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Information redundancy

Information redundancy

» add information to date to tolerate faults
— error detecting codes
— error correcting codes

 data applications
— communication
— memory
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Code

Code of length n is a set of n-tuples

satisfying some well-defined set of
rules
binary code uses only 0 and 1 symbols
— binary coded decimal 0000 O
(BCD) code 0001 1
« uses 4 bits for 0010 2

each decimal digit

1001 9
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Code word

Codeword is an element of the code satisfying the
rules of the code

Word is an n-tuple not satisfying the rules of the
code

Codewords should be a subset of all possible 2"
binary tuples to make error detection/correction
possible

— BCD: 0110 valid; 1110 invalid

— any binary code: 2013 invalid

The number of codewords in a code C is called
the size of C
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Encoding/decoding

» encoding
— transform data into code word

data |—> | encoding |—> | code word

 decoding
— recover data from code word

code word | —> | decoding | —> | data
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Encoding/decoding

» 2 scenario if errors affect codeword:
 correct codeword — another codeword
* correct codeword — word
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Error detection

» We can define a code so that errors
introduced in a codeword force it to lie
outside the range of codewords
— basic principle of error detection
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Error detection

all possible
words
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Error correction

» We can define a code so that it is possible
to determine the correct code word from the
erroneous codeword
— basic principle of error correction
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Error correction

all possible
codewords
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Error detecting/correcting code

» Characterized by the number of bits that
can be corrected

can detect two
single-bit errors

can correct one
single-bit error
- Hamming distance gives a measure of error
detecting/correcting capabilities of a code
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Hamming distance

Hamming distance is the number of bit
positions in which two n-tuples differ

x 0000
y 0101

o (x,y) =2
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3-dimensional space (3-bit words)

011 111
852
yo1o =1
-, | 110
Pl
001 101

/&Qi) 100
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Error detection

011 111
If codewords are on
010 distance > 2, we can
110 detect single-bit
errors

000 10
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010

Error correction

110

111

001

000

100

101

If codewords are on
distance > 3, we can
correct single-bit
errors
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Code distance

code distance is the minimum Hamming distance
between any two distinct codewords

Cy=2

Cd=3

code detects all single-bit errors

code: 00, 11

invalid code words: 01 or 10

code corrects all single-bit errors

code: 000, 111

invalid code words: 001, 010, 100,

101, 011, 110
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Relation b/w code distance and
capabilities of the code

A code can correct up to ¢ bit errors and
detect up to d additional bit errors if and only if:

2c+d+1<Cd
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Separable/non-separable code

» separable code
— codeword = data + check bits
—e.g. parity: 11011 = 1101 + 1
* non-separable code
— codeword = data mixed with check bits
—e.g. cyclic: 1010001 -> 1101

» decoding process is much easier for
separable codes (remove check bits)
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Information rate

* The ratio k/n, where
— Kk is the number of data bits
—n is the number of data + check bits
is called the information rate of the code

« Example: a code obtained by repeating
data three times has the information rate
1/3
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Next: Types of codes

+ parity codes
* linear codes
— Hamming codes
» cyclic codes
— CRC codes
— Reed-Solomon codes
* unordered codes
— m-of-n codes
— Berger codes
» arithmetic codes
— AN-codes
— residue codes
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Single-bit parity code

» Add an extra bit to binary word so that that
resulting code word has either even or odd
number of 1s

—even parity: even # ‘1’
— odd parity: odd # ‘1’
* single bit error detection: C4= 2
» separable code
 use: bus, memory, transmission, ...
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Organization of memory with single-

bit parity code
Parity Parity
o h
> ‘ =>2 | error
= 3= = O pP——
g @ )
o GC) Q.(c)
(@)]
Py
g -
cC —e >
g —* £ ’ o
= ® ® g
=) ® ® o)

extra HW required (parity generator, checker, extra memory)
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Parity generation and checking

o do —
5 d Y —— 1ifodd
S R— D
a ds
do
4 —>
d2 ::)D ;
ds .
Parity bit < error if 1
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Problem with single-bit parity code

