
Information redundancy
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Information redundancy

• add information to date to tolerate faults

– error detecting codes

– error correcting codes 

• data applications

– communication

– memory
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Code

• Code of length n is a set of n-tuples 

satisfying some well-defined set           of 

rules

• binary code uses only 0 and 1 symbols

– binary coded decimal                                
(BCD) code

• uses 4 bits for                                                      

each decimal digit

0000    0 
0001    1 
0010    2 
…       
1001    9
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Code word

• Codeword is an element of the code satisfying the 
rules of the code

• Word is an n-tuple not satisfying the rules of the 
code

• Codewords should be a subset of all possible 2n

binary tuples to make error detection/correction 
possible
– BCD: 0110 valid; 1110 invalid

– any binary code: 2013 invalid

• The number of codewords in a code C is called 
the size of C
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Encoding/decoding

• encoding 

– transform data into code word

• decoding

– recover data from code word

data encoding code word

code word decoding data
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Encoding/decoding

• 2 scenario if errors affect codeword:
• correct codeword → another codeword

• correct codeword → word
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Error detection

• We can define a code so that errors 

introduced in a codeword force it to lie 

outside the range of codewords

– basic principle of error detection
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Error detection

all possible 
words

code 
words
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Error correction

• We can define a code so that it is possible 

to determine the correct code word from the 

erroneous codeword

– basic principle of error correction
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Error correction

all possible 
codewords

code 
words
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Error detecting/correcting code 

• Characterized by the number of bits that 

can be corrected

– double-bit detecting code can detect two 
single-bit errors

– single-bit correcting code can correct one 
single-bit error

• Hamming distance gives a measure of error 

detecting/correcting capabilities of a code
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Hamming distance

Hamming distance is the number of bit 
positions in which two n-tuples differ

x 0000

y 0101
δδδδ (x,y) = 2
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3-dimensional space (3-bit words)

xyz000 100

010

101

110

011 111

001

x

y

z

δδδδ=1
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Error detection

100

010

101

110

011 111

001

000

If codewords are on 

distance ≥ 2, we can 
detect single-bit 
errors
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Error correction

100

010

101

110

011 111

001

000

If codewords are on 

distance ≥ 3, we can 
correct single-bit 
errors
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Code distance 

Cd = 2

code distance is the minimum Hamming distance 
between any two distinct codewords

code detects all single-bit errors

code: 00, 11 
invalid code words: 01 or 10 

Cd = 3 code corrects all single-bit errors

code: 000, 111 
invalid code words: 001, 010, 100, 

101, 011, 110
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Relation b/w code distance and 
capabilities of the code

2c + d + 1 ≤ Cd

A code can correct up to c bit errors and  

detect up to d additional bit errors if and only if: 
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Separable/non-separable code

• separable code

– codeword = data  + check bits

– e.g. parity: 11011 = 1101 + 1

• non-separable code

– codeword = data mixed with check bits

– e.g. cyclic: 1010001 -> 1101 

• decoding process is much easier for 

separable codes (remove check bits) 
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Information rate

• The ratio k/n, where 

– k is the number of data bits

– n is the number of data + check bits 

is called the information rate of the code

• Example: a code obtained by repeating 

data three times has the information rate 

1/3 
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Next: Types of codes

• parity codes

• linear codes

– Hamming codes

• cyclic codes

– CRC codes

– Reed-Solomon codes

• unordered codes

– m-of-n codes

– Berger codes

• arithmetic codes

– AN-codes

– residue codes
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Single-bit parity code

• Add an extra bit to binary word so that that 

resulting code word has either even or odd 

number of 1s

– even parity: even # ‘1’

– odd parity: odd # ‘1’

• single bit error detection: Cd = 2

• separable code

• use: bus, memory, transmission, … 
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Organization of memory with  single-
bit parity code

m
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Parity

extra HW required (parity generator, checker, extra memory)
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Parity generation and checking

D
a

ta
 b

it
s

1 if odd 

d0

d1

d2

d3

error if 1
Parity bit

d0

d1

d2

d3
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Problem with single-bit parity code

• Multiple-bit errors (even number of bits) 

cannot be detected

– some of them are often very common

• failure of the individual memory chip
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Other parity codes

