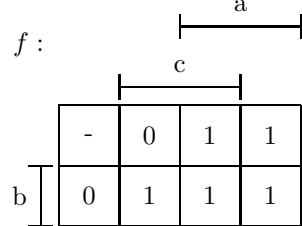


Solutions to Assignment 2

1. The function f looks like



(a) **on-set:** i. $\{011, 100, 101, 110, 111\}$, or alternatively
ii. $\{1--, -11\}$, or
iii. $\{1--, 011\}$ or...
off-set: $\{001, 010\}$
dc-set: $\{000\}$

(b) **on-set:** i. $\{(3, 3), (4, 4), (5, 5), (6, 6), (7, 7)\}$, or alternatively
ii. $\{(4, 7), (3, 7)\}$, or
iii. $\{(4, 7), (3, 3)\}$, or...
off-set: $\{(1, 1), (2, 2)\}$
dc-set: $\{(0, 0)\}$

(c) **on-set:** i. $\{100101, 011010, 011001, 010110, 010101\}$, or alternatively
ii. $\{011111, 110101\}$, or
iii. $\{011111, 100101\}$, or...
off-set: $\{101001, 100110\}$
dc-set: $\{101010\}$

2. Using parallel encoding: $c_1 = (4, 7)$, $c_2 = (3, 7)$.

OR_b and AND_b denote bitwise-OR and bitwise-AND respectively.

(a) $c_1 \cap c_2 = (7, 7)$
 $c_1 \cap c_2 = (\min(c_1) \text{ OR}_b \min(c_2), \max(c_1) \text{ AND}_b \max(c_2))$

(b) $\text{supercube}(c_1, c_2) = (0, 7)$
 $\text{supercube}(c_1, c_2) = (\min(c_1) \text{ AND}_b \min(c_2), \max(c_1) \text{ OR}_b \max(c_2))$

(c) $c_2 \subseteq c_1$? No.
 $c_2 \subseteq c_1$ if, and only if, $c_1 \cap c_2 = c_2$
 $c_1 \cap c_2 = (7, 7) \neq (3, 7) = c_2$, so c_2 is not contained in c_1 .

(d) $\overline{c_1 \cup c_2} = \{(0, 1), (2, 2)\}$
We use the fact that $\overline{c_1 \cup c_2} = \overline{c_1} \cap \overline{c_2}$.
 $\overline{c_1} = \{(0, 3)\}$, $\overline{c_2} = \{(0, 5), (2, 6)\}$
(See below how to calculate the complement of a cube.)
Observe that $\overline{c_2}$ is not a single cube, but a set of two cubes. The intersection of two sets of cubes A and B is the union of the intersection

of all pairs of cubes in $A \times B$. In our case,

$$\begin{aligned}\overline{c_1} \cap \overline{c_2} &= \{(0, 3)\} \cap \{(0, 5), (2, 6)\} \\ &= \{(0, 3) \cap (0, 5)\} \cup \{(0, 3) \cap (2, 6)\} \\ &= \{(0, 1)\} \cup \{(2, 2)\} = \{(0, 1), (2, 2)\}\end{aligned}$$

3. Using sequential encoding: $c_1 = 011111$, $c_2 = 110101$.
 OR_b and AND_b denote bitwise-OR and bitwise-AND respectively.

- (a) $c_1 \cap c_2 = 010101$
 $c_1 \cap c_2 = c_1 \text{ AND}_b c_2$
- (b) $\text{supercube}(c_1, c_2) = 111111$
 $\text{supercube}(c_1, c_2) = c_1 \text{ OR}_b c_2$
- (c) $c_2 \subset c_1$? No. $c_2 \subseteq c_1$ if, and only if, $c_1 \cap c_2 = c_2$
 $c_1 \cap c_2 = 010101 \neq 110101 = c_2$, so c_2 is not contained in c_1 .
- (d) $\overline{c_1 \cup c_2} = \{101011, 101110\}$
Similar to exercise 2)d).
 $\overline{c_1} = 101111$, $\overline{c_2} = \{111011, 111110\}$

$$\begin{aligned}\overline{c_1} \cap \overline{c_2} &= \{101111\} \cap \{111011, 111110\} \\ &= \{101111 \cap 111011\} \cup \{101111 \cap 111110\} \\ &= \{101011\} \cup \{101110\} = \{101011, 101110\}\end{aligned}$$

(See below how to calculate the complement of a cube.)