» Multiple-bit errors (even number of bits)
cannot be detected

— some of them are often very common
« failure of the individual memory chip
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Other parity codes

» The purpose is to provide additional error

capability

— bit-per-word

— bit-per-byte

— bit-per-multiple-chips
— bit-per-chip

— interlaced

— overlapping
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Overlapping parity code

(Hamming code)

Overlapping parity for 4-bits of data - each data bit is

assigned to multiple parity groups

|3 |2 | 1 |0| ||:>2||:>1||:>0| Bit in error | Parity
pattern

3 P2 P1 PO
2 P2 P1

1 P2 PO
0 P1 PO
P2 P2

P1 P1

PO PO

no error
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Overlapping parity code
(Hamming code)

» k data bits, ¢ parity bits
 to have unique parity pattern per error:

Zakeort  iojedindncy
4 |3 |75%
8 |4 |50%
16(5 [31%
3216 [19%
647 |11%
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Background

+ Afield Z, is the set { 0,1} together with two operations of
addition and multiplication (modulo 2) satisfying a given
set of properties

» A vector space V,, over a field Z, is a subset of Z,", with
two operations of addition and multiplication (modulo 2)
satisfying a given set of properties

» A subspace is a subset of a vector space which is itself a
vector space

* A set of vectors {vy,...,v1 } is linearly independent if
a0V0 + a1V1 + ...+ ak_1Vk_1 = 0 Imp|IeS a0= 8.1= “n= ak_1 = 0
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Linear code: Definition

* A (n,k) linear code over the field Z, is a k-
dimensional subspace of V
— spanned by k linearly independent vectors

— any codeword ¢ can be written as a linear
combination of k basic vectors (vy,...,v,.;) as
follows

C= dOVO + d1V1 + ...+ dk_1Vk_1

— (dg,dy,...,d,.q) is the data to be encoded
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Example: (4,2) linear code

» Data to be encoded are 2-bit words
[00], [01],[10], [11]
» Suppose we select for a basis the vectors
vy =[1000], v; = [0110]

+ To find the codeword ¢ = [c,c4C,C35] cOrresponding to the
data d = [dyd,], we compute the linear combination of the
basic vectors as

C = dgVy + dqvy
» For example, datad =[11] is encoded to

c=1-[1000] +1-[0110] = [1110]
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Example (cont.)

« d =[00] is encoded to

c=0-[1000] +0-[0110] = [0000]
« d=[01] is encoded to

c=0-[1000] +1-[0110] = [0110]
« d=[10] is encoded to

c=1-[1000] +0-[0110] = [1000]
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Generator matrix

» The rows of the generator matrix are the basis
vectors vy,...,V_4

» For example, generator matrix for the previous
example is
G [1 00 o}
0110

» Codeword c is obtained by multiplying G by d
c=d-G
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Example: (6,3) linear code

» Construct the code spanned by the basic vectors
[100011], [010110] and [001101]

» The generator matrix for this code is

100011
G=/010110
001101

» For example, datad =[011] is encoded to
c=0-[100011]+1-:[010110]+1-[001101]=[011011]
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Parity check matrix

» To check for errors in a (n,k) linear code, we use
an (n-k)xn parity check matrix H of the code

« The parity check matrix is related to the generator
matrix by the equation

H-G"=0
where GT denotes the transponse of G

» This implies that, for any codeword c, the product
of the parity check matrix and the encoded
message should be zero

H-cT=0
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Constructing parity check matrix

« If a generator matrix is of the form G = [l
A], then the parity check matrix is of the
form

H=[AT1,,]
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Example: (6,3) linear code

e |If G is of the form
100
G=/010
001

011
110
101

* Then H is of the form

011
H=|110
101

100
010
001
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Syndrome

» Encoded data is checked for errors by multiplying
it by the parity check matrix

s=H-cT
» The resulting (n-k)-bit vector is called syndrome

— If s =0, no error has occurred

— If s matches one of the columns of H, a single-bit error
has occurred. The bit position corresponds to the
position of the matching column of H