• The purpose is to provide additional error 

capability

– bit-per-word

– bit-per-byte

– bit-per-multiple-chips

– bit-per-chip

– interlaced

– overlapping
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Overlapping parity code        
(Hamming code)

Bit in error Parity
pattern

3 P2 P1 P0
2 P2 P1
1 P2 P0
0 P1 P0

P2 P2
P1 P1
P0 P0

no error

Overlapping parity for 4-bits of data - each data bit is 

assigned to multiple parity groups 

3 2 1 0 P2 P1 P0
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k c redundancy
2 3 150%
4 3 75%
8 4 50%
16 5 31%
32 6 19%
64 7 11%

Overlapping parity code       
(Hamming code)

• k data bits, c parity bits

• to have unique parity pattern per error:

2c ≥≥≥≥ k+c+1
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Background

• A field Z2 is the set { 0,1} together with two operations of 

addition and multiplication (modulo 2) satisfying a given 

set of properties

• A vector space Vn  over a field Z2 is a subset of Z2
n, with 

two operations of addition and multiplication (modulo 2) 

satisfying a given set of properties

• A subspace is a subset of a vector space which is itself a 

vector space

• A set of vectors {v0,…,vk-1 } is linearly independent if     

a0v0 + a1v1 + …+ ak-1vk-1 = 0 implies a0 = a1= …= ak-1 = 0
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Linear code: Definition

• A (n,k) linear code over the field Z2 is a k-

dimensional subspace of Vn

– spanned by k linearly independent vectors

– any codeword c can be written as a linear 
combination of k basic vectors (v0,…,vk-1) as 
follows

c = d0v0 + d1v1 + …+ dk-1vk-1

– (d0,d1,…,dk-1) is the data to be encoded
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Example: (4,2) linear code

• Data to be encoded are 2-bit words

[00], [01], [10], [11]

• Suppose we select for a basis the vectors 

v0 = [1000], v1 = [0110]

• To find the codeword c = [c0c1c2c3] corresponding to the 

data d = [d0d2], we compute the linear combination of the 

basic vectors as 

c = d0v0 + d1v1

• For example, data d = [11] is encoded to

c = 1 · [1000]  + 1 · [0110]  =  [1110] 
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Example (cont.)

• d = [00] is encoded to

c = 0 · [1000]  + 0 · [0110]  =  [0000] 

• d = [01] is encoded to

c = 0 · [1000]  + 1 · [0110]  =  [0110] 

• d = [10] is encoded to

c = 1 · [1000]  + 0 · [0110]  =  [1000] 
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Generator matrix

• The rows of the generator matrix are the basis 
vectors v0,…,vk-1

• For example, generator matrix for the previous 
example is

• Codeword c is obtained by multiplying G by d

c = d · G 

1 0 0 0
0 1 1 0

G =
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Example: (6,3) linear code

• Construct the code spanned by the basic vectors 
[100011], [010110] and [001101] 

• The generator matrix for this code is

• For example, data d = [011] is encoded to

c=0·[100011]+1·[010110]+1·[001101]=[011011] 

1 0 0 0 1 1
0 1 0 1 1 0
0 0 1 1 0 1

G =
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Parity check matrix

• To check for errors in a (n,k) linear code, we use 
an (n-k)×n parity check matrix H of the code

• The parity check matrix is related to the generator 
matrix by the equation

H · GT = 0

where GT denotes the transponse of G

• This implies that, for any codeword c, the product 
of the parity check matrix and the encoded 
message should be zero

H · cT = 0
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Constructing parity check matrix

• If a generator matrix is of the form G = [Ik
A], then the parity check matrix is of the 

form

H = [AT In-k]
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Example: (6,3) linear code

• If G is of the form

• Then H is of the form

1 0 0 0 1 1
0 1 0 1 1 0
0 0 1 1 0 1

G =

0 1 1 1 0 0 
1 1 0 0 1 0
1 0 1 0 0 1

H =
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Syndrome

• Encoded data is checked for errors by multiplying 
it by the parity check matrix

s = H · cT

• The resulting (n-k)-bit vector is called syndrome

– If s = 0, no error has occurred

– If s matches one of the columns of H, a single-bit error 

has occurred. The bit position corresponds to the 

position of the matching column of H

– Otherwise, a multiple-bit error has occurred
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Constructing linear codes

