
Software redundancy

p. 2 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Software fault-tolerance

• Fault-tolerance in software domain is not as well
understood as fault-tolerance in hardware domain

– Controversial opinions exist on whether reliability can

be used to evaluate software.

– Software failures are mostly due to the activation of

design faults by specific input sequences.

– This makes the reliability of a software module

dependent on the environment that generates input to

the module over the time.

• Ariane 5 rocket accident

p. 3 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Software fault-tolerance

• Many current techniques for software fault
tolerance attempt to leverage the experience of
hardware redundancy schemes

– software N-version programming closely resembles

hardware N-modular redundancy

– recovery blocks use the concept of retrying the same

operation in expectation that the problem is resolved

after the second try.

p. 4 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Problems

• Traditional hardware fault tolerance techniques
were developed to fight

– permanent components faults primarily

– transient faults caused by environmental factors

secondarily.

• They do not offer sufficient protection against
design and specification faults, which are
dominant in software.

p. 5 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Design diversity

• By simply triplicating a software module and
voting on its outputs we cannot tolerate a fault in
the module because all copies have identical
faults

• Design diversity technique has to be applied.

– requires creation of diverse and equivalent

specifications so that programmers can design

software which do not share common faults

– this is widely accepted to be a difficult task

p. 6 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Problems

• A software system usually has a very large
number of states

– a collision avoidance system required on most

commercial aircrafts in the U.S. has 1040 states

• Software states do not exhibited adequate
regularity to allow grouping them into equivalence
classes.

– Such regularity is common for digital hardware

p. 7 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Problems

• The large number of states implies that only a very

small part of software system can be verified for

correctness.

– Traditional testing and debugging methods are not

feasible for large systems.

– Formal methods promise higher coverage, however,

they are very complex

• a specification using formal logic may be of the

same size or even larger than the code.

• Due to incomplete verification, many design faults are

not diagnosed and are not removed from the software

p. 8 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Single- and multi-version techniques

• Software fault-tolerance techniques can be
divided into two groups:

– single-version

– multi-version

• Single version techniques aim to improve fault-
tolerant capabilities of a single software module

– fault detection, containment and recovery mechanisms

• Multi-version techniques employ redundant
software modules, developed following design
diversity rules

p. 9 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Redundancy allocation

• A number of possibilities has to be examined:

– at which level the redundancy need to be provided

• redundancy can be applied to a procedure, or to a

process, or to the whole software system

– which modules are to be made redundant

• usually, the components which have high probability

of faults are chosen to be made redundant.

• The increase in complexity caused by
redundancy can be quite severe and may
diminish the dependability improvement

p. 10 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Single-version techniques

• Single version techniques add to a single
software module a number of functional
capabilities that are unnecessary in a fault-free
environment.

– fault detection, fault containment and fault recovery

• Software structure and actions are modified to be
able to detect a fault, isolate it and prevent the
propagation of its effect throughout the system.

p. 11 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault detection techniques

• The goal is to determine that a fault has occurred
within a system.

• Various types of acceptance tests are used to
detect faults

– the result of a program is subjected to a test

– if the result passes the test, the program continues its

execution

– a failed test indicates a fault

p. 12 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Acceptance test

• Acceptance test is most effective if it can be
calculated in a simple way and if it is based on
criteria that can be derived independently of the
program application.

• The existing techniques include

– timing checks

– coding checks

– reversal checks

– reasonableness checks

– structural checks

p. 13 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Timing checks

• Timing checks are applicable to system whose
specification include timing constrains

• Based on these constrains, checks are developed
to indicate a deviation from the required behavior.

– Watchdog timer is an example of a timing check

– Watchdog timers are used to monitor the performance

of a system and detect lost or locked out modules.

p. 14 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Coding checks

• Coding checks are applicable to system whose
data can be encoded using information
redundancy techniques

• Usually used in cases when the information is
merely transported from one module to another
without changing it content.

– Arithmetic codes can be used to detect errors in

arithmetic operations

p. 15 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reversal checks

• In some system, it is possible to reverse the
output values and to compute the corresponding
input values.