— Otherwise, a multiple-bit error has occurred
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Constructing linear codes

* To be able to correct e errors, a code
should have a distance of at least 2e+1

* |t is possible to ensure the code distance ¢
by selecting the parity check matrix with c-1
linearly independent columns
— To have a code with code distance 2 (single-

error detecting), every column of H should be

linearly independent, l.e. H shouldn’t have a
zero column
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Example: (4,2) linear code

 Parity check matrix for (4,2) linear code we
have constructed before is

H_(0110
0001

* The first column is zero, therefore the
columns of H are linearly dependent and
code distance is 1

» Let us construct a code with distance 2
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Example: (4,2) linear code, C, =2

» Replace 18t column by a column containing

all 1
_[1110] _qar
H_[1O‘O1J A1)

* Now G can be constructed as

o= (1910
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Example: (4,2) linear code, C =2

» The resulting code generated by G is

ata | codeword
102/C1C2C3Cy

0000

- 2 OO0 Qo

0
1 0
0 1
1 1

— a4 O

1
0
’

O a =
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Hamming codes

« Hamming codes are a family of linear codes

» An (n,k) Hamming code satisfies the property that
the columns of its parity check matrix represent
all possible non-zero vectors of length n-k

« Example: (7,4) Hamming code

1101100
H=| 1011010
1110001
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Parity check matrix

« If the columns of H are permuted, the resulting
code remains a Hamming code

+ Example: different (7,4) Hamming code
0001111

H=|0110011
1010101

« Such H is called lexicographic parity check matrix

— the corresponding code does not have a generator
matrix in standard form G = [l; A]
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Decoding

« If the parity check matrix H is lexicographic, a
simple procedure for syndrome decoding exists

 To check a codeword c for errors, calculate
s=H-cT
— If s = 0, no error has occurred

— If s # 0, then it matches one of the columns of H, say i

— c is decoded assuming that a single-bit error has
occurred in the it" bit of ¢
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Example: (7,4) Hamming code

» Construct Hamming code corresponding to parity check
matrix

1101100
H= 1011010 =[ATI3]
1110001
» The corresponding G is
1000|111
0100/101
G=[A=1 5010[011
0001|110
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Example (cont.)

» Suppose the data to be encoded is d = [1110]
+ We multiply d by G to get ¢ =[1110001]
» Suppose an error has occurred in the last bit of ¢
— cis transformed to [1110000]
» By multiplying [1110000] by H, we s = [001]
* s matches the last column of H
— the error has occurred in the last bit of the codeword

* We correct [1110000] to [1110001] and decode it to d =
[1110] by taking the first 4 bits of data
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Example: (7,4) Hamming code,
lexicographic

Generator matrix corresponding to the lexicographic parity
check matrix is

0101010
0011001
0001111
1000011

So, data d = [d,d,d,d3] is encoded as ¢ = [d;dyd;p;dopoP5]
where p4,p,,p5 are parity check bit defined by
p;=dy+d;+d,
Pz =do+dy+ds
P3=d;+dy+d;
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Error correction

If parity check matrix is lexicographic, the error correction
can be implemented using a decoder and XOR gates
The first level of XOR gates compares stored check bits
with re-computed ones

The result of the comparison in the syndrome [s,S;S,],
which is fed into the decoder

For the syndrome s =i, i € {0,1,...,7}, it" output of the
decoder is high

The second level of XOR gates complements the ith bit of
the word, thus correcting the error
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Code distance of Hamming codes

» The code distance of a Hamming code is 3, so it
can correct single-bit error

» Often extended Hamming code is used, which
can correct single-bit error and detect double-bit
errors
— obtained by adding a parity check bit to every

codeword of a Hamming code

— if ¢ = [c4Cy...C,] is @ codeword of a Hamming code,
C’ = [cyCqCs...C,] is the corresponding extended
codeword, where ¢, is the parity bit
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Extended Hamming code

» The parity check matrix of an extended (n,k)
Hamming code is obtained as follows