• To be able to correct e errors, a code 

should have a distance of at least 2e+1

• It is possible to ensure the code distance c 

by selecting the parity check matrix with c-1 

linearly independent columns 

– To have a code with code distance 2 (single-
error detecting), every column of H should be 
linearly independent, I.e. H shouldn’t have a 
zero column
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Example: (4,2) linear code

• Parity check matrix for (4,2) linear code we 
have constructed before is 

• The first column is zero, therefore the 
columns of H are linearly dependent and 
code distance is 1

• Let us construct a code with distance 2

0 1 1 0
0 0 0 1

H =
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Example: (4,2) linear code, Cd=2

• Replace 1st column by a column containing 

all 1

• Now G can be constructed as

1 1 1 0
1 0 0 1

H = = [AT I2] 

1 0 1 1
0 1 1 0

G = [I2 A] =
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Example: (4,2) linear code, Cd=2

• The resulting code generated by G is

data   codeword

d1 d2  c1 c2 c3 c4

0  0   0  0  0  0
0  1   0  1  1  0
1 0   1  0  1  1
1  1   1  1  0  1
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Hamming codes

• Hamming codes are a family of linear codes

• An (n,k) Hamming code satisfies the property that 
the columns of its parity check matrix represent 
all possible non-zero vectors of length n-k

• Example: (7,4) Hamming code

1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1

H =
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Parity check matrix

• If the columns of H are permuted, the resulting 
code remains a Hamming code

• Example: different (7,4) Hamming code

• Such H is called lexicographic parity check matrix
– the corresponding code does not have a generator 

matrix in standard form G = [I3 A] 

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

H =
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Decoding

• If the parity check matrix H is lexicographic, a 
simple procedure for syndrome decoding exists

• To check a  codeword c for errors, calculate 

s = H · cT

– If s = 0, no error has occurred

– If s ≠ 0, then it matches one of the columns of H, say i

– c is decoded assuming that a single-bit error has 

occurred in the ith bit of c
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Example: (7,4) Hamming code

• Construct Hamming code corresponding to parity check 

matrix

• The corresponding G is

1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1

H = = [AT I3] 

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

G = [I4 A] =
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Example (cont.)

• Suppose the data to be encoded is d = [1110] 

• We multiply d by G to get c = [1110001] 

• Suppose an error has occurred in the last bit of c 

– c is transformed to [1110000] 

• By multiplying [1110000] by H, we s = [001]

• s matches the last column of H

– the error has occurred in the last bit of the codeword 

• We correct [1110000]  to [1110001] and decode it to d = 

[1110]  by taking the first 4 bits of data
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Example: (7,4) Hamming code, 
lexicographic

• Generator matrix corresponding to the lexicographic parity 

check matrix is

• So, data d = [d0d1d2d3] is encoded as c = [d3d0d1p1d2p2p3] 

where p1,p2,p3 are parity check bit defined by 

p1 = d0 + d1 + d2

p2 = d0 + d2 + d3

p3 = d1 + d2 + d3

0 1 0 1 0 1 0

0 0 1 1 0 0 1

0 0 0 1 1 1 1

1 0 0 0 0 1 1

G =
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Error correction

• If parity check matrix is lexicographic, the error correction 

can be implemented using a decoder and XOR gates

• The first level of XOR gates compares stored check bits 

with re-computed ones

• The result of the comparison in the syndrome [s0s1s2], 

which is fed into the decoder

• For the syndrome s = i, i ∈ {0,1,…,7}, ith output of the 

decoder is high

• The second level of XOR gates complements the ith bit of 

the word, thus correcting the error
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Code distance of Hamming codes

• The code distance of a Hamming code is 3, so it 
can correct single-bit error

• Often extended Hamming code  is used, which 
can correct single-bit error and detect double-bit 
errors

– obtained by adding a parity check bit to every 

codeword of a Hamming code

– if c = [c1c2…cn] is a codeword of a Hamming code,       

c’ = [c0c1c2…cn] is the corresponding extended 

codeword, where c0 is the parity bit
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Extended Hamming code

• The parity check matrix of an extended (n,k) 
Hamming code is obtained as follows

