

KUNGL
TEKNISKA
HÖGSKOLAN

International Master Program in System-on-Chip Design

Information redundancy

Information redundancy

- add information to date to tolerate faults
 - error detecting codes
 - error correcting codes
- data applications
 - communication
 - memory

Code

- **Code of length n** is a set of n-tuples satisfying some well-defined set of rules
- **binary code** uses only 0 and 1 symbols
 - binary coded decimal (BCD) code
 - uses 4 bits for each decimal digit

0000	0
0001	1
0010	2
...	
1001	9

p. 3 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Code word

- **Codeword** is an element of the code satisfying the rules of the code
- **Word** is an n-tuple not satisfying the rules of the code
- Codewords should be a subset of all possible 2^n binary tuples to make error detection/correction possible
 - **BCD**: 0110 valid; 1110 invalid
 - **any binary code**: 2013 invalid
- The number of codewords in a code C is called the **size** of C

p. 4 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding/decoding

- encoding
 - transform data into code word

- decoding
 - recover data from code word

p. 5 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding/decoding

- 2 scenario if errors affect codeword:
 - correct codeword → another codeword
 - correct codeword → word

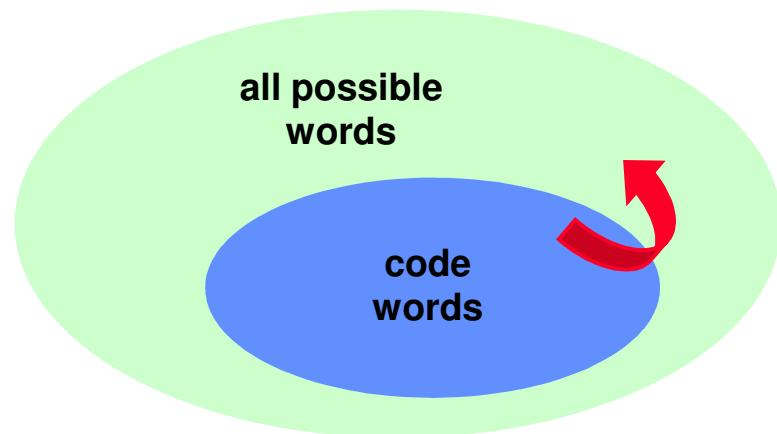
p. 6 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error detection

- We can define a code so that errors introduced in a codeword force it to lie outside the range of codewords
 - basic principle of **error detection**

p. 7 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error detection



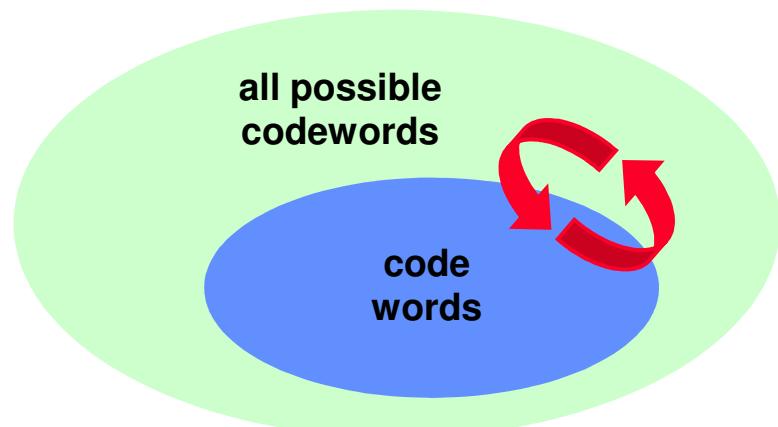
p. 8 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error correction

- We can define a code so that it is possible to determine the correct code word from the erroneous codeword
 - basic principle of **error correction**

p. 9 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error correction



p. 10 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error detecting/correcting code

