization of MVL functions

- MVL functions can be minimized directly, but the algorithms are very time-consuming
- A more efficient way is to first split the function $f: M^n \rightarrow M$ into $m-1$ literals f^i , $i \in \{1, 2, \dots, m-1\}$

$$f^i = \begin{cases} m-1, & \text{if } f = i \\ 0, & \text{otherwise} \end{cases}$$

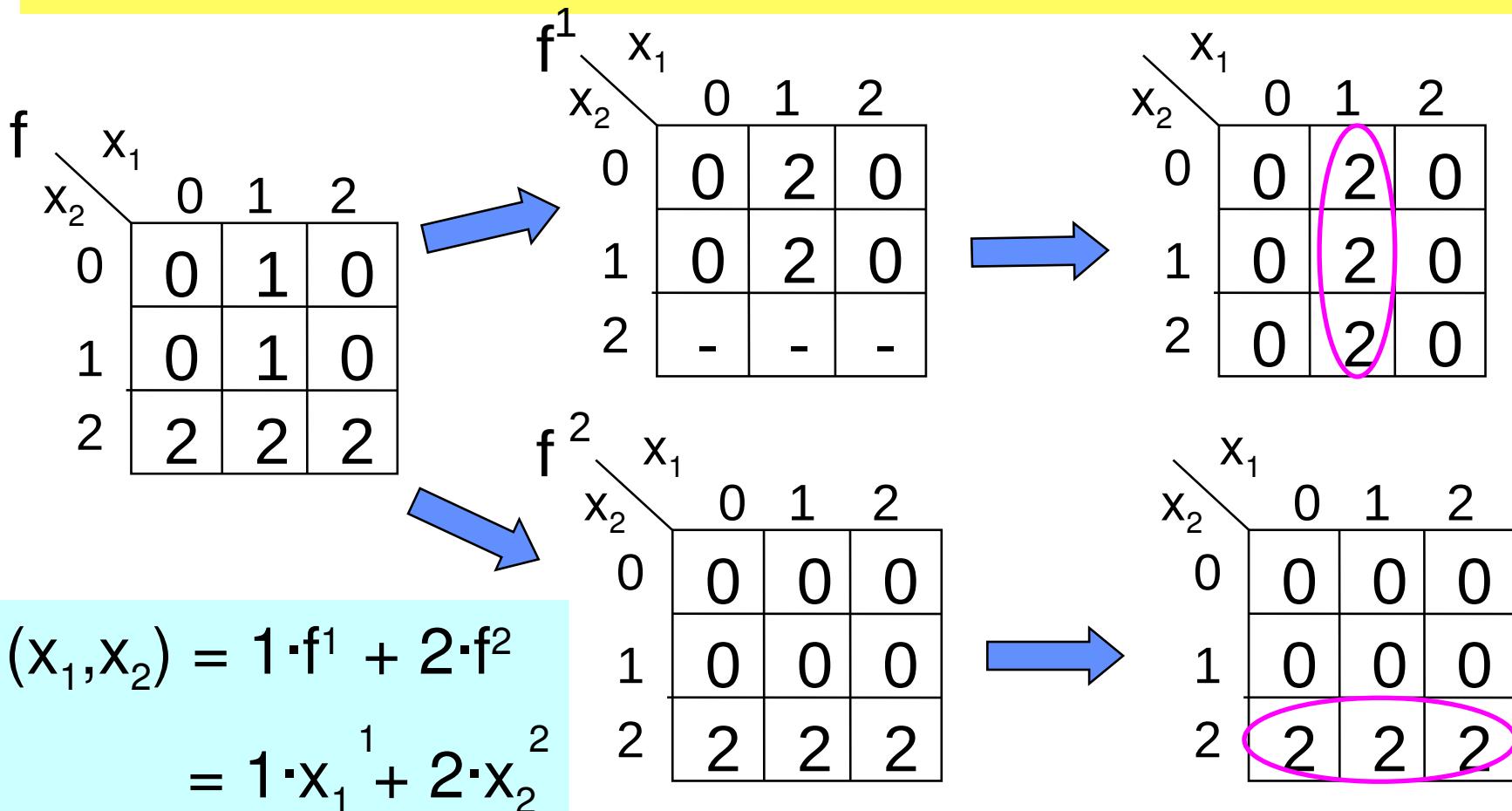
Example of literals f^0, f^1, f^2



Minimization of MVL functions

- Literals f^i are of type $\{0, 1, \dots, m-1\}^n \rightarrow \{0, m-1\}$
 - {AND, OR, literals} basis can be used
 - Boolean minimization techniques extend directly
 - on-set = minterms mapped to m-1
 - off-set = minterms mapped to 0
- Minimize each of f^i using the rule:
 - on-set of f^a becomes don't care set for $f^b, \forall a > b, a, b \in M$

Example



Applications of MVL

- **First group**: uses multiple-valued logic domain to solve binary problems more efficiently
- **Second group**: targets the design of electronic circuits which employ more than two discrete levels of signals