— add a zero column in front of a lexicographic parity
check matrix of an (n,k) Hamming code

— attach a row consisting of all 1’s as n-k+1t" row of the
resulting matrix

« Example: Extended (1,1) Hamming code

-1
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Cyclic codes

» Cyclic codes are special class of linear codes

» Used in applications where burst errors can occur
— a group of adjacent bits is affected
— digital communication, storage devices (disks, CDs)
 Important classes of cyclic codes:
— Cyclic redundancy check (CRC)

+ used in modems and network protocols
— Reed-Solomon code
+ used in CD and DVD players
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Cyclic code: Definition

» Alinear code is called cyclic if any end-around
shift of codeword produces another codeword
— if [coC4Cs...C,.0C.1] IS @ cOdeword, then [C,.1C,C+Cs...Cphal,
is a codeword, too
* it is convenient to think of words as polynomials
rather than vectors

— for example, a codeword [c,C;...C,.1] IS represented as
a polynomial

Co' X%+ Cy*X'+...+ Cq X
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Polynomials

 Since the code is binary, the coefficients are 0
and 1

« For example, d(x) = 1-X94+0-x"+1-x24+1-x3
represents the data (1011)

» We always write least significant digit on the left
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Polynomials

» The degree of a polynomial equals to its
highest exponent
—e.g. the degree of 1+ x'+ x3is 3

« a cyclic code with the generator polynomial
of degree (n-k) detects all burst errors
affecting (n-k) bits or less
—n is the number of bits in codeword
— k is the number of bits in data word
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Encoding/decoding

d(x) =

Encode

Decode/Correct

E— transmit — —

c(x)=d(x)-9(x) d(x)=c(x)/g(x)
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Encoding

Multiply data polynomial
by generator polynomial:

c(x) = d(x).g(x)

Calculations are performed in Galois Field GF(2):

» multiplication modulo 2 = AND operation
» addition modulo 2 = XOR operation
« in GF(2), subtraction = addition
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Properties of generator polynomial

* g(x) is the generator polynomial for a linear
cyclic code of length n if and only if g(x)
divides 1+x" without a reminder
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Example of polymomial multiplication (1)

d(x) = (1011) = x3 + x + 1
gx)=x3+x + 1
c(x) = d(x).g(x)
=X+ x2+1).(x3+x+1)
=XE4+ X  + X3+ X0+ 3+ X2+ X3+ X+ 1
=X+ X0+ X+ x3+ X2+ x1 + 1
= (1111111) n=7
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Example of polynomial multiplication (2)

d(x) = (1010) = x2 + 1
g(x)=x3+x + 1
c(x) = d(x).g(x)
=X+ x+1).(x2+1)
=X+ X3+ X3+ X+ X2+ 1
=X+ X2+ X + 1
= (1110010) h=7
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Example: (7,4) cyclic code

» Find a generator polynomial for a code of
length n=7 for encoding of data of length
k=4

* g(x) should be of a degree 7-4=3 and
should divide 1+x” without a reminder

« 1+x’ can be factored as

14+X7 = (14+X+X3) (14+Xx2+x3)(1+X)

* s0, we can choose for g(x) either 1+x+x3 or

1+x2+x3
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Parity check polynomial

» For a cyclic code with the generator
polynomial g(x), the check polynomial h(x)
is determined by

g(x)-h(x) = 1+x"

 Since codewords are multiples of g(x), for

every codeword c(x), it is hold that

c(x)-h(x) = 0 mod 1+x"
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Decoding

Divide received polynomial c(x) by the
generator polynomial g(x):

d(x) = c(x)/g(x)

* Division is the polynomial division in GF(2)
* The reminder from the division is syndrome s(x)

«if s(x) is zero, no error has occurred

p. 62 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab




Example of polynomial division (1)

XC+ X+ x4+ X3+ X2+ X+ 1 ‘ X3+ X + 1

x6 + x4 + x3

‘ X3 + X2+ 1
X2+ X2+ X + 1
X2 + X3 + X2

X3+ X+ 1
X3+ X + 1

0
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Example of polynomial division (2)