– add a zero column in front of a lexicographic parity 

check matrix of an (n,k) Hamming code

– attach a row consisting of all 1’s  as n-k+1th row of the 

resulting matrix

• Example: Extended (1,1) Hamming code

0   1
1   1

H =
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Cyclic codes

• Cyclic codes are special class of linear codes

• Used in applications where burst errors can occur

– a group of adjacent bits is affected

– digital communication, storage devices (disks, CDs)

• Important classes of cyclic codes:

– Cyclic redundancy check (CRC)

• used in modems and network protocols

– Reed-Solomon code

• used in CD and DVD players
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Cyclic code: Definition

• A linear code is called cyclic if any end-around 
shift of codeword produces another codeword

– if [c0c1c2…cn-2cn-1] is a codeword, then [cn-1c0c1c2…cn-2], 

is a codeword, too

• it is convenient to think of words as polynomials 
rather than vectors

– for example, a codeword [c0c1…cn-1] is represented as 

a polynomial

c0·x
0+ c1·x

1+…+ cn-1 ·x
n -1
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Polynomials

• Since the code is binary, the coefficients are 0 
and 1 

• For example, d(x) = 1·x0+0·x1+1·x2+1·x3 

represents the data (1011)

• We always write least significant digit on the left
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Polynomials

• The degree of a polynomial equals to its 

highest exponent

– e.g. the degree of 1+ x1+ x3 is 3

• a cyclic code with the generator polynomial 

of degree (n-k) detects all  burst errors 

affecting (ning (n--k)k) bits or less

– n is the number of bits in codeword

– k is the number of bits in data word
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Encoding/decoding 

Encode

c(x)=d(x)·g(x)

d(x)
transmit

Decode/Correct

d(x)=c(x)/g(x)

d(x)
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Encoding

Multiply data polynomial 
by generator polynomial:

c(x) = d(x).g(x)

Calculations are performed in Galois Field GF(2):

• multiplication modulo 2 = AND operation

• addition modulo 2 = XOR operation

• in GF(2), subtraction = addition  
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Properties of generator polynomial

• g(x) is the generator polynomial for a linear 

cyclic code of length n if and only if g(x) 

divides 1+xn without a reminder
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Example of polymomial multiplication (1)

d(x) = (1011) = x3 + x2 + 1

g(x) = x3 + x + 1

c(x)  =  d(x).g(x)

k = 4

= (x3 + x2 + 1).(x3 + x + 1)

= x6 + x4 + x3 + x5 + x3 + x2 + x3 + x + 1

= x6 + x5 + x4 + x3 + x2 + x1 + 1

= (1111111) n = 7
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Example of polynomial multiplication (2)

d(x) = (1010) = x2 + 1

g(x) = x3 + x + 1

c(x)  = d(x).g(x)

k = 4

= (x3 + x + 1).(x2 + 1)

= x5 + x3 + x3 + x + x2 + 1

= x5 + x2 + x + 1

= (1110010) n = 7
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Example: (7,4) cyclic code

• Find a generator polynomial for a code of 
length n=7 for encoding of data of length 
k=4

• g(x) should be of a degree 7-4=3 and 
should divide 1+x7 without a reminder

• 1+x7 can be factored as

1+x7 = (1+x+x3)(1+x2+x3)(1+x)

• so, we can choose for g(x) either 1+x+x3 or 
1+x2+x3
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Parity check polynomial

• For a cyclic code with the generator 

polynomial g(x), the check polynomial h(x) 

is determined by

g(x)·h(x) = 1+xn

• Since codewords are multiples of g(x), for 

every codeword c(x), it is hold that

c(x)·h(x) = 0 mod 1+xn
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Decoding

Divide received polynomial c(x) by the 
generator polynomial g(x):

d(x) = c(x)/g(x)

• Division is the polynomial division in GF(2)

• The reminder from the division is syndrome s(x)

• if s(x) is zero, no error has occurred
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Example of polynomial division (1)

x6 + x5 + x4 + x3 + x2 + x + 1 x3 + x + 1

x3
x6 + x4 + x3

x5 + x2 + x + 1

+ x2

x5 + x3 + x2

x3 + x + 1

+ 1

x3 + x + 1

0
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Example of polynomial division (2)

x8 + x5 + x4 + x2 + 1 x3 + x + 1

x5
x8 + x6 + x5

x6 + x4 + x2 + 1

+ x3

x6 + x4 + x3

x3 + x2 + 1

+ 1

x3 + x + 1

x2 + x
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Decoding (no error) 

