
L10: Multiple­valued logic
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Reading material

• Muzio & Wesselkamper  “Multiple­valued 
switching theory”, p. 38 ­ 66

• Hudsson & Sasao, chapter 4
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Completeness in MVL case 

• Boolean algebras are not functionally complete 
for functions over the sets other than B={0,1}

• We will generalize Boolean algebras to handle 
functions over M = {0,1,…,m­1}

• General conditions for completeness in MVL case 
were formulated by Ivo Rosenberg in 1965
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Generalizing Shannon decomposition

• First, we extend Shannon decomposition 
theorem:

f(x1,x2, ...,xn) = x'1∙f|x1=0 + x1∙ f|x1=1

   by generalizing the operations ', +  and ∙ to 
multiple­valued case
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Generalizing complement

• We replace functions x and x' by m literal 
functions, defined by

Jix = 
1, if x = i

0, otherwise

So, for m=2 we get:

i.e. J0x = x', J1x = x

x  J0x J1x

0   1    0

1   0    1 
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Sum and product generalization

• We generalize the sum and product operations by 
specifying the properties we want them to have:
– A binary operation “∙” over M is a product­type 

operation iff ∀a ∈ M  a∙0 = 0∙a = 0 and a∙1 = 1∙a = a 
– A binary operation “+” over M is a sum­type operation 

iff ∀a ∈ M  a + 0 = 0 + a = a   
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Example for m = 4

x+y  0   1   2   3

  0    0   1   2   3 

  1    1   -    -    - 

  2    2   -    -    -

  3    3   -    -    -

x·y   0   1   2   3

  0    0   0   0   0 

  1    0   -    -    1 

  2    0   -    -    2

  3    0   1   2   3

1 = 3, 0 = 0
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Generalized Shannon decomposition 
theorem

• Every function f: Mn → M can be written in the 
form:

f(x1,x2,..., xn) =  ∑ Jix1∙ fi(x2,…. ∙xn)

   where f|x1=i := f(i,x2, ...,xn), are subfunctions of f 
i = 0

m -1
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Completeness theorem

• The set of operations {+, ∙, Jix}, ∀i ∈ M, defined 
as above is functionally complete for functions f: 
Mn → M 
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Canonical form

• Every function f: Mn → M has a canonical form of 
type:

f(x1,x2,..., xn) =  ∑ ci ∙Ji1x1∙Ji2x2
 ∙... ∙Jinxn

   where 
– ci ∈ M is a constant         
– (i1,i2,..., in) is the m­ary expansion of i 

i = 0

mn -1
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Alternative decomposition

• Every function f: Mn → M can be written in the 
form:

f(x1,x2,..., xn) =  ∑ i∙Jif (x1,x2,..., xn) 

   where Jif is the ith literal of f 
i = 0

m -1
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Post algebra

• One example of  an algebra, satisfying the above 
restrictions, is the chain­based Post algebra 
based on the set of operations corresponds to the 
first multiple­valued logic developed in 1921 by 
Emil Post
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Definition of chain­based Post 
algebra

• P := < M;  +, ∙, J; 0, 1>
– M := {0, 1, ..., m ­ 1} set whose elements form totally 

ordered chain 0 < 1 < ... < m­1
–  “+”  is the binary operation maximum
–  “∙”  is the binary operation minimum
– J := {J0x, J1x,..., Jm­1x } is the set of literal operators 

(defined as on p.4)
– 0 = 0, 1 = m­1
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MIN, MAX, literals for m=3

MAX   0   1   2

   0      0   1   2 

   1      1   1   2

   2      2   2   2

MIN   0   1   2

  0     0   0   0 

  1     0   1   1 

  2     0   1   2

x  J0x  J1x  J2x

0   2     0    0 

1   0     2    0 

2   0     0    2
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Many other functionaly complete sets 
over M exist