X8+ X0 + x4+ X2 + 1 ‘ X3+ X + 1

X8 + x8 + x°

‘ X5 +x3 + 1
X8+ x* +x2 + 1

x6 + x4 + x3

x3 + X2+ 1
X3+ X+ 1

X2 + X
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Decoding (no error)

* if no error occurred, then the received codeword
is the correct codeword c(x)

 therefore, d(x) = c(x)/g(x)
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Decoding in presence of error

» Suppose an error has occurred, then

creceived(x) = ¢(x) + e(x), e(x) - error polynomial
dreceved(x) = (c(x) + e(x))/9(x)

» Unless e(x) is a multiple of g(x), the
received codeword will not be evenly
dividable by g(x)
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Decoding/detecting process

» We detect errors by checking whether
creceived(x) is evenly dividable by g(x)

* If yes, we assume that there is no error and
dreceived (X) = d(X)

 |f there is a reminder, we assume that there
IS an error
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Undetectable errors

» However, if e(x) is a multiple of g(x), the
reminder of e(x)/g(x) is 0 and the error will
not be detected
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Example of error detection

d(x) = (1011) =x3+ x2 + 1
g(x) =x3+x + 1
c(X) =d(xX).g(X) =x6+ x5+ x* + x3+ X2 + X + 1
Let e(x) = x3+1, then  creceved = x6 4 x5 4 x4 + X2 + X
creceivedX)/g(x) = (X3 + x2) + x/(x3+ x + 1)

Reminder is not 0, so the error is detected
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HW for encoding/decoding of cyclic
codes
» Encoding and decoding is done using linear
feedback shift registers (LFSRs)

» LFSR implements polynomial division by
generator polynomial g(x)
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LSFR

« Linear feedback shift register consists of:

—register cells s, s, ..., S,.y, where r = n-k is the
degree of g(x)

— XOR-gates between the cells
— feedback connections to XOR, with weights
— clock
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LFSR

« Weights g; are the coefficients of the generator
polynomial g(x)=gy+gX'+...+ g, X"
— g;=0 means 'no connection’
— g;=1 means ‘connection’
— g, is always connected

c(x) d(x)

So S, . S.1

9o g4 (o) Or-1
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* LFSR for g(x)=1+x+x3

c(x)

9o

Example

So

—

OF

Sp*=S,+C(X)
S1 +=So+ 82
S,"=8

p. 73 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: decoding, no error

Suppose the word to decode is [1010001], i.e
c(x) = 1 + x2 + x5. Most significant bit is fed first.

c(X) so S1 S2 d(x)

= |Oo|=|Oo|lOo|Oo|—

Ol =R OO0O|= O

o|I0o|= (= |O|=|O|O

o= |=|O|=|O|lO|OC

== o= |OlO0|O

So+= 32+C(X)
S1+= So+ 32
Sy'= 84

d(x) =1+ x + x5,
Most significant bit
comes out first.
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Example: decoding, with error

Suppose an error has occurred in the 41" bit, i.e.
we received [1011001] instead of [1010001].

c(x) so S1 sz d(x) Sop*= S,+C(X)

t |4 [1/0/0] 0 o

t. |0 [0[1/0] 0 2'= 84

t, |0 (00|10

t |1 [0o][1]0] 1 The syndrome [110]

b 11001 01 matches the 4™ column
T3 110 0| oOfthe check matrix H.
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Encoding for separable cyclic codes

« Division can be used for encoding of a

separable (n,k) cyclic code

— shift data by n-k positions, i.e. multiply d(x) by
XNk

— use LFSR to divide d(x) x"* by g(x). The
reminder r(x) is contained in the register

— append the check bits r(x) to the data by
adding r(x) to d(x) x™k:

c(x) = d(x) X"k + r(x)
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Example: encoding for (7,4) code