• if no error occurred, then the received codeword 
is the correct codeword c(x)

• therefore, d(x) = c(x)/g(x)
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Decoding in presence of error 

• Suppose an error has occurred, then

creceived(x) = c(x) + e(x), e(x) - error polynomial

dreceived(x) = (c(x) + e(x))/g(x)

• Unless e(x) is a multiple of g(x), the 

received codeword will not be evenly 

dividable by g(x)
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Decoding/detecting process

• We detect errors by checking whether 

creceived(x) is evenly dividable by g(x) 

• If yes, we assume that there is no error and 

dreceived (x) = d(x) 

• If there is a reminder, we assume that there 

is an error
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Undetectable errors

• However, if e(x) is a multiple of g(x), the 

reminder of e(x)/g(x) is 0 and the error will 

not be detected
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Example of error detection

d(x) = (1011) = x3 + x2 + 1

g(x) = x3 + x + 1

Let e(x) = x3+1, then 

c(x) = d(x).g(x) = x6 + x5 + x4 + x3 + x2 + x + 1

creceived = x6 + x5 + x4 + x2 + x

creceived(x)/g(x) = (x3 + x2) + x/(x3 + x + 1)

Reminder is not 0, so the error is detected

p. 70 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

HW for encoding/decoding of cyclic 
codes

• Encoding and decoding is done using linear 

feedback shift registers (LFSRs)

• LFSR implements polynomial division by 

generator polynomial g(x)



p. 71 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

LSFR

• Linear feedback shift register consists of: 

– register cells so, s1, …, sr-1, where r = n-k is the 
degree of g(x)  

– XOR-gates between the cells

– feedback connections to XOR, with weights 

– clock
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LFSR

• Weights gi are the coefficients of the generator 
polynomial g(x)=g0+g1x

1+…+ gr x
r

– gi=0 means ’no connection’

– gi=1 means ’connection’

– gr is always connected

c(x)

g0

+

g1

+

g2

+

gr-1

+…

gr

d(x)
s0 s1 sr-1
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Example

• LFSR for g(x)=1+x+x3

s0
+=s2+c(x)

s1
+=s0+ s2

s2
+=s1

c(x)

g0

+

g1

+

g3

d(x)s0
s1 s2
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Example: decoding, no error

Suppose the word to decode is [1010001], i.e
c(x) = 1 + x2 + x6. Most significant bit is fed first. 

 
 

 c(x) s0 s1 s2 d(x) 

t0  0 0 0  
t1 1 1 0 0 0 
t2 0 0 1 0 0 
t3 0 0 0 1 0 
t4 0  1 1 0 1 

t5 1  1 1 1 0 
t6 0  1 0 1 1 
t7 1  0 0 0 1 

s0
+= s2+c(x)

s1
+= s0+ s2

s2
+= s1

d(x) = 1 + x + x3. 
Most significant bit 
comes out first.
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Example: decoding, with error

Suppose an error has occurred in the 4th bit, i.e. 
we received [1011001] instead of [1010001].

 
 

 c(x) s0 s1 s2 d(x) 

t0  0 0 0  
t1 1 1 0 0 0 
t2 0 0 1 0 0 
t3 0 0 0 1 0 
t4 1  0 1 0 1 

t5 1  1 0 1 0 
t6 0  1 0 0 1 
t7 1  1 1 0 0 

s0
+= s2+c(x)

s1
+= s0+ s2

s2
+= s1

The syndrome [110] 
matches the 4th column 
of the check matrix H.
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Encoding for separable cyclic codes

• Division can be used for encoding of a 

separable (n,k) cyclic code

– shift data by n-k positions, i.e. multiply d(x) by 
xn-k

– use LFSR to divide d(x) xn-k by g(x). The 
reminder r(x) is contained in the register

– append the check bits r(x) to the data by 
adding r(x) to d(x) xn-k:

c(x) = d(x) xn-k + r(x)
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Example: encoding for (7,4) code

