
Software redundancy 
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Software fault-tolerance 

• Fault-tolerance in software domain is not as well 
understood as fault-tolerance in hardware domain

– Controversial opinions exist on whether reliability can 

be used to evaluate software.

– Software failures are mostly due to the activation of 

design faults by specific input sequences. 

– This makes the reliability of a software module 

dependent on the environment that generates input to 

the module over the time. 

• Ariane 5 rocket accident
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Software fault-tolerance

• Many current techniques for software fault 
tolerance attempt to leverage the experience of 
hardware redundancy schemes

– software N-version programming closely resembles 

hardware N-modular redundancy

– recovery blocks use the concept of retrying the same 

operation in expectation that the problem is resolved 

after the second try. 
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Problems

• Traditional hardware fault tolerance techniques 
were developed to fight 

– permanent components faults primarily 

– transient faults caused by environmental factors 

secondarily. 

• They do not offer sufficient protection against 
design and specification faults, which are 
dominant in software.  
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Design diversity

• By simply triplicating a software module and 
voting on its outputs we cannot tolerate a fault in 
the module because all copies have identical 
faults 

• Design diversity technique has to be applied. 

– requires creation of diverse and equivalent 

specifications so that programmers can design 

software which do not share common faults

– this is widely accepted to be a difficult task
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Problems

• A software system usually has a very large 
number of states

– a collision avoidance system required on most 

commercial aircrafts in the U.S. has 1040 states

• Software states do not exhibited adequate 
regularity to allow grouping them into equivalence 
classes. 

– Such regularity is common for digital hardware 
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Problems

• The large number of states implies that only a very 

small part of software system can be verified for 

correctness. 

– Traditional testing and debugging methods are not 

feasible for large systems. 

– Formal methods promise higher coverage, however, 

they are very complex 

• a specification using formal logic may be of the 

same size or even larger than the code. 

• Due to incomplete verification, many design faults are 

not diagnosed and are not removed from the software
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Single- and multi-version techniques 

• Software fault-tolerance techniques can be 
divided into two groups:

– single-version

– multi-version

• Single version techniques aim to improve fault-
tolerant capabilities of a single software module 

– fault detection, containment and recovery mechanisms 

• Multi-version techniques employ redundant 
software modules, developed following design 
diversity rules
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Redundancy allocation

• A number of possibilities has to be examined:

– at which level the redundancy need to be provided  

• redundancy can be applied to a procedure, or to a 

process, or to the whole software system

– which modules are to be made redundant

• usually, the components which have high probability 

of faults are chosen to be made redundant.

• The increase in complexity caused by 
redundancy can be quite severe and may 
diminish the dependability improvement
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Single-version techniques

• Single version techniques add to a single 
software module a number of functional 
capabilities that are unnecessary in a fault-free 
environment. 

– fault detection, fault containment and fault recovery

• Software structure and actions are modified to be 
able to detect a fault, isolate it and prevent the 
propagation of its effect throughout the system.  
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Fault detection techniques

• The goal is to determine that a fault has occurred 
within a system. 

• Various types of acceptance tests are used to 
detect faults  

– the result of a program is subjected to a test

– if the result passes the test, the program continues its 

execution 

– a failed test indicates a fault
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Acceptance test

• Acceptance test is most effective if it can be 
calculated in a simple way and if it is based on 
criteria that can be derived independently of the 
program application.  

• The existing techniques include 

– timing checks

– coding checks

– reversal checks

– reasonableness checks

– structural checks
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Timing checks

• Timing checks are applicable to system whose 
specification include timing constrains

• Based on these constrains, checks are developed 
to indicate a deviation from the required behavior.  

– Watchdog timer is an example of a timing check

– Watchdog timers are used to monitor the performance 

of a system and detect lost or locked out modules.
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Coding checks

• Coding checks are applicable to system whose 
data can be encoded using information 
redundancy techniques

• Usually used in cases when the information is 
merely transported from one module to another 
without changing it content. 

– Arithmetic codes can be used to detect errors in 

arithmetic operations
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Reversal checks

• In some system, it is possible to reverse the 
output values and to compute the corresponding 
input values. 

• A reversal checks compares the actual inputs of 
the system with the computed ones. 

– a disagreement indicates a fault.
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Reasonableness checks

• Reasonableness checks use semantic properties 
of data to detect fault.