Applications to binary problems

- **multiple-output functions** - treat the output part as a single multiple-valued variable. Allows better utilization of common products
- **PLAs with decoders** - pair two inputs and treat them as a single 4-valued input. Allows to reduce the area of PLA
- **at higher levels of abstractions** - allows a more compact and natural description of the problem

Multiple-output functions

- Convert an n -variable k -output Boolean function $f: B^n \rightarrow (B \cup \{-\})^k$ into an $(n+1)$ -variable 1-output function with one variable being multiple-valued:

$$f: B^n \times \{0, 1, \dots, k-1\} \rightarrow B \cup \{-\}$$

- Minimize using set-literals:

$$J_i x + J_j x = J_{\{i,j\}} x$$

Example

f_1	x_1
x_2	0 1
0	0 1
1	1 1

f_2	x_1
x_2	0 1
0	1 0
1	1 1

f_3	x_1
x_2	0 1
0	1 0
1	0 0

f_4	x_1
x_2	0 1
0	0 1
1	0 0

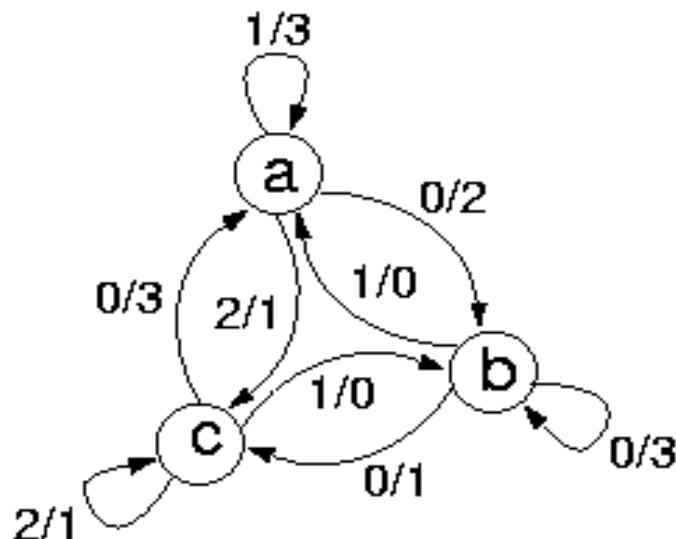
x_3	$x_1 x_2$
	00 01 11 10
0	0 1 1 1
1	1 1 1 0
2	1 0 0 0
3	0 0 0 1