« Letd(x) = x+x3 and g(x)=1+x+x3
— n=7, k=4
— shift data by n-k=3 positions:
d(x)-x3 = (x+x3)x3 = x*+x8
— divide d(x) x™k by g(x) to compute the r(x)
X4+X8 = (14+x3) (1 +x+x3)+(1+x)
— ¢(x) = d(x) x™* + r(x)

C(X) = 1+x+x4+x8
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CRC codes

» Cyclic Redundancy Check (CRC) codes are
separable codes with specific generator
polynomials, chose to provide high error detection
capability for data transmission and storage

« Common generator polynomials are:

CRC-16: 1 + x2 + x5 + x16
CRC-CCITT: 1 + x> + x12 4+ x16

CRC-32:1 + x + X2 + x* + X7 + x8 + x10 4 x1 4 x12
+ X106 + x22 + x23 4+ x26 4 x32
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CRC codes

* CRC-16 and CRC-CCITT are widely used
in modems and network protocols in the
USA and Europe, respectively, and give
adequate protection for most applications

— the number of non-zero terms in their
polynomials is small (just four)

— LFSR required to implement encoding and
decoding is simpler

» Applications that need extra protection, e.g.
DD, use CRC-32
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Encoding/decoding

» The encoding and decoding is done either
in software, or in hardware using the usual
procedure for separable cyclic codes

 To encode:

— shift data polynomial right by deg(g(x)) bit
position
— divided it by the generator polynomial

— the coefficients of the remainder form the
check bits of the CRC codeword
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Encoding/decoding

» The number check bits equals to the degree of
the generator polynomial

— an CRC detects all burst error of length less or equal
than deg(g(x))

« CRC also detects many errors which are larger
than deg(g(x))

— apart from detecting all burst errors of length 16 or
less, CRC-16 and CRC-CCITT are also capable to
detect 99.997% of burst errors of length 17 and
99.985% burst errors of length 18
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Reed-Solomon codes

» Reed-Solomon (RS) codes are a class of
separable cyclic codes used to correct
errors in a wide range of applications
including
— storage devices (tapes, compact disks, DVDs,
bar-codes), wireless

— communication (cellular telephones, microwave
links), satellite

— communication, digital television, high-speed
modems (ADSL, xDSL).
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Reed-Solomon codes

« The encoding for Reed-Solomon code is done the
using the usual procedure

— codeword is computed by shifting the data right n-k
positions, dividing it by the generator polynomial and
then adding the obtained reminder to the shifted data

» A key difference is that groups of m bits rather
than individual bits are used as symbols of the
code.

— usually m = 8, i.e. a byte.

— the theory behind is a field Z™, of degree m over {0,1}
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Encoding

* An encoder for an RS code takes k data
symbols of s bits each and computes a
codeword containing n symbols of m bits
each

« A Reed-Solomon code can correct up to |n-
kJ/2 symbols that contain errors
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Example: RS(255,223) code

» A popular Reed-Solomon code is
RS(255,223)
— symbols are a byte (8-bit) long
— each codeword contains 255 bytes, of which

223 bytes are data and 32 bytes are check
symbols

—n =255, k = 223, this code can correct up to 16
bytes containing errors

— each of these 16 bytes can have multiple bit
errors.
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Decoding

» Decoding of Reed-Solomon codes is
performed using an algorithm designed by
Berlekamp
— popularity of RS codes is due to efficiency this

algorithm to a large extent.

 This algorithm was used by Voyager Il for
transmitting pictures of the outer space
back to Earth

 Basis for decoding CD in players
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Summary of cyclic codes

Any end-around shift of a codeword
produce another codeword

code is characterized by its generator
polynomial g(x), with a degree (n-k), n =
bits in codeword, k = bits in data word

detect all single errors and all multiple
adjacent error affecting (n-k) bits or less
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Unordered codes

Designed to detect unidirectional errors

An error is unidirectional if all affected bits are
changed to either 0 — 1 or 1 — 0, but not both
Example:
— correct codeword: 010101
— same codeword with unidirectional errors:
110101 000101
111101 000001
111111 000000
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Unidirectional error detection