• {m­valued Sheffer­stroke} (1935)
• {sum mod m, mult mod m}, m­prime (1960), m­

power of prime (1974)
• {sum mod m, MIN} (1997)
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Representation of multiple­valued 
functions

• Generalized Karnaugh maps 
• Sum­of­products expressions over P 
• Multiple­Valued Decision Diagrams (MDD)
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Karnaugh maps & expressions

0
0

1
0

0
0

x2   0   1    2
0

1

x1

2 0 22

0
0

1
1

0
0

x2   0   1    2
0

1

x1

2 2 22

f(x1,x2) = 1∙x1 ∙x2  + 2∙x1 ∙x2 + 2∙x1 ∙x2 
1 0 2 2 20

f(x1,x2) = 1∙x1  + 2∙x2 
1 2

1 + 2 = 2  since “+” = MAX
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Minimizing MVL expressions

• Properties of the operations of Post algebra can 
be used to simplify the expressions
– for example, we can use the property:

x0 + x1 + … + xm­1 =  m­1 x´+ x = 1

1 + 0 = 1

x´∙Y + x∙Y = Yx0∙Y + x1 ∙Y + … + xm­1 ∙Y = Y 

a + b = a  if  a > b

– another powerful property is: for any a,b∈M 
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Previous example

0
0

1
1

0
0

x2   0   1    2
0

1

x1

2 2 22

2∙x1 ∙x2  + 2∙x1 ∙x2 + 2∙x1 ∙x2  =  2∙x2 
0 2 2 21 2 2

1∙x1 ∙x2  + 1∙x1 ∙x2 + 2∙x1 ∙x2  =  1∙x1 
1 0 1 21 1 1
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Extension ­ set literal
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• + ordering rules + reduction rules to get Reduced Ordered 
MDD

Multiple­Valued Decision Diagrams
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Minimization of MVL functions

• As in Boolean case, we can use the properties of 
the operations of Post algebra to simplify the 
expressions
– For literals, the following rules hold:

P1: ∀i,j ∈ M, Jix ∙Jjx = 0

P2:   ∑ Jix = m­1

P3: ∀i ∈ M, (Jix)′  = ∑  Jjx

i = 0

m -1

j = 0, j ≠ i

m -1
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Minimization of MVL functions

• MVL functions can be minimized directly, but the 
algorithms are very time­consuming

• A more efficient way is to first split  the function f: 
Mn → M into m­1 literals f i,  i ∈ {1,2,…,m­1}



 −

=
,0

,1m
f

if  f = i

otherwise
i
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Example of literals f0, f1, f2

0
0

1
1

0
0

x2   0   1    2
0

1

x1

2 2 22

f

2
2

0
0

0
0

0 0 0
0
0

0
0

0
0

2 2 2

x2   0   1    2
0

1

x1

2

f2

2
2

2
2

0
0

0 0 0

x2 

x1
 0   1    2

0

1
2

f 0

x2   0   1    2
0

1

x1

2

f1

f0 = off-set
f1 = on-set
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Minimization of MVL functions

• Literals fi are of type {0,1,..,m­1}n→ {0,m­1} 
– {AND, OR, literals} basis can be used
– Boolean minimization techniques extend directly

• on­set = minterms mapped to m­1
• off­set = minterms mapped to 0

• Minimize each of  fi using the rule:
–  on­set of fa becomes don’t care set for fb,∀a > b, a,b ∈M
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Example

0
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0
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0

1
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0
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0
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0

1
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0
0

0
0

0
0

x2   0   1    2
0

1

x1

2 2 22

f (x1,x2) = 1∙f1
  + 2∙f2

              = 1∙x1  + 2∙x2 
1 2
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Applications of MVL

• First group: uses multiple­valued logic domain to 
solve binary problems more efficiently

• Second group: targets the design of electronic 
circuits which employ more than two discrete 
levels of signals
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Applications to binary problems

• multiple­output functions ­ treat the output part as 
a single multiple­valued variable. Allows better 
utilization of common products