– a range of data can be examined for overflow or 

underflow to indicate a deviation from system's 

requirements

• maximum withdrawal sum in bank’s teller machine

• address generated by a computer should lie inside 

the range of available memory
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Structural checks

• Structural checks are based on known properties 
of data structures

– a number or elements in a list can be counted, or links 

and pointer can be verified

• Structural checks can be made more efficient by 
adding redundant data to a data structure, 

– attaching counts on the number of items in a list, or 

adding extra pointers
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Fault containment techniques

• Fault containment is software can be achieved by 
modifying the structure of the system and by 
putting a set of restrictions defining which actions 
are permissible within the system

• Techniques for fault containment: 

– modularization

– partitioning

– system closure

– atomic actions
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Modularization

• Software system is divided into modules with few 
or no common dependencies between them 

• Modularization attempts to prevent the 
propagation of faults 

– by limiting the amount of communication between 

modules to carefully monitored messages 

– by eliminating shared resources 
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Partitioning

• Modular hierarchy of a software architecture is 
partitioned in horizontal or vertical dimensions

• Horizontal partitioning separates the major 
software functions into independent branches

– The execution of the functions and the communication 

between them is done using control modules 

• Vertical partitioning distributes the control and 
processing function in a top-down hierarchy. 

– High-level modules normally focus on control functions, 

while low-level modules perform processing
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System closure

• System closure technique is based on a principle 
that no action is permissible unless explicitly 
authorized

• In an environment with many restrictions and 
strict control all the interactions between the 
elements of the system are visible

– prison

• It is easier to locate and disable any fault.
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Atomic action

• An atomic action among a group of components 
in an activity in which the components interact 
exclusively with each other. 

– no interaction with the rest of the system 

• Two possible outcomes of an atomic action: 

– it terminates normally

– it is aborted upon a fault detection 

• Fault containment area is defined and fault 
recovery is limited to atomic action components
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Fault recovery techniques

• Once a fault is detected and contained, a system 
attempts to recover from the faulty state and 
regain operational status 

– If fault detection and containment mechanisms are 

implemented properly, the effects of the faults are 

contained within a particular set of modules at the 

moment of fault detection. 

• The knowledge of fault containment region is 
essential for the design of effective fault recovery 
mechanism
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Exception handling

• Exception handling is the interruption of normal 
operation to handle abnormal responses

• Possible events triggering the exceptions: 

– Interface exceptions
• signaled by a module when it detects an invalid service 

request

– Local exceptions
• signaled by a module when its fault detection mechanism 

detects a fault

– Failure exceptions 
• signaled by a module when it has detected that its fault 

recovery mechanism is enable to recover successfully
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Checkpoint and restart

• Most of the software faults are design faults, 
activated by some non-tested or unexpected input 
sequence. 

– resemble hardware intermittent faults: appear for a 

short period of time, then disappear, and then may 

appear again. 

• Simply restarting the module is usually enough to 
successfully complete its execution

p. 26 - Design of Fault Tolerant Systems  - Elena Dubrova, ESDlab

Checkpoint and restart

• The module executing a program operates in 
combination with an acceptance test block which 
checks the correctness of the result

• If an fault is detected, a ``retry'' signal is send to 
the module to re-initialize its state to the 
checkpoint state stored in the memory
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Checkpoint and restart recovery

Programin

Acceptance 
Test

out

Checkpoint 

Memory

p. 28 - Design of Fault Tolerant Systems  - Elena Dubrova, ESDlab

Static checkpoints

• A static checkpoint takes a single snapshot of the 
system state at the beginning of the program 
execution and stores it in the memory.  

– If a fault is detected, the system returns to this state 

and starts the execution from the beginning. 

– Fault detection checks are placed at the output of the 

module
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Dynamic checkpoints

• Dynamic checkpoints are created dynamically at 
various points during the execution  

– If a fault is detected, the system returns to the last 

checkpoint and continues the execution. 

– Fault detection checks need to be embedded in the 

code and executed before the checkpoints are created
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Static vs. dynamic

• In static approach, the expected time to complete 
the execution grows exponentially with the 
execution requirements. 

– static checkpointing is effective only if the processing 

requirement is relatively small.

• In dynamic approach, it is possible to achieve 
linear increase in execution time as the 
processing requirements grow



p. 31 - Design of Fault Tolerant Systems  - Elena Dubrova, ESDlab

Strategies for dynamic checkpointing

• Equidistant

– places checkpoints at deterministic  fixed time intervals  

– the time between checkpoints is chosen depending on 
the expected fault rate

• Modular

– places checkpoints at the end of the sub-modules in a 
module, after the fault detection checks for the sub-
module are completed

– the execution time depends on the distribution of the 
sub-modules and expected fault rate

• Random
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Advantages of restart recovery 

• Conceptually simple

• Independent of the damage caused by a fault

• Applicable to unanticipated faults

• General enough to be used at multiple levels in a 
system
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Problems of restart recovery 

• Non-recoverable actions exist in some systems

– these actions cannot be compensated by simply 
reloading the state and restarting the system

• firing a missile

• soldering a pair of wires

• The recovery from such actions can be done

– by compensating for their consequences

• undoing a solder

– by delaying their output until after additional 
confirmation checks are completed

• do a friend-or-foe confirmation before firing

p. 34 - Design of Fault Tolerant Systems  - Elena Dubrova, ESDlab

Process pairs

• Two identical versions of the software are run on 
separate processors 

• First the primary processor, is active. 

