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Software redundancy

Software fault-tolerance

» Fault-tolerance in software domain is not as well
understood as fault-tolerance in hardware domain

— Controversial opinions exist on whether reliability can
be used to evaluate software.

— Software failures are mostly due to the activation of
design faults by specific input sequences.

— This makes the reliability of a software module
dependent on the environment that generates input to
the module over the time.

» Ariane 5 rocket accident
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Software fault-tolerance

« Many current techniques for software fault
tolerance attempt to leverage the experience of
hardware redundancy schemes

— software N-version programming closely resembles
hardware N-modular redundancy

— recovery blocks use the concept of retrying the same
operation in expectation that the problem is resolved
after the second try.
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Problems

« Traditional hardware fault tolerance techniques
were developed to fight
— permanent components faults primarily
— transient faults caused by environmental factors

secondarily.

» They do not offer sufficient protection against
design and specification faults, which are
dominant in software.
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Design diversity

« By simply triplicating a software module and
voting on its outputs we cannot tolerate a fault in
the module because all copies have identical
faults

» Design diversity technique has to be applied.

— requires creation of diverse and equivalent
specifications so that programmers can design
software which do not share common faults

— this is widely accepted to be a difficult task

p. 5 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Problems

» A software system usually has a very large
number of states
— a collision avoidance system required on most

commercial aircrafts in the U.S. has 1040 states

» Software states do not exhibited adequate
regularity to allow grouping them into equivalence
classes.
— Such regularity is common for digital hardware
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Problems

» The large number of states implies that only a very
small part of software system can be verified for
correctness.

— Traditional testing and debugging methods are not
feasible for large systems.
— Formal methods promise higher coverage, however,
they are very complex
+ a specification using formal logic may be of the
same size or even larger than the code.

» Due to incomplete verification, many design faults are

not diagnosed and are not removed from the software
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Single- and multi-version techniques

» Software fault-tolerance techniques can be
divided into two groups:
— single-version
— multi-version

 Single version techniques aim to improve fault-
tolerant capabilities of a single software module
— fault detection, containment and recovery mechanisms

» Multi-version techniques employ redundant
software modules, developed following design
diversity rules
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Redundancy allocation

« A number of possibilities has to be examined:
— at which level the redundancy need to be provided

» redundancy can be applied to a procedure, or to a
process, or to the whole software system

— which modules are to be made redundant
+ usually, the components which have high probability
of faults are chosen to be made redundant.
» The increase in complexity caused by
redundancy can be quite severe and may
diminish the dependability improvement
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Single-version techniques

« Single version techniques add to a single
software module a number of functional
capabilities that are unnecessary in a fault-free
environment.

— fault detection, fault containment and fault recovery
» Software structure and actions are modified to be

able to detect a fault, isolate it and prevent the
propagation of its effect throughout the system.
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Fault detection techniques

« The goal is to determine that a fault has occurred
within a system.

» Various types of acceptance tests are used to
detect faults
— the result of a program is subjected to a test

— if the result passes the test, the program continues its
execution

— a failed test indicates a fault
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Acceptance test

» Acceptance test is most effective if it can be
calculated in a simple way and if it is based on
criteria that can be derived independently of the
program application.

« The existing techniques include
— timing checks
— coding checks
— reversal checks
— reasonableness checks
— structural checks
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Timing checks

» Timing checks are applicable to system whose
specification include timing constrains

» Based on these constrains, checks are developed
to indicate a deviation from the required behavior.
— Watchdog timer is an example of a timing check

— Watchdog timers are used to monitor the performance
of a system and detect lost or locked out modules.
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Coding checks

» Coding checks are applicable to system whose
data can be encoded using information
redundancy techniques

» Usually used in cases when the information is
merely transported from one module to another
without changing it content.

— Arithmetic codes can be used to detect errors in
arithmetic operations
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Reversal checks

» In some system, it is possible to reverse the
output values and to compute the corresponding
input values.

» A reversal checks compares the actual inputs of
the system with the computed ones.

— a disagreement indicates a fault.
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Reasonableness checks

» Reasonableness checks use semantic properties
of data to detect fault.