• PLAs with decoders ­ pair two inputs and treat 
them as a single 4­valued input. Allows to reduce 
the area of PLA

• at higher levels of abstractions ­ allows a more 
compact and natural description of the problem
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Multiple­output functions

• Convert an n­variable k­output Boolean function f: 
Bn → (B∪{­})k into an (n+1)­variable 1­output 
function with one variable being multiple­valued: 

f: Bn x {0,1,…,k­1} → B∪{­}

• Minimize using set­literals:
Jix + Jjx = J{i,j}x



p. 30 ­ Advanced Logic Design ­ L10 ­ Elena Dubrova

Example
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Example of describing a FSM
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Resulting MDD for FSM

• BDDs for this function would have 8 non­terminal 
nodes in common
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MVL logic circuit

• Boolean logic circuit:
– has n inputs taking values from {0,1}
– has 1 (or more) output(s)  taking values from {0,1}
– is built out of gates realizing  2­valued logic operations, 

like AND, OR, NOT

• m­valued logic circuit:
– has n inputs taking values from {0,1, ... , m­1}
– has outputs  taking values from {0,1, ...  m­1}
– is build out of gates realizing m­valued logic operations 

like MIN, MAX, literals
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Theoretical advantages of MVL 
circuits

• In a typical VLSI chip, about 70% of the chip area 
is devoted to interconnection, 20% to insulation 
and 10% to devices

• In a multiple­valued circuit:
–  wires carry more information ­ saving in the number of 

wires and in insulation between wires
– pins carry more information ­ saving in pins 

• Alternative to binary number systems allow fast 
arithmetic operations

• MVL storage allows to store more bits of 
information per memory cell
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Why aren’t MVL circuits widely used?

• History: before 1947: 
– three­position polarized relays
– 3­valued SETUN computer (1960)
– after: transistors are cheap, reliable and efficient
– MVL circuit can be built with binary transisitors, but the 

theoretical advantage is lost, except for some 
applications (arithmetic logic, memories)

• Cheap, reliable and efficient device with m 
stable states is not discovered yet
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Main practical problem

• Noise immunity
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Recent achievements in MVL circuit 
design

• Arithmetic circuits: multipliers, adders ­ prototype 
chips are fabricated

• Memories: Flash, DRAM ­ great commercial 
success
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MVL memories

•  4­valued Flash memories
– digital
– analog

• 4­valued DRAM memories
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Traditional techniques for memory    
density increase

• Process scaling
– 70% reduction in the minimum design rule for each 

generation

• Process scaling + better cell structure
–  50% larger chips size each generation

• By 1995, both techniques reached their 
limits
– using 4­valued logic allowed in 1997 to double the chip 

density without increasing the die size
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Flash memory

• Flash ­ non­volatile multiple­write memory
• Found in over 90% PCs, over 90% cellular 

phones and over 50% modems 
• Key component of the emerging digital imaging 

and audio markets where it serves as the digital 
"film" or digital "tape"
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4­valued Flash

• Each cell consists of a single transistor 

• Transistors can have one of four different 
threshold voltages Vt , controlled by the amount of 
charge stored on the floating gate
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Technical parameters
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Dymanic RAM (DRAM)

• DRAM ­ volatile general purpose memory
• applications: main processing units, computer 

operating systems, video and audio data 
processing
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DRAM

• Each cell consists of a single capacitor and a 
transistor

• capacitor stores a quantity of charge that 
corresponds to the logical value of the signal
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• large storing capacity (doubled)
– capable of storing 47 minutes of full­motion video

• high­speed access to data (standard)
– Jurassic Park in real time

NEC’s 4Gbit  4­valued DRAM
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Prospects of MVL circuits

• MVL circuits might be one possible solution to pin 
limitation and interconnection problems

• The technology seems to be reaching maturity 
allowing to build MVL circuits for specific 
applications
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Future systems