• Let d(x) = x+x3 and  g(x)=1+x+x3

– n=7, k=4

– shift data by n-k=3 positions:

d(x)·x3 = (x+x3)x3 = x4+x6

– divide d(x) xn-k by g(x) to compute the r(x)

x4+x6 = (1+x3)(1+x+x3)+(1+x)

– c(x) = d(x) xn-k + r(x)

c(x) = 1+x+x4+x6
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CRC codes

• Cyclic Redundancy Check (CRC) codes are 
separable codes with specific generator 
polynomials, chose to provide high error detection 
capability for data transmission and storage

• Common generator polynomials are:

CRC-16: 1 + x2 + x15 + x16

CRC-CCITT: 1 + x5 + x12 + x16

CRC-32: 1 + x + x2 + x4 + x7 + x8 + x10 + x11 + x12

+ x16 + x22 + x23 + x26 + x32
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CRC codes

• CRC-16 and CRC-CCITT are widely used 
in modems and network protocols in the 
USA and Europe, respectively, and give 
adequate protection for most applications  
– the number of non-zero terms in their 

polynomials is small (just four)

– LFSR required to implement encoding and 
decoding is simpler

• Applications that need extra protection, e.g. 
DD, use CRC-32
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Encoding/decoding

• The encoding and decoding is done either 

in software, or in hardware using the usual 

procedure for separable cyclic codes

• To encode:

– shift data polynomial right by deg(g(x)) bit 
position

– divided it by the generator polynomial 

– the coefficients of the remainder form the 
check bits of the CRC codeword 
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Encoding/decoding

• The number check bits equals to the degree of 
the generator polynomial

– an CRC detects all burst error of length less or equal 

than deg(g(x))

• CRC also detects many errors which are larger 
than deg(g(x))

– apart from detecting all burst errors of length 16 or 

less, CRC-16 and CRC-CCITT are also capable to 

detect 99.997% of burst errors of length 17 and 

99.985% burst errors of length 18
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Reed-Solomon codes

• Reed-Solomon (RS) codes are a class of 
separable cyclic codes used to correct 
errors in a wide range of applications 
including
– storage devices (tapes, compact disks, DVDs, 

bar-codes), wireless

– communication (cellular telephones, microwave 
links), satellite

– communication, digital television, high-speed 
modems (ADSL, xDSL).
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Reed-Solomon codes

• The encoding for Reed-Solomon code is done the 
using the usual procedure 

– codeword is computed by shifting the data right n-k 

positions, dividing it by the generator polynomial and 

then adding the obtained reminder to the shifted data

• A key difference is that groups of m bits rather 
than individual bits are used as symbols of the 
code. 

– usually m = 8, i.e. a byte.

– the theory behind is a field Zm
2 of degree m over {0,1} 
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Encoding

• An encoder for an RS code takes k data 

symbols of s bits each and computes a 

codeword containing n symbols of m bits 

each

• A Reed-Solomon code can correct up to n-

k/2 symbols that contain errors
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Example: RS(255,223) code

• A popular Reed-Solomon code is 
RS(255,223)
– symbols are a byte (8-bit) long

– each codeword contains 255 bytes, of which 
223 bytes are data and 32 bytes are check 
symbols

– n = 255, k = 223, this code can correct up to 16 
bytes containing errors

– each of these 16 bytes can have multiple bit 
errors.
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Decoding

• Decoding of Reed-Solomon codes is 
performed using an algorithm designed by 
Berlekamp
– popularity of RS codes is due to efficiency this 

algorithm to a large extent. 

• This algorithm was used by Voyager II for 
transmitting pictures of the outer space 
back to Earth 

• Basis for decoding CD in players
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Summary of cyclic codes

• Any end-around shift of a codeword 

produce another codeword

• code is characterized by its generator 

polynomial g(x), with a degree (n-k), n = 

bits in codeword, k = bits in data word

• detect all single errors and all multiple 

adjacent error affecting (n-k) bits or less
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110101

111101

111111

000101

000001

000000

Unordered codes

• Designed to detect unidirectional errors

• An error is unidirectional if all affected bits are 

changed to either 0 → 1 or 1 → 0, but not both

• Example:

– correct codeword:  010101

– same codeword with unidirectional errors: 
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Unidirectional error detection