5 cubes

f_1
 f_2
 f_3
 f_4

3 cubes

Example of describing a FSM



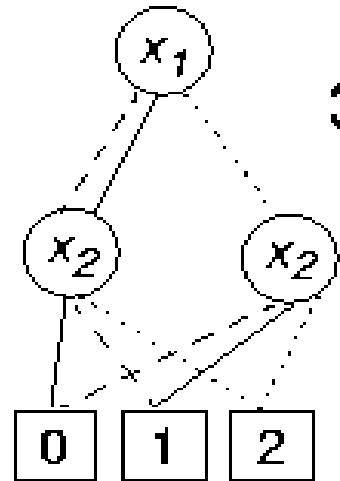
states $\in \{a, b, c\} = \{0, 1, 2\}$

inputs $\in \{0, 1, 2\}$

outputs $\in \{0, 1, 2, 3\}$

pr.s. in.	next s.	out.
0 0	1	2
0 1	0	3
0 2	2	1
1 0	1	3
1 1	0	0
1 2	2	1
2 0	0	3
2 1	1	0
2 2	2	1

Resulting MDD for FSM



3 non-terminal nodes

- BDDs for this function would have 8 non-terminal nodes in common

MVL logic circuit

- Boolean logic circuit:
 - has n inputs taking values from $\{0,1\}$
 - has 1 (or more) output(s) taking values from $\{0,1\}$
 - is built out of gates realizing 2-valued logic operations, like AND, OR, NOT
- m -valued logic circuit:
 - has n inputs taking values from $\{0,1, \dots, m-1\}$
 - has outputs taking values from $\{0,1, \dots, m-1\}$
 - is built out of gates realizing m -valued logic operations like MIN, MAX, literals

Theoretical advantages of MVL circuits

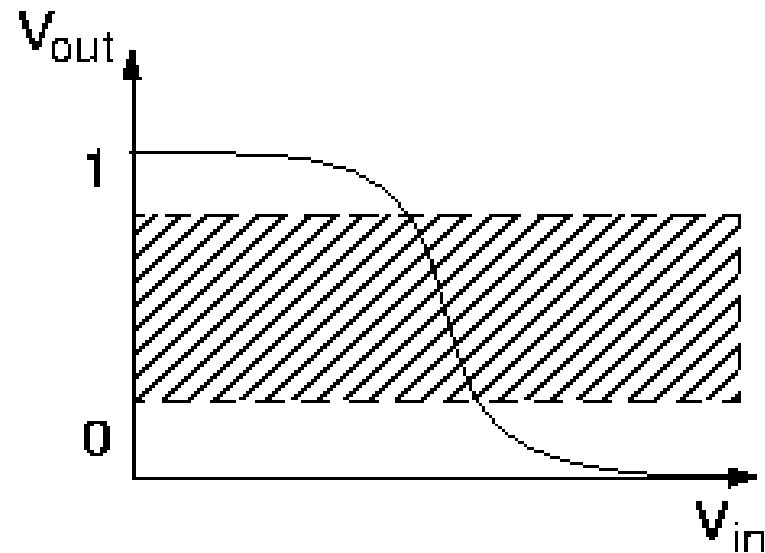
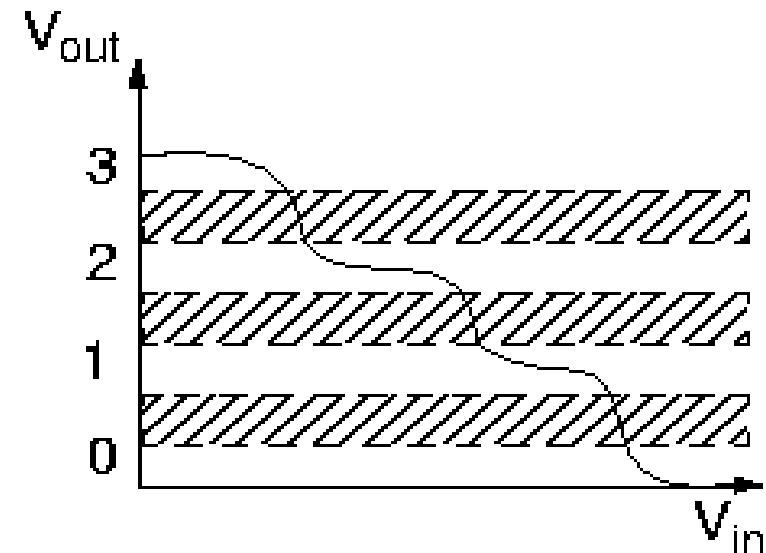
- In a typical VLSI chip, about 70% of the chip area is devoted to interconnection, 20% to insulation and 10% to devices
- In a multiple-valued circuit:
 - wires carry more information - saving in the number of wires and in insulation between wires
 - pins carry more information - saving in pins
- Alternative to binary number systems allow fast arithmetic operations
- MVL storage allows to store more bits of information per memory cell

Why aren't MVL circuits widely used?