- Characterized by the number of bits that can be corrected
 - double-bit detecting code can detect two single-bit errors
 - single-bit correcting code can correct one single-bit error
- **Hamming distance** gives a measure of error detecting/correcting capabilities of a code

p. 11 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Hamming distance

Hamming distance is the number of bit positions in which two n-tuples differ

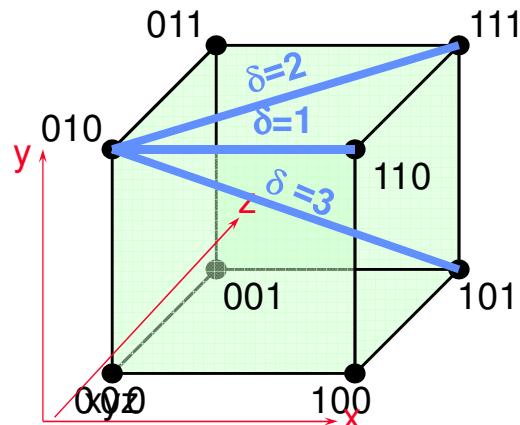
x 0000

y 0101

$$\delta(x, y) = 2$$

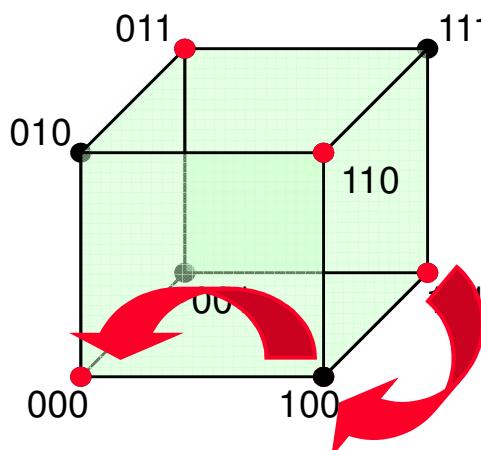
p. 12 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

3-dimensional space (3-bit words)



p. 13 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error detection



p. 14 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error correction



If codewords are on distance ≥ 3 , we can correct single-bit errors

p. 15 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Code distance

code distance is the minimum Hamming distance between any two distinct codewords

$C_d = 2$ code detects all single-bit errors
code: 00, 11
invalid code words: 01 or 10

$C_d = 3$ code corrects all single-bit errors
code: 000, 111
invalid code words: 001, 010, 100, 101, 011, 110

p. 16 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Relation b/w code distance and capabilities of the code

A code can correct up to c bit errors and detect up to d additional bit errors if and only if:

$$2c + d + 1 \leq C_d$$

p. 17 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Separable/non-separable code

- separable code
 - codeword = data + check bits
 - e.g. parity: $11011 = 1101 + 1$
- non-separable code
 - codeword = data mixed with check bits
 - e.g. cyclic: $1010001 \rightarrow 1101$
- decoding process is much easier for separable codes (remove check bits)

p. 18 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Information rate

- The ratio k/n , where
 - k is the number of data bits
 - n is the number of data + check bits

is called the **information rate** of the code

- **Example:** a code obtained by repeating data three times has the information rate $1/3$

p. 19 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Next: Types of codes

- parity codes
- linear codes
 - Hamming codes
- cyclic codes
 - CRC codes
 - Reed-Solomon codes
- unordered codes
 - m-of-n codes
 - Berger codes
- arithmetic codes
 - AN-codes
 - residue codes

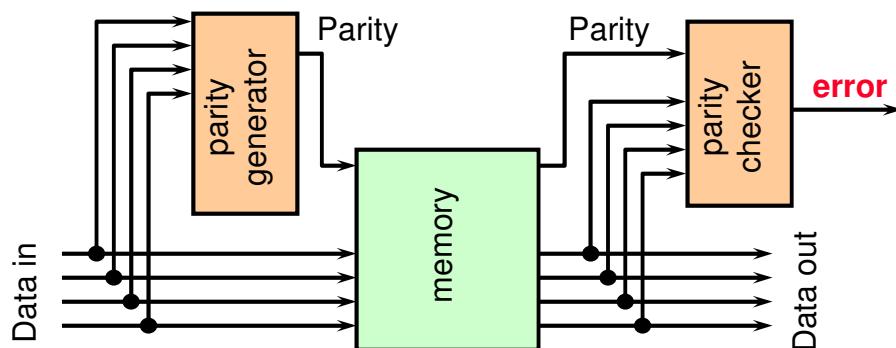
p. 20 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Single-bit parity code