— arange of data can be examined for overflow or
underflow to indicate a deviation from system's
requirements

* maximum withdrawal sum in bank’s teller machine
+ address generated by a computer should lie inside
the range of available memory

p. 16 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab




Structural checks

 Structural checks are based on known properties
of data structures
— a number or elements in a list can be counted, or links
and pointer can be verified
« Structural checks can be made more efficient by
adding redundant data to a data structure,

— attaching counts on the number of items in a list, or
adding extra pointers
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Fault containment techniques

 Fault containment is software can be achieved by
modifying the structure of the system and by
putting a set of restrictions defining which actions
are permissible within the system

» Techniques for fault containment:
— modularization
— partitioning
— system closure
— atomic actions
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Modularization

» Software system is divided into modules with few
or no common dependencies between them

» Modularization attempts to prevent the
propagation of faults

— by limiting the amount of communication between
modules to carefully monitored messages

— by eliminating shared resources
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Partitioning

» Modular hierarchy of a software architecture is
partitioned in horizontal or vertical dimensions

» Horizontal partitioning separates the major
software functions into independent branches
— The execution of the functions and the communication
between them is done using control modules
« Vertical partitioning distributes the control and
processing function in a top-down hierarchy.

— High-level modules normally focus on control functions,
while low-level modules perform processing
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System closure

« System closure technique is based on a principle
that no action is permissible unless explicitly
authorized

* In an environment with many restrictions and
strict control all the interactions between the
elements of the system are visible
— prison

* ltis easier to locate and disable any fault.
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Atomic action

« An atomic action among a group of components
in an activity in which the components interact
exclusively with each other.

— no interaction with the rest of the system

« Two possible outcomes of an atomic action:
— it terminates normally
— it is aborted upon a fault detection

 Fault containment area is defined and fault
recovery is limited to atomic action components
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Fault recovery techniques

» Once a fault is detected and contained, a system
attempts to recover from the faulty state and
regain operational status

— If fault detection and containment mechanisms are
implemented properly, the effects of the faults are
contained within a particular set of modules at the
moment of fault detection.

« The knowledge of fault containment region is
essential for the design of effective fault recovery
mechanism
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Exception handling

» Exception handling is the interruption of normal
operation to handle abnormal responses

» Possible events triggering the exceptions:

— Interface exceptions

+ signaled by a module when it detects an invalid service
request

— Local exceptions

+ signaled by a module when its fault detection mechanism
detects a fault

— Failure exceptions
+ signaled by a module when it has detected that its fault
recovery mechanism is enable to recover successfully
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Checkpoint and restart

» Most of the software faults are design faults,
activated by some non-tested or unexpected input
sequence.

— resemble hardware intermittent faults: appear for a
short period of time, then disappear, and then may
appear again.

« Simply restarting the module is usually enough to
successfully complete its execution
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Checkpoint and restart

» The module executing a program operates in
combination with an acceptance test block which
checks the correctness of the result

« If an fault is detected, a ""retry" signal is send to
the module to re-initialize its state to the
checkpoint state stored in the memory
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Checkpoint and restart recovery
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Static checkpoints

« A static checkpoint takes a single snapshot of the
system state at the beginning of the program
execution and stores it in the memory.

— If a fault is detected, the system returns to this state
and starts the execution from the beginning.

— Fault detection checks are placed at the output of the
module
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Dynamic checkpoints

« Dynamic checkpoints are created dynamically at
various points during the execution

— If a fault is detected, the system returns to the last
checkpoint and continues the execution.

— Fault detection checks need to be embedded in the
code and executed before the checkpoints are created

p. 29 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Static vs. dynamic

« |In static approach, the expected time to complete
the execution grows exponentially with the
execution requirements.

— static checkpointing is effective only if the processing
requirement is relatively small.

 In dynamic approach, it is possible to achieve
linear increase in execution time as the
processing requirements grow
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Strategies for dynamic checkpointing

» Equidistant
— places checkpoints at deterministic fixed time intervals
— the time between checkpoints is chosen depending on
the expected fault rate
» Modular

— places checkpoints at the end of the sub-modules in a
module, after the fault detection checks for the sub-
module are completed

— the execution time depends on the distribution of the
sub-modules and expected fault rate

« Random
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Advantages of restart recovery

Conceptually simple
Independent of the damage caused by a fault
Applicable to unanticipated faults

General enough to be used at multiple levels in a
system
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Problems of restart recovery

» Non-recoverable actions exist in some systems

— these actions cannot be compensated by simply
reloading the state and restarting the system

+ firing a missile
* soldering a pair of wires
» The recovery from such actions can be done
— by compensating for their consequences
 undoing a solder

— by delaying their output until after additional
confirmation checks are completed

* do a friend-or-foe confirmation before firing
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Process pairs

 Two identical versions of the software are run on
separate processors

« First the primary processor, is active.
— It executes the program and sends the checkpoint
information to the secondary processor, Processor 2.
« If a fault is detected, the primary processor is
switched off. The secondary processor loads the
last checkpoint as its starting state and continues
the execution
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Multi-version techniques

» Multi-version techniques use two or more

versions the same software module, which satisfy
design diversity requirements.