Theorem: A code C detects all
unidirectional errors if and only if every pair
of codewords in C is unordered
two binary n-tuples x and y are ordered if
either x; <y,orx >y, forallie {1,2,...,n}
Examples of ordered codewords:

0110 <0111 <1111

0110 > 0100 > 0000
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Unidirectional error detection

A unidirectional error always changes a
word x to a word y which is either smaller or
greater than x

A unidirectional error cannot change x to a
word which is not ordered with x

Therefore, if any pair of codewords are
unordered, a unidirectional error will never
transform a codeword to another codeword
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m-of-n code

« Code words are n bits in length and contain
exactly m1’s
— Cd = 2, detect single-bit errors
— detects all unidirectional errors

* (+) simple to understand

* (-) if non-separable, encoding and decoding
is difficult to organize
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k-of-2k code

» Take the original k bits of information and
append k bits so that the resulting 2k-bit
word has exactly k 1s
— (-) 100% redundancy 000 | 000 111
— (+) separable code, so 001 | 001 110
encoding and decoding 010 | 010 101

are easy to organize 1117 | 111 000
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Berger code

» Append c check bits to k data bits
c =[ log,(k+1)]

» separable code
* how to create code word:
— count number of 1’s in k data bits

— complement resulting binary number and
append it to the data bits
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Example of Berger codeword

data = (0111010), k =7

c =[log,(7+1)] =3

number of 1’s in (0111010) is 4 = (100)
complement of (100) is (011)

resulting codeword is (0111010011)
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Berger code capability

» Berger code detects all unidirectional errors

« for the error detection capability it provides,
the Berger code uses the fewest number of
check bits of the available separable
unordered codes
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Arithmetic codes

» For checking arithmetic operations

— before the operation, data is encoded

— after the operation, code words are checked
 Arithmetic code is the invariant to “*” if:

A(b*c) = A(b) * A(c)

b, ¢ - operands
A(b), A(c), A(b*c) - codes for b, c and b*c
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Examples of arithmetic codes

« Two common types of arithmetic codes are
— AN codes
—residue codes
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AN code

» AN code is formed by multiplying each data
word N by some constant A

» AN codes are invariant to addition (and
subtraction):

A(b +c) = A(b) + A(c)

* If no error occurred, A(b+c) is evenly
divisible by A
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Adder protected by 3N code

Original data are 4-bit
long. By multiplying them
rb5 b, by b, by b ‘asa, a5, 2, 2y by 3, we obtain code

Ll L] ]| words (6-bitlong)

3N code for b 3N code for a
A N A
0

6-bit adder data code word
0000 000000
NEEEE 0001 000011
\35 S, S3 S, Sy So/ 0010 000110
Y ana ana
3N code for sum = a+b I Ch R A
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Addition using 3N code - fault-free

Normal operation:

a=010010 (3N code of 6)
+
b=000011 (3N codeof 1)

s=010101 (8N code of 7)
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Addition using 3N code - with faults

(3N code of 6)
+
b=000011 (3N codeof 1)

s=010111 (23is notevenly divisible by 3
i.e. not a valid code word)

If s is stuck to “1”:
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Selecting the value of A

» For binary codes, the constant A shouldn’t
be a power of two

— otherwise multiplication by A results a left shift
of the original data

— error in a single bit yields a codeword evenly
divisible by A (valid), so it will not be detected
» 3N code is easy to encode using n+1 bit
adder: create 2N by shift and add N to it
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Residue codes

» Residue codes are created by computing a
residue for data and appending it to the
data

» The residue is generate by dividing a data
by a integer, called modulus.

» Decoding is done by simply removing the
residue
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Residue codes

» Residue codes are invariants with respect to
addition, since

(b +c) mod m=bmodm+c modm

where b and ¢ are data words and m is modulus

» This allows us to handle residues separately from
data during addition process.

» Value of the modulus determines the information
rate and the error detection capability of the code
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Next lecture

« Time redundancy

Read chapter 6
of the text book
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