How to Calculate the Complement of a Cube

Parallel encoding: Let c be a cube in parallel encoding.

Make n pairs p_i by making

1. all bits of $\min(p_i)$ are 0, except the i th bit, that is the i th bit of $\min(c)$ inverted.
2. all bits of $\max(p_i)$ are 1, except the i th bit, that is the i th bit of $\max(c)$ inverted.

Delete all pairs that do not represent cubes, i.e. the pairs p_i in which $\min(p_i) > \max(p_i)$. The remaining pairs form the complement of c .

For example, if $c = (3, 7)$ we obtain the pairs $(4, 3)$, $(0, 5)$, $(2, 6)$. We delete $(4, 3)$ since it does not represent a cube. $\bar{c} = \{(0, 5), (2, 6)\}$

Sequential encoding: Let c be a cube in parallel encoding.

Make n sequences s_i by making all bit-pairs of s_i equal to 11, except the i th bit-pair, that is the i th bit-pair of c inverted. Delete all sequences that do not represent cubes, i.e. the sequences s_i in which there is a 00 bit-pair. The remaining sequences form the complement of c .

For example, if $c = 110101$ we obtain the sequences 001111, 111011, 111110. We delete 001111 since it does not represent a cube. We obtain $\bar{c} = \{111011, 111110\}$.

(4) **1 point** Prove that $a + 1 = 1$, $\forall a \in B$, for the Boolean algebra $(B; +, \cdot, ' ; 0, 1)$, where $B = \{0, 1\}$.

First, we prove two supplementary properties:

$$P6_1: a \stackrel{A4_1}{=} a1 \stackrel{A5_2}{=} a(a+a') \stackrel{A3_1}{=} (aa) + (aa') \stackrel{A5_1}{=} (aa) + 0 \stackrel{A4_2}{=} aa.$$

$$P6_2: a \stackrel{A4_2}{=} a + 0 \stackrel{A5_1}{=} a + (aa') \stackrel{A3_2}{=} (a+a)(a+a') \stackrel{A5_2}{=} (a+a)1 \stackrel{A4_1}{=} a + a.$$

Now we prove that $P3_2 : a + 1 = 1$ as follows:

$$P3_2: a + 1 \stackrel{A4_1}{=} (a+1)1 \stackrel{A5_2}{=} (a+1)(a+a') \stackrel{A3_1}{=} ((a+1)a) + ((a+1)a') \stackrel{A3_1}{=} ((aa) + (1a) + (aa') + (1a')) \stackrel{P6_1, A4_1}{=} (a+a) + ((aa') + (1a')) \stackrel{A5_1, A4_1}{=} (a+a) + (0+a') \stackrel{P6_2, A4_2}{=} a + a' \stackrel{A5_2}{=} 1.$$

(5) **1 point** Prove that $a + a \cdot b = a$, $\forall a, b \in B$, for the Boolean algebra $(B; +, \cdot, ' ; 0, 1)$, where $B = \{0, 1\}$.

$$P5_2: a + (ab) \stackrel{A4_1}{=} (a1) + (ab) \stackrel{A3_1}{=} a(1+b) \stackrel{P3_2}{=} a1 \stackrel{A4_1}{=} a.$$

(6) **1 point** Check whether the following algebra $(B; +, \cdot, ' ; \mathbf{0}, \mathbf{1})$ is a Boolean algebra:

$$B = \{0, 1, 2, 3\}$$

”+” is the maxim (the largest of two values)

”.” is the minimum (the smallest of two values)

”/” is the complement dened by: $x' = (x+1)mod 4$, i.e. $0' = 1, 1' = 2, 2' = 3, 3' = 0$.

$$\mathbf{0} = 0$$

$$\mathbf{1} = 3$$

No. For example, Axiom $A5_1 : a \cdot a' = 0$ does not hold for the value $a = 1$, since $1 \cdot 1' = 1 \cdot 2 = 1$.