- Add an extra bit to binary word so that that resulting code word has either even or odd number of 1s
 - even parity: even # '1'
 - odd parity: odd # '1'
- single bit error detection: $C_d = 2$
- separable code
- use: bus, memory, transmission, ...

p. 21 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

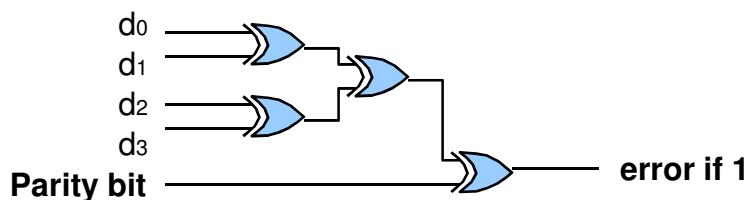
Organization of memory with single-bit parity code



extra HW required (parity generator, checker, extra memory)

p. 22 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Parity generation and checking



p. 23 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Problem with single-bit parity code

- Multiple-bit errors (even number of bits) cannot be detected
 - some of them are often very common
 - failure of the individual memory chip

p. 24 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

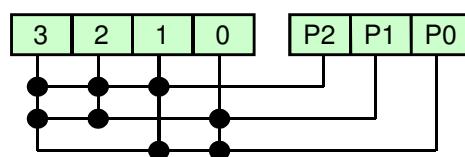
Other parity codes

- The purpose is to provide additional error capability
 - bit-per-word
 - bit-per-byte
 - bit-per-multiple-chips
 - bit-per-chip
 - interlaced
 - overlapping

p. 25 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Overlapping parity code (Hamming code)

Overlapping parity for 4-bits of data - each data bit is assigned to multiple parity groups



Bit in error	Parity pattern
3	P2 P1 P0
2	P2 P1
1	P2 P0
0	P1 P0
P2	P2
P1	P1
P0	P0
no error	

p. 26 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Overlapping parity code (Hamming code)

- k data bits, c parity bits
- to have unique parity pattern per error:

$$2^c \geq k+c+1$$

k	c	redundancy
2	3	150%
4	3	75%
8	4	50%
16	5	31%
32	6	19%
64	7	11%

p. 27 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Background

- A **field** Z_2 is the set $\{0,1\}$ together with two operations of addition and multiplication (modulo 2) satisfying a given set of properties
- A **vector space** V_n over a field Z_2 is a subset of Z_2^n , with two operations of addition and multiplication (modulo 2) satisfying a given set of properties
- A **subspace** is a subset of a vector space which is itself a vector space
- A set of vectors $\{v_0, \dots, v_{k-1}\}$ is **linearly independent** if $a_0v_0 + a_1v_1 + \dots + a_{k-1}v_{k-1} = 0$ implies $a_0 = a_1 = \dots = a_{k-1} = 0$

p. 28 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Linear code: Definition

- A **(n,k) linear code** over the field Z_2 is a k-dimensional subspace of V_n
 - spanned by k linearly independent vectors
 - any codeword c can be written as a linear combination of k basic vectors (v_0, \dots, v_{k-1}) as follows

$$c = d_0 v_0 + d_1 v_1 + \dots + d_{k-1} v_{k-1}$$

- $(d_0, d_1, \dots, d_{k-1})$ is the data to be encoded

p. 29 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (4,2) linear code

- Data to be encoded are 2-bit words
 $[00], [01], [10], [11]$
- Suppose we select for a basis the vectors
 $v_0 = [1000], v_1 = [0110]$
- To find the codeword $c = [c_0 c_1 c_2 c_3]$ corresponding to the data $d = [d_0 d_1]$, we compute the linear combination of the basic vectors as
 $c = d_0 v_0 + d_1 v_1$
- For example, data $d = [11]$ is encoded to

$$c = 1 \cdot [1000] + 1 \cdot [0110] = [1110]$$

p. 30 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example (cont.)