• A reversal checks compares the actual inputs of
the system with the computed ones.

– a disagreement indicates a fault.

p. 16 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reasonableness checks

• Reasonableness checks use semantic properties
of data to detect fault.

– a range of data can be examined for overflow or

underflow to indicate a deviation from system's

requirements

• maximum withdrawal sum in bank’s teller machine

• address generated by a computer should lie inside

the range of available memory

p. 17 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Structural checks

• Structural checks are based on known properties
of data structures

– a number or elements in a list can be counted, or links

and pointer can be verified

• Structural checks can be made more efficient by
adding redundant data to a data structure,

– attaching counts on the number of items in a list, or

adding extra pointers

p. 18 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault containment techniques

• Fault containment is software can be achieved by
modifying the structure of the system and by
putting a set of restrictions defining which actions
are permissible within the system

• Techniques for fault containment:

– modularization

– partitioning

– system closure

– atomic actions

p. 19 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Modularization

• Software system is divided into modules with few
or no common dependencies between them

• Modularization attempts to prevent the
propagation of faults

– by limiting the amount of communication between

modules to carefully monitored messages

– by eliminating shared resources

p. 20 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Partitioning

• Modular hierarchy of a software architecture is
partitioned in horizontal or vertical dimensions

• Horizontal partitioning separates the major
software functions into independent branches

– The execution of the functions and the communication

between them is done using control modules

• Vertical partitioning distributes the control and
processing function in a top-down hierarchy.

– High-level modules normally focus on control functions,

while low-level modules perform processing

p. 21 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

System closure

• System closure technique is based on a principle
that no action is permissible unless explicitly
authorized

• In an environment with many restrictions and
strict control all the interactions between the
elements of the system are visible

– prison

• It is easier to locate and disable any fault.

p. 22 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Atomic action

• An atomic action among a group of components
in an activity in which the components interact
exclusively with each other.

– no interaction with the rest of the system

• Two possible outcomes of an atomic action:

– it terminates normally

– it is aborted upon a fault detection

• Fault containment area is defined and fault
recovery is limited to atomic action components

p. 23 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault recovery techniques

• Once a fault is detected and contained, a system
attempts to recover from the faulty state and
regain operational status

– If fault detection and containment mechanisms are

implemented properly, the effects of the faults are

contained within a particular set of modules at the

moment of fault detection.

• The knowledge of fault containment region is
essential for the design of effective fault recovery
mechanism

p. 24 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Exception handling

• Exception handling is the interruption of normal
operation to handle abnormal responses

• Possible events triggering the exceptions:

– Interface exceptions
• signaled by a module when it detects an invalid service

request

– Local exceptions
• signaled by a module when its fault detection mechanism

detects a fault

– Failure exceptions
• signaled by a module when it has detected that its fault

recovery mechanism is enable to recover successfully

p. 25 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Checkpoint and restart

• Most of the software faults are design faults,
activated by some non-tested or unexpected input
sequence.

– resemble hardware intermittent faults: appear for a

short period of time, then disappear, and then may

appear again.

• Simply restarting the module is usually enough to
successfully complete its execution

p. 26 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Checkpoint and restart

• The module executing a program operates in
combination with an acceptance test block which
checks the correctness of the result

• If an fault is detected, a ``retry'' signal is send to
the module to re-initialize its state to the
checkpoint state stored in the memory

p. 27 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Checkpoint and restart recovery

Programin

Acceptance
Test

out

Checkpoint

Memory

p. 28 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Static checkpoints

• A static checkpoint takes a single snapshot of the
system state at the beginning of the program
execution and stores it in the memory.

– If a fault is detected, the system returns to this state

and starts the execution from the beginning.

– Fault detection checks are placed at the output of the

module

p. 29 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Dynamic checkpoints

• Dynamic checkpoints are created dynamically at
various points during the execution

– If a fault is detected, the system returns to the last

checkpoint and continues the execution.