• Theorem: A code C detects all 

unidirectional errors if and only if every pair 

of codewords in C is unordered

• two binary n-tuples x and y are ordered if 

either   xi ≤ yi or xi ≥ yi for all i ∈ {1,2,...,n}

• Examples of ordered codewords:

0110 < 0111 < 1111

0110 > 0100 > 0000
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Unidirectional error detection

• A unidirectional error always changes a 

word x to a word y which is either smaller or 

greater than x

• A unidirectional error cannot change x to a 

word which is not ordered with x  

• Therefore, if any pair of codewords are 

unordered, a unidirectional error will never 

transform a codeword to another codeword
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m-of-n code

• Code words are n bits in length and contain 

exactly m 1’s

– Cd = 2, detect single-bit errors 

– detects all unidirectional errors 

• (+) simple to understand

• (-) if non-separable, encoding and decoding 

is difficult to organize
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k-of-2k code

• Take the original k bits of information and 

append k bits so that  the resulting 2k-bit 

word has exactly k 1s

– (-) 100% redundancy

– (+) separable code, so        

encoding and decoding       

are easy to organize

data 3-of-6 code

000 000  111
001 001  110

010 010  101
… …

111 111  000
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Berger code

• Append c check bits to k data bits        

c = log2(k+1)

• separable code

• how to create code word:

– count number of 1’s in k data bits

– complement resulting binary number and 
append it to the data bits
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Example of Berger codeword

data = (0111010), k  = 7

c = log2(7+1) = 3

number of 1’s in (0111010) is 4 = (100)

complement of (100) is (011)

resulting codeword is (0111010011)
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Berger code capability 

• Berger code detects all unidirectional errors

• for the error detection capability it provides, 

the Berger code uses the fewest number of 

check bits of the available separable 

unordered codes
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Arithmetic codes

• For checking arithmetic operations

– before the operation, data is encoded 

– after the operation, code words are checked

• Arithmetic code is the invariant to “*” if:

A(b*c) = A(b) * A(c)

b, c - operands                                          
A(b), A(c), A(b*c) - codes for b, c and b*c
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Examples of arithmetic codes

• Two common types of arithmetic codes are 

– AN codes 

– residue codes
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AN code

• AN code is formed by multiplying each data 

word N by some constant A

• AN codes are invariant to addition (and 

subtraction):

• If no error occurred, A(b+c) is evenly 

divisible by A

A(b + c) = A(b) + A(c)
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Adder protected by 3N code

b5 b4 b3 b2 b1 b0
a5 a4 a3 a2 a1 a0

s5 s4 s3 s2 s1 s0

3N code for b 3N code for a

3N code for sum = a+b

6-bit adder

Original data are 4-bit 

long. By multiplying them 

by 3, we obtain code 

words (6-bit long)

d a ta c o d e  w o rd

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1 1 0
… …
1 1 1 1 1 0 1 1 0 1
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a = 0 1 0 0 1 0 (3N code of 6)

b = 0 0 0 0 1 1 (3N code of 1)
+

Normal operation:

Addition using 3N code - fault-free

s = 0 1 0 1 0 1 (3N code of 7)
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a = 0 1 0 0 1 0 (3N code of 6)

b = 0 0 0 0 1 1 (3N code of 1)

s = 0 1 0 1 1 1    (23 is not evenly divisible by 3 

i.e. not a valid code word) 

If s1 is stuck to “1”:

Addition using 3N code - with faults

+
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Selecting the value of A

• For binary codes, the constant A shouldn’t 

be a power of two

– otherwise multiplication by A results a left shift 
of the original data

– error in a single bit yields a codeword evenly 
divisible by A (valid), so it will not be detected

• 3N code is easy to encode using n+1 bit 

adder: create 2N by shift and add N to it 
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Residue codes

• Residue codes are created by computing a 

residue for data and appending it to the 

data

• The residue is generate by dividing a data 

by a integer, called modulus. 

• Decoding is done by simply removing the 

residue
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Residue codes

• Residue codes are invariants with respect to 
addition, since

where b and c are data words and m is modulus  

• This allows us to handle residues separately from 
data during addition process.

• Value of the modulus determines the information 
rate and the error detection capability of the code

(b + c) mod m = b mod m + c mod m 
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Next lecture

• Time redundancy

Read chapter 6 

of the text book