— different teams, different coding languages or different

algorithms can be used to maximize the probability that
all the versions do not have common faults
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Recovery blocks

« Combines checkpoint and restart approach with
standby sparing redundancy scheme

« n different implementations of the same program
— Only one of the versions is active

— If an error if detected by the acceptance test, a retry
signal is sent to the switch

— The system in rolled back to the state stored in the
checkpoint memory and the execution is switched to
another module
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Recovery blocks
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Recovery blocks

 Similarly to cold and hot standby sparing, different
version can be executed either serially, or
concurrently

— Serial execution may require the use of checkpoints to
reload the state before the next version is executed

— The cost in time of trying multiple versions serially may
be too expensive, especially for a real-time system.

— A concurrent system requires n redundant hardware
modules, a communications network to connect them
and the use of input and state consistency algorithms.
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Recovery blocks

 |f all n versions are tried and failed, the module
invokes the exception handler to communicate to
the rest of the system a failure to complete its
function

» Recovery blocks technique heavily depends on
design diversity
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N-version programming

» Resembles N-modular hardware redundancy

N different software implementations of a module
are executed concurrently.

» The selection algorithm (voter) decides which of
the answers is correct
— a voter is application independent
— this is an advantage over recovery block fault detection

mechanism, requiring application dependent
acceptance tests
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N-version programming

in 1 — Version 1

in2 —{ Version 2 |— | voter — out

inn— Version n
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Voters

» There are many different types of voters:
— formalized majority voter
* selects majority
— generalized median voter
* selects the median of the values
— formalized plurality voter

* partitions the set of outputs based on metric equality
and selects the output from the largest group

— weighted averaging
» combines the outputs in a weighted average
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Voting

» The selection algorithms are normally developed

taking into account the consequences of error

— For applications where reliability is important, the
selection algorithm should be designed so that the
selected result is correct with a very high probability

— If availability is an issue, the selection algorithm is
expected to produce an output even it is incorrect

— For applications where safety the main concern, the
selection algorithm is required to correctly distinguish
the erroneous version and mask its results
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N self-checking programming

N self-checking programming combines recovery
block concept with N version programming

» The checking is performed either by using
acceptance tests, or by using comparison.

« Examples of applications of N self-checking
programming:
— Lucent ESS-5 phone switch
— Airbus A-340 airplane
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N self-checking programming using
acceptance tests

> Version 1 "
Acceptance -
Test
in »| Version 2 > nto 1
A . — out
cceptance switch
Test -
> Version n -
Acceptance
Test -
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N self-checking programming using
comparison

*> Versionla ?

Version1b 4EI_’

in »| Version2a > nto1 out

Version2b —EI_’ switch

>| VersionNa

VersionNb —EI_’
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Comparison

N self-checking programming using acceptance
tests

— The use of separate acceptance test for each version is
the main difference of this technique from recovery
blocks

N self-checking programming using comparison
— resembles triplex-duplex hardware redundancy

— An advantage over N self-checking programming using
acceptance tests is that the application independent
decision algorithm is used for fault detection
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Design diversity

» The most critical issue in multi-version software
fault tolerance techniques is assuring
independence between the different versions of
software through design diversity

» Software systems are vulnerable to common
design faults if they are developed by the same
design team, by applying the same design rules
and using the same software tools
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Design diversity

 Decision to be made when developing a multi-
version software system include
— which modules are to be made redundant
« usually less reliable modules are chosen
— the level of redundancy
* procedure, process, whole system
— the required number of redundant versions
— the required diversity

« diverse specification, algorithm, code, programming
language, testing technique

— rules of isolation between the development teams
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Software testing

is the process of executing a
program with the intent of finding errors

» Two types of software testing:
compares test program behavior
against its specification
checks the internal structure of a
program for errors
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Structural testing