– Fault detection checks need to be embedded in the

code and executed before the checkpoints are created

p. 30 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Static vs. dynamic

• In static approach, the expected time to complete
the execution grows exponentially with the
execution requirements.

– static checkpointing is effective only if the processing

requirement is relatively small.

• In dynamic approach, it is possible to achieve
linear increase in execution time as the
processing requirements grow

p. 31 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Strategies for dynamic checkpointing

• Equidistant

– places checkpoints at deterministic fixed time intervals

– the time between checkpoints is chosen depending on
the expected fault rate

• Modular

– places checkpoints at the end of the sub-modules in a
module, after the fault detection checks for the sub-
module are completed

– the execution time depends on the distribution of the
sub-modules and expected fault rate

• Random

p. 32 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Advantages of restart recovery

• Conceptually simple

• Independent of the damage caused by a fault

• Applicable to unanticipated faults

• General enough to be used at multiple levels in a
system

p. 33 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Problems of restart recovery

• Non-recoverable actions exist in some systems

– these actions cannot be compensated by simply
reloading the state and restarting the system

• firing a missile

• soldering a pair of wires

• The recovery from such actions can be done

– by compensating for their consequences

• undoing a solder

– by delaying their output until after additional
confirmation checks are completed

• do a friend-or-foe confirmation before firing

p. 34 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Process pairs

• Two identical versions of the software are run on
separate processors

• First the primary processor, is active.

– It executes the program and sends the checkpoint

information to the secondary processor, Processor 2.

• If a fault is detected, the primary processor is
switched off. The secondary processor loads the
last checkpoint as its starting state and continues
the execution

p. 35 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Process pairs

Processor 1

in

s
w

it
c

h

out

Processor 2

Acceptance
Test

p. 36 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Multi-version techniques

• Multi-version techniques use two or more
versions the same software module, which satisfy
design diversity requirements.

– different teams, different coding languages or different

algorithms can be used to maximize the probability that

all the versions do not have common faults

p. 37 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Recovery blocks

• Combines checkpoint and restart approach with
standby sparing redundancy scheme

• n different implementations of the same program

– Only one of the versions is active

– If an error if detected by the acceptance test, a retry

signal is sent to the switch

– The system in rolled back to the state stored in the

checkpoint memory and the execution is switched to

another module

p. 38 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Recovery blocks

Version 1

Version 2in

Version n

..
.

out

n to 1
switch

Acceptance
Test

Checkpoint
Memory

p. 39 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Recovery blocks

• Similarly to cold and hot standby sparing, different
version can be executed either serially, or
concurrently

– Serial execution may require the use of checkpoints to

reload the state before the next version is executed

– The cost in time of trying multiple versions serially may

be too expensive, especially for a real-time system.

– A concurrent system requires n redundant hardware

modules, a communications network to connect them

and the use of input and state consistency algorithms.

p. 40 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Recovery blocks

• If all n versions are tried and failed, the module
invokes the exception handler to communicate to
the rest of the system a failure to complete its
function

• Recovery blocks technique heavily depends on
design diversity

p. 41 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

N-version programming

• Resembles N-modular hardware redundancy

• N different software implementations of a module
are executed concurrently.

• The selection algorithm (voter) decides which of
the answers is correct

– a voter is application independent

– this is an advantage over recovery block fault detection

mechanism, requiring application dependent

acceptance tests

p. 42 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

N-version programming

voter

Version 1

Version 2

Version n

in 1

in 2

in n

out

..
.

p. 43 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Voters

• There are many different types of voters:

– formalized majority voter

• selects majority

– generalized median voter

• selects the median of the values

– formalized plurality voter

• partitions the set of outputs based on metric equality

and selects the output from the largest group

– weighted averaging

• combines the outputs in a weighted average

p. 44 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Voting

• The selection algorithms are normally developed
taking into account the consequences of error

– For applications where reliability is important, the

selection algorithm should be designed so that the

selected result is correct with a very high probability

– If availability is an issue, the selection algorithm is

expected to produce an output even it is incorrect

– For applications where safety the main concern, the

selection algorithm is required to correctly distinguish

the erroneous version and mask its results

p. 45 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

N self-checking programming

• N self-checking programming combines recovery
block concept with N version programming

• The checking is performed either by using
acceptance tests, or by using comparison.

