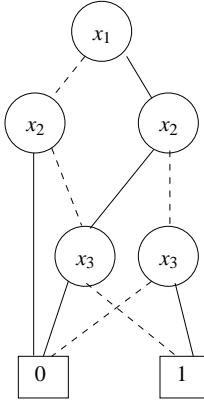
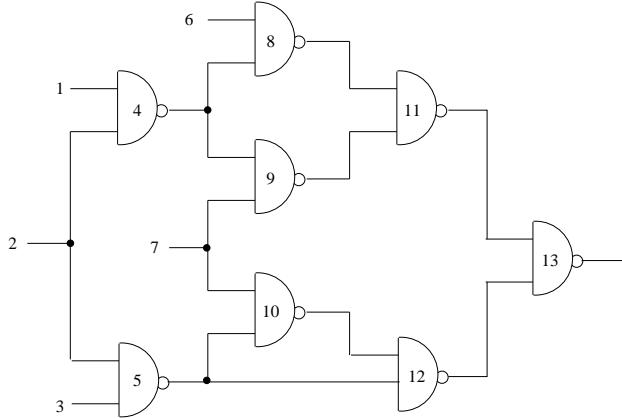


Advanced Logic Design 2012


Assignment 3, 9 points, due 15/11

(1) **2 points** Draw ROBDDs for the Boolean functions defined below. Use variable ordering x_1, x_2, x_3, x_4 .

$x_3x_4 \setminus x_1x_2$	00	01	11	10
00	1	0	1	0
01	1	0	0	0
11	1	1	1	1
10	1	1	0	0


$x_3x_4 \setminus x_1x_2$	00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	0	0	0	0
10	0	0	0	0

(1) **1 points** Find which Boolean function is represented by the ROBDD below. Give you answer in the form of a Karnaugh map.

(3) **2 points** Answer the questions about the circuit on the next page:

1. Is $\{9, 10\}$ a 2-vertex dominator for 7?
2. Is $\{8, 9\}$ a 2-vertex dominator for 1?
3. Is $\{10, 12\}$ a 2-vertex dominator for 5?
4. Is $\{4, 5, 8\}$ a 3-vertex dominator for 2?
5. Is $\{10, 11, 12\}$ a 3-vertex dominator for 7?

6. Is 12 a 1-vertex dominator for 3?

(4) **1 point** Consider the Boolean function:

$x_3x_4 \setminus x_1x_2$	00	01	11	10
00	1	0	1	0
01	1	0	0	0
11	1	1	1	1
10	1	1	1	0

- (a) List all its prime implicants.
- (b) List all its essential prime implicants.
- (c) Is the cover given by the set of all primes of this function is irredundant? If not, make it irredundant.

(5) **1 point** Repeat problem 4(a)-(c) for the incompletely specified function whose on-set is the same as in problem 4 and whose don't care set is $\{1101, 1001\}$ (the variables in cubes are ordered as (x_1, x_2, x_3, x_4)).

(6) **2 points** Use Quine-McCluskey procedure to minimize the function from problem 5. Show the results at each steps (i.e. list the primes, give the matrix, and show how the minimum cover is obtained).