- History: before 1947:
 - three-position polarized relays
 - 3-valued SETUN computer (1960)
 - after: transistors are **cheap, reliable and efficient**
 - MVL circuit can be built with binary transisitors, but the theoretical advantage is lost, except for some applications (arithmetic logic, memories)
- Cheap, reliable and efficient device with m stable states is not discovered yet

Main practical problem

- Noise immunity



Recent achievements in MVL circuit design

- **Arithmetic circuits**: multipliers, adders - prototype chips are fabricated
- **Memories**: Flash, DRAM - great commercial success

MVL memories

- 4-valued Flash memories
 - digital
 - analog
- 4-valued DRAM memories

Traditional techniques for memory density increase

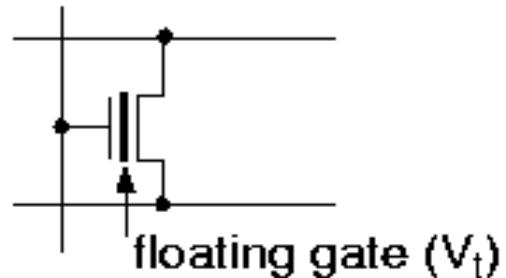
- Process scaling
 - 70% reduction in the minimum design rule for each generation
- Process scaling + better cell structure
 - 50% larger chips size each generation
- By 1995, both techniques reached their limits
 - using 4-valued logic allowed in 1997 to double the chip density without increasing the die size

Flash memory

- Flash - non-volatile multiple-write memory
- Found in over 90% PCs, over 90% cellular phones and over 50% modems
- Key component of the emerging digital imaging and audio markets where it serves as the digital "film" or digital "tape"

4-valued Flash

- Each cell consists of a single transistor



- Transistors can have one of four different threshold voltages V_t , controlled by the amount of charge stored on the floating gate

Technical parameters

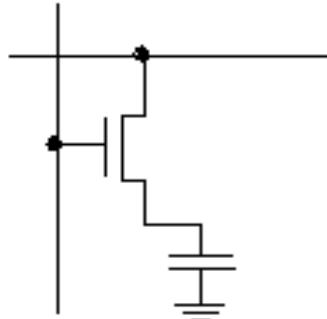
	Intel	NEC	Samsung Electron	Hitachi and Mitsubishi
Memory size	32-Mbit	64-Mbit	128-Mbit	256-Mbit
Process	0.6- μ m	0.4- μ m	0.4- μ m	0.26- μ m
Die size	152 mm ²	98 mm ²	117 mm ²	139 mm ²
Power supply	5 V	3.3 V	3.3 V	3 V
Access time	120 ns	80 ns	25 ns	50 ns

Dymanic RAM (DRAM)

- DRAM - volatile general purpose memory
- applications: main processing units, computer operating systems, video and audio data processing

DRAM

- Each cell consists of a single capacitor and a transistor



- capacitor stores a quantity of charge that corresponds to the logical value of the signal

NEC's 4Gbit 4-valued DRAM

Process	0.15- μ m CMOS
Die size	986 mm ²
Power supply	2.2 V
Data transfer rate	1 Gbit/sec at 125 MHz

- large storing capacity (doubled)
 - capable of storing 47 minutes of full-motion video
- high-speed access to data (standard)
 - Jurassic Park in real time

Prospects of MVL circuits

- MVL circuits might be one possible solution to pin limitation and interconnection problems
- The technology seems to be reaching maturity allowing to build MVL circuits for specific applications

Future systems