• Examples of applications of N self-checking
programming:

– Lucent ESS-5 phone switch

– Airbus A-340 airplane

p. 46 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

in

..
.

Acceptance
Test

Acceptance
Test

Acceptance
Test

out
n to 1

switch

N self-checking programming using
acceptance tests

Version 2

Version n

Version 1

p. 47 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

N self-checking programming using
comparison

in

..
.

=

out
n to 1

switch
Version2a

VersionNa

Version1a

=

=

Version1b

Version2b

VersionNb

p. 48 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Comparison

• N self-checking programming using acceptance
tests

– The use of separate acceptance test for each version is

the main difference of this technique from recovery

blocks

• N self-checking programming using comparison

– resembles triplex-duplex hardware redundancy

– An advantage over N self-checking programming using

acceptance tests is that the application independent

decision algorithm is used for fault detection

p. 49 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Design diversity

• The most critical issue in multi-version software
fault tolerance techniques is assuring
independence between the different versions of
software through design diversity

• Software systems are vulnerable to common
design faults if they are developed by the same
design team, by applying the same design rules
and using the same software tools

p. 50 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Design diversity

• Decision to be made when developing a multi-
version software system include

– which modules are to be made redundant

• usually less reliable modules are chosen

– the level of redundancy

• procedure, process, whole system

– the required number of redundant versions

– the required diversity

• diverse specification, algorithm, code, programming
language, testing technique

– rules of isolation between the development teams

p. 51 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Software testing

• Software testing is the process of executing a
program with the intent of finding errors

• Two types of software testing:

– Functional testing compares test program behavior

against its specification

– Structural testing checks the internal structure of a

program for errors

p. 52 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Structural testing

• The effectiveness of structural testing is
expressed in terms of test coverage metrics
which measure the fraction of code exercised by
tests

– Statement coverage

– Branch coverage

– Path coverage

p. 53 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Statement coverage

• Statement coverage requires that each
executable statement of a program is followed
during a test

• Advantages:

– Can be applied directly to object code and does not

require processing source code

• Disadvantages:

– Insensitive to some control structures, logical AND or

OR operators, and switch labels

p. 54 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

• If there is no test case which
causes condition to evaluate
false, the error in this code will
not be detected in spite of
100% statement coverage

• The error will appear only if
condition evaluates false for
some test case

x = 0;

if (condition)

x = x + 1;

y = 10/x;

Example

p. 55 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Branch Coverage

• Branch coverage requires that each branch of a
program is executed at least once during a test

• Advantages:

– relative simplicity

• Disadvantages:

– might miss some errors

p. 56 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example

• 100% branch coverage can be

achieved by two tests:

– both condition1 and condition2

evaluate true

– both condition1 and condition2

evaluate false

• However, the error which occur

when condition1 evaluates true

and condition2 evaluates false is

not detected

if(condition1)

x = 0;

else

x = 2;

if(condition2)

y = 10*x;

else

y = 10/x;

p. 57 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Path coverage

• Path coverage requires that each of the possible
paths through the program is
followed during a test

• The most reliable metric, however, not applicable
to large programs

– the number of paths is exponential to the number of

branches

• 100% branch coverage is a requirement of most
software standards

p. 58 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Preliminaries

• A flowgraph is a directed graph
G = (V,E,entry,exit) where

– V is the set of vertices representing basic blocks of the

program

– E ⊆ V × V is the set of edges connecting the vertices

• entry and exit are two distinguished vertices of V

p. 59 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

b1;

while(b2)

for(b3)

b4;

for(b5)

if(b6) b7;

else b8;

if(b9) break;

switch(b10) {

case 1: while(b11) b12;

case 2: if(b13) b14;

else continue;

default: b15;

break;

b16;

b17;