– It executes the program and sends the checkpoint 

information to the secondary processor, Processor 2.  

• If a fault is detected, the primary processor is 
switched off. The secondary processor loads the 
last checkpoint as its starting state and continues 
the execution
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Process pairs
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Multi-version techniques

• Multi-version techniques use two or more 
versions the same software module, which satisfy 
design diversity requirements.  

– different teams, different coding languages or different 

algorithms can be used to maximize the probability that 

all the versions do not have common faults
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Recovery blocks

• Combines checkpoint and restart approach with 
standby sparing redundancy scheme

• n different implementations of the same program

– Only one of the versions is active

– If an error if detected by the acceptance test, a retry 

signal is sent to the switch 

– The system in rolled back to the state stored in the 

checkpoint memory and the execution is switched to 

another module
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Recovery blocks
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Recovery blocks

• Similarly to cold and hot standby sparing, different 
version can be executed either serially, or 
concurrently

– Serial execution may require the use of checkpoints to 

reload the state before the next version is executed

– The cost in time of trying multiple versions serially may 

be too expensive, especially for a real-time system.  

– A concurrent system requires n redundant hardware 

modules, a communications network to connect them 

and the use of input and state consistency algorithms.
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Recovery blocks

• If all n versions are tried and failed, the module 
invokes the exception handler to communicate to 
the rest of the system a failure to complete its 
function

• Recovery blocks technique heavily depends on 
design diversity
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N-version programming

• Resembles N-modular hardware redundancy

• N different software implementations of a module 
are executed concurrently. 

• The selection algorithm (voter) decides which of 
the answers is correct 

– a voter is application independent 

– this is an advantage over recovery block fault detection 

mechanism, requiring application dependent 

acceptance tests
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N-version programming
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Voters

• There are many different types of voters: 

– formalized majority voter

• selects majority

– generalized median voter

• selects the median of the values 

– formalized plurality voter

• partitions the set of outputs based on metric equality 

and selects the output from the largest group 

– weighted averaging

• combines the outputs in a weighted average 
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Voting

• The selection algorithms are normally developed 
taking into account the consequences of error

– For applications where reliability is important, the 

selection algorithm should be designed so that the 

selected result is correct with a very high probability  

– If availability is an issue, the selection algorithm is 

expected to produce an output even it is incorrect

– For applications where safety the main concern, the 

selection algorithm is required to correctly distinguish 

the erroneous version and mask its results
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N self-checking programming

• N self-checking programming combines recovery 
block concept with N version programming

• The checking is performed either by using 
acceptance tests, or by using comparison.  

• Examples of applications of N self-checking 
programming: 

– Lucent ESS-5 phone switch

– Airbus A-340 airplane
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N self-checking programming using 
comparison

in
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out
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p. 48 - Design of Fault Tolerant Systems  - Elena Dubrova, ESDlab

Comparison

• N self-checking programming using acceptance 
tests  

– The use of separate acceptance test for each version is 

the main difference of this technique from recovery 

blocks

• N self-checking programming using comparison

– resembles triplex-duplex hardware redundancy

– An advantage over N self-checking programming using 

acceptance tests is that the application independent 

decision algorithm is used for fault detection 
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Design diversity

• The most critical issue in multi-version software 
fault tolerance techniques is assuring 
independence between the different versions of 
software through design diversity

• Software systems are vulnerable to common 
design faults if they are developed by the same 
design team, by applying the same design rules 
and using the same software tools
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Design diversity

• Decision to be made when developing a multi-
version software system include

– which modules are to be made redundant 

• usually less reliable modules are chosen

– the level of redundancy 

• procedure, process, whole system

– the required number of redundant versions

– the required diversity 

• diverse specification, algorithm, code, programming 
language, testing technique

– rules of isolation between the development teams
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Software testing 

• Software testing is the process of executing a 
program with the intent of finding errors

• Two types of software testing: 

– Functional testing compares test program behavior 

against its specification

– Structural testing checks the internal structure of a 

program for errors
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Structural testing 