» The effectiveness of structural testing is
expressed in terms of
which measure the fraction of code exercised by
tests
— Statement coverage
— Branch coverage
— Path coverage
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Statement coverage

requires that each
executable statement of a program is followed
during a test
» Advantages:
— Can be applied directly to object code and does not
require processing source code
» Disadvantages:

— Insensitive to some control structures, logical AND or
OR operators, and switch labels
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Example

* |f there is no test case which
causes to evaluate

x = 0 false, the error in this code will

if ( ' y|  not be detected in spite of
oo L 100% statement coverage

y = 10/x%;

» The error will appear only if

evaluates false for
some test case
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Branch Coverage

requires that each branch of a

program is executed at least once during a test

» Advantages:
— relative simplicity
» Disadvantages:

— might miss some errors
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0;
2;
10*x;

10/x;

Example

* 100% branch coverage can be

achieved by two tests:

— both and
evaluate true
— both and

evaluate false

However, the error which occur
when evaluates true
and evaluates false is
not detected
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Path coverage

requires that each of the possible

paths through the program is
followed during a test

» The most reliable metric, however, not applicable
to large programs
— the number of paths is exponential to the number of

branches

» 100% branch coverage is a requirement of most

software standards
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Preliminaries

» A flowgraph is a directed graph
where

is the set of vertices representing basic blocks of the
program
is the set of edges connecting the vertices

and are two distinguished vertices of V
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Example

bl;
while (b2)
for (b3)
b4;
for (b5)
if (b6) b7;
else bs;

if (b9) break;
switch (b10) {
case 1: while(bll) bl2;
case 2: if(b1l3) bl4;
else continue;
default: bl5;
break;
blé6;
bl7;
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Pre-dominators

« Avertexv
a vertex u if every path
from entry to u contains v

* 4 pre-dominates 5
* 6 pre-dominates 7 and 8
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Post-dominators

 Averiexv
a vertex u if

every path from u to exit
contains v
b

* 9 post-dominate 5
» 5 post-dominate 6
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Immediate dominators

* Vertex vis the
of u, if v pre-

dominates u and every
other pre-dominator of u
(8) pre-dominates v

- 1,2,3,4 pre-dominate 5
— 4 is immediate

* unique

» edges (idom(v),v) form a
tree rooted at entry
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Pre-dominator tree @

flowgraph pre-dominator tree
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Post-dominator tree

flowgraph post-dominator tree
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Statement Coverage

» We present a technique for finding a subset of
flowgraph vertices, called

« any set of tests which executes all vertices of the
kernel executes all vertices of the flowgraph

» 100% statement coverage can be achieved by
constructing a set of tests for the kernel
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Notation

denotes the set of vertices of the pre-
dominator tree of G

contains all vertices of L, which
some vertex of L,

denotes the set of vertices of the post-
dominator tree of G

contains all vertices of L, which
some vertex of L.
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Example

e LPoon=(1,3613) ® ©
B ® @
D (5
LD, .={16,17} OBNG
v
TOO® P @
© @ ®)
post-dominator tree @

pre-dominator tree
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Properties of kernels

. -|D -|D ini
The sets Ly~ L7 and Lo~ L0 @re minimum
kernels for G

« Minimum kernels can be computed in O(|V|+|E|)
time
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Example g
LP,.={16,17} O @
I—re'l—D re=
© @@ ® @ “pe-p
55 {7,8,12,14,15} (%)
(&)
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@) LPpost={1,3.6, g
OXOCLO, () €D
(12)

3}
(13)
3 Lpost-LPpost={7,8,11,14,15}

post-dominator tree pre-dominator tree
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Branch Coverage

» The kernel-based technique can be similarly
applied to branch coverage by constructing pre-
and post-dominator trees for the edges of the
flowgraph instead of for its vertices

* 100% branch coverage can be achieved by
constructing a set of tests for the kernel
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Summary of structural testing

» Technique for structural testing based on kernel
computation

« Any set of tests which executes all vertices of the
kernel executes all vertices of the flowgraph

* 100% coverage can be achieved by constructing
a set of tests for the kernel
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Summary

 Basic techniques for achieving fault tolerance
— hardware redundancy
— information redundancy
— time redundancy
— software redundancy

« Often a combination of techniques is used,
depending on application
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Summary

* Itis important to be able to compare how good
are two or more different approaches for a
particular application, without implementing them

» Results of comparison lead to trade-offs and
modification of the design

 This is done using evaluation methods
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Next lecture

» Fault tolerance in VLSI systems (not covered in
the text book)
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