1

2 3 4 5

10 9 6

13 11 15 7
8

14

16

12

17

Example

p. 60 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

• A vertex v pre-dominates
a vertex u if every path
from entry to u contains v

• 4 pre-dominates 5

• 6 pre-dominates 7 and 8

1

2 3 4 5

10 9 6

13 11 15 7
8

14

16

12

17

Pre-dominators

p. 61 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

• A vertex v post-
dominates a vertex u if
every path from u to exit
contains v

• 9 post-dominate 5

• 5 post-dominate 6

1

2 3 4 5

10 9 6

13 11 15 7
8

14

16

12

17

Post-dominators

p. 62 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

• Vertex v is the immediate
pre-dominator of u, if v pre-
dominates u and every
other pre-dominator of u
pre-dominates v
– 1,2,3,4 pre-dominate 5

– 4 is immediate

• unique

• edges (idom(v),v) form a
tree rooted at entry

1

2 3 4 5

10 9 6

13 11 15 7
8

14

16

12

17

Immediate dominators

p. 63 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Pre-dominator tree

1

2 3 4 5

10 9 6

13 11 15 7
8

14

16

12

17

1

2

3

4

5

10

9 6

13 11 15

7
8

14

16

12

17

pre-dominator treeflowgraph

p. 64 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Post-dominator tree

1

2 3 4 5

10 9 6

13 11 15 7
8

14

16

12

17

15

17

10

5

9 12

6 7 8

1

11

3

4

2 13

14

16

post-dominator treeflowgraph

p. 65 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Statement Coverage

• We present a technique for finding a subset of
flowgraph vertices, called kernel

• any set of tests which executes all vertices of the
kernel executes all vertices of the flowgraph

• 100% statement coverage can be achieved by
constructing a set of tests for the kernel

p. 66 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Notation

• Lpre denotes the set of leaf vertices of the pre-
dominator tree of G

• LD
pre contains all vertices of Lpre which post-

dominate some vertex of Lpre

• Lpost denotes the set of leaf vertices of the post-
dominator tree of G

• LD
post contains all vertices of Lpost which pre-

dominate some vertex of Lpost

p. 67 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example

15

17

10

5

9 12

6 7 8

1

11

3

4

2 13

14

16

1

2

3

4

5

10

9 6

13 11 15

7
8

14

16

12

17

post-dominator tree

pre-dominator tree

LDpre={16,17}

LDpost={1,3,6,13}

p. 68 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Properties of kernels

• The sets Lpre- LD
pre and Lpost- LD

post are minimum
kernels for G

• Minimum kernels can be computed in O(|V|+|E|)
time

p. 69 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example

pre-dominator tree

Lpre-L
D
pre=

{7,8,12,14,15}

1

2

3

4

5

10

9 6

13 11 15

7
8

14

16

12

17

LDpre={16,17}

Lpost-L
D
post={7,8,11,14,15}

post-dominator tree

15

17

10

5

9 12

6 7 8

1

11

3

4

2 13

14

16

LDpost={1,3,6,13}

p. 70 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Branch Coverage

• The kernel-based technique can be similarly
applied to branch coverage by constructing pre-
and post-dominator trees for the edges of the
flowgraph instead of for its vertices

• 100% branch coverage can be achieved by
constructing a set of tests for the kernel

p. 71 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Summary of structural testing

• Technique for structural testing based on kernel
computation

• Any set of tests which executes all vertices of the
kernel executes all vertices of the flowgraph

• 100% coverage can be achieved by constructing
a set of tests for the kernel

p. 72 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Summary

• Basic techniques for achieving fault tolerance

– hardware redundancy

– information redundancy

– time redundancy

– software redundancy

• Often a combination of techniques is used,
depending on application

p. 73 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Summary

• It is important to be able to compare how good
are two or more different approaches for a
particular application, without implementing them

• Results of comparison lead to trade-offs and
modification of the design

• This is done using evaluation methods

p. 74 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Next lecture

• Fault tolerance in VLSI systems (not covered in
the text book)