• The effectiveness of structural testing is 
expressed in terms of test coverage metrics
which measure the fraction of code exercised by 
tests 

– Statement coverage  

– Branch coverage  

– Path coverage  
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Statement coverage

• Statement coverage requires that each 
executable statement of a program is followed 
during a test

• Advantages: 

– Can be applied directly to object code and does not 

require processing source code

• Disadvantages: 

– Insensitive to some control structures, logical AND or 

OR operators, and switch labels
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• If there is no test case which 
causes condition to evaluate 
false, the error in this code will 
not be detected in spite of 
100% statement coverage

• The error will appear only if 
condition evaluates false for 
some test case

x = 0;

if (condition)

x = x + 1;

y = 10/x; 

Example
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Branch Coverage 

• Branch coverage requires that each branch of a 
program is executed at least once during a test 

• Advantages:  

– relative simplicity 

• Disadvantages:

– might miss some errors
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Example

• 100% branch coverage can be 

achieved by two tests:

– both condition1 and condition2

evaluate true

– both condition1 and  condition2

evaluate false 

• However, the error which occur 

when condition1 evaluates true 

and condition2 evaluates false is 

not detected

if(condition1)

x = 0; 

else

x = 2;

if(condition2)

y = 10*x;

else 

y = 10/x; 
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Path coverage

• Path coverage requires that each of the possible 
paths through the program is
followed during a test

• The most reliable metric, however, not applicable 
to large programs

– the number of paths is exponential to the number of 

branches

• 100% branch coverage is a requirement of most 
software standards
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Preliminaries

• A flowgraph is a directed graph                            
G = (V,E,entry,exit) where 

– V is the set of vertices representing basic blocks of the 

program

– E ⊆ V × V is the set of edges connecting the vertices

• entry and exit are two distinguished vertices of V
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b1;  

while(b2) 

for(b3) 

b4; 

for(b5) 

if(b6) b7;  

else   b8;   

if(b9) break;    

switch(b10) {  

case 1: while(b11) b12;  

case 2: if(b13) b14; 

else continue;  

default: b15; 

break;   

b16;   

b17;  

1

2 3 4 5

10 9 6

13 11 15 7
8

14

16

12

17

Example
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• A vertex v pre-dominates
a vertex u if every path 
from entry to u contains v

• 4 pre-dominates 5

• 6 pre-dominates 7 and 8
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Pre-dominators
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• A vertex v post-
dominates a vertex u if 
every path from u to exit 
contains v

• 9 post-dominate 5

• 5 post-dominate 6
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• Vertex v is  the immediate 
pre-dominator of u, if v pre-
dominates u and every 
other pre-dominator of u 
pre-dominates v
– 1,2,3,4 pre-dominate 5

– 4 is immediate

• unique

• edges (idom(v),v) form a 
tree rooted at entry
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Pre-dominator tree
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Post-dominator tree
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Statement Coverage

• We present a technique for finding a subset of 
flowgraph vertices, called  kernel

• any set of tests which executes all vertices of the 
kernel executes all vertices of the flowgraph

• 100% statement coverage can be achieved by 
constructing a set of tests for the kernel 
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Notation

• Lpre denotes the set of leaf vertices of the pre-
dominator tree of G

• LD
pre contains all vertices of Lpre which post-

dominate some vertex of Lpre

• Lpost denotes the set of leaf vertices of the post-
dominator tree of G

• LD
post contains all vertices of Lpost which pre-

dominate some vertex of Lpost
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Example
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Properties of kernels

• The sets Lpre- LD
pre and Lpost- LD

post are minimum 
kernels for G

• Minimum kernels can be computed in O(|V|+|E|) 
time 
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Example
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Branch Coverage

• The kernel-based technique can be similarly 
applied to branch coverage by constructing pre-
and post-dominator trees for the edges of the 
flowgraph instead of for its vertices

• 100% branch coverage can be achieved by 
constructing a set of tests for the kernel
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Summary of structural testing

• Technique for structural testing based on kernel 
computation

• Any set of tests which executes all vertices of the 
kernel executes all vertices of the flowgraph

• 100% coverage can be achieved by constructing 
a set of tests for the kernel
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Summary

• Basic techniques for achieving fault tolerance

– hardware redundancy

– information redundancy

– time redundancy

– software redundancy

• Often a combination of techniques is used, 
depending on application
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Summary

• It is important to be able to compare how good 
are two or more different approaches for a 
particular application, without implementing them

• Results of comparison lead to trade-offs and 
modification of the design

• This is done using evaluation methods
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Next lecture

• Fault tolerance in VLSI systems (not covered in 
the text book)