- $d = [00]$ is encoded to
 $c = 0 \cdot [1000] + 0 \cdot [0110] = [0000]$
- $d = [01]$ is encoded to
 $c = 0 \cdot [1000] + 1 \cdot [0110] = [0110]$
- $d = [10]$ is encoded to
 $c = 1 \cdot [1000] + 0 \cdot [0110] = [1000]$

p. 31 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Generator matrix

- The rows of the generator matrix are the basis vectors v_0, \dots, v_{k-1}
- For example, generator matrix for the previous example is

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

- Codeword c is obtained by multiplying G by d

$$c = d \cdot G$$

p. 32 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (6,3) linear code

- Construct the code spanned by the basic vectors [100011], [010110] and [001101]
- The generator matrix for this code is

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

- For example, data $d = [011]$ is encoded to

$$c = 0 \cdot [100011] + 1 \cdot [010110] + 1 \cdot [001101] = [011011]$$

p. 33 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Parity check matrix

- To check for errors in a (n,k) linear code, we use an $(n-k) \times n$ **parity check matrix** H of the code
- The parity check matrix is related to the generator matrix by the equation

$$H \cdot G^T = 0$$

where G^T denotes the transpose of G

- This implies that, for any codeword c , the product of the parity check matrix and the encoded message should be zero

$$H \cdot c^T = 0$$

p. 34 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Constructing parity check matrix

- If a generator matrix is of the form $G = [I_k \ A]$, then the parity check matrix is of the form

$$H = [A^T \ I_{n-k}]$$

p. 35 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (6,3) linear code

- If G is of the form

$$G = \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right)$$

- Then H is of the form

$$H = \left(\begin{array}{ccc|ccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array} \right)$$

p. 36 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Syndrome

- Encoded data is checked for errors by multiplying it by the parity check matrix

$$s = H \cdot c^T$$

- The resulting $(n-k)$ -bit vector is called **syndrome**
 - If $s = 0$, no error has occurred
 - If s matches one of the columns of H , a single-bit error has occurred. The bit position corresponds to the position of the matching column of H
 - Otherwise, a multiple-bit error has occurred

p. 37 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Constructing linear codes

- To be able to correct e errors, a code should have a distance of at least $2e+1$
- It is possible to ensure the code distance c by selecting the parity check matrix with $c-1$ linearly independent columns
 - To have a code with code distance 2 (single-error detecting), every column of H should be linearly independent, i.e. H shouldn't have a zero column

p. 38 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (4,2) linear code

- Parity check matrix for (4,2) linear code we have constructed before is

$$H = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- The first column is zero, therefore the columns of H are linearly dependent and code distance is 1
- Let us construct a code with distance 2

p. 39 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (4,2) linear code, $C_d=2$

- Replace 1st column by a column containing all 1

$$H = \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 1 & 0 & | & 0 & 1 \end{pmatrix} = [A^T \ I_2]$$

- Now G can be constructed as

$$G = [I_2 \ A] = \begin{pmatrix} 1 & 0 & | & 1 & 1 \\ 0 & 1 & | & 1 & 0 \end{pmatrix}$$

p. 40 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (4,2) linear code, $C_d=2$

- The resulting code generated by G is

data		codeword			
d_1	d_2	c_1	c_2	c_3	c_4
0	0	0	0	0	0
0	1	0	1	1	0
1	0	1	0	1	1
1	1	1	1	0	1

p. 41 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Hamming codes

- Hamming codes are a family of linear codes
- An (n,k) Hamming code satisfies the property that the columns of its parity check matrix represent all possible non-zero vectors of length $n-k$
- [Example: \(7,4\) Hamming code](#)

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

p. 42 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Parity check matrix

- If the columns of H are permuted, the resulting code remains a Hamming code
- Example: different (7,4) Hamming code

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

- Such H is called **lexicographic** parity check matrix
 - the corresponding code does not have a generator matrix in standard form $G = [I_3 \ A]$

p. 43 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Decoding

- If the parity check matrix H is lexicographic, a simple procedure for syndrome decoding exists
- To check a codeword c for errors, calculate
$$s = H \cdot c^T$$
 - If $s = 0$, no error has occurred
 - If $s \neq 0$, then it matches one of the columns of H , say i
 - c is decoded assuming that a single-bit error has occurred in the i^{th} bit of c

p. 44 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (7,4) Hamming code

- Construct Hamming code corresponding to parity check matrix

$$H = \left(\begin{array}{ccc|cc} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right) = [A^T \ I_3]$$

- The corresponding G is

$$G = [I_4 \ A] = \left(\begin{array}{cccc|ccc} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{array} \right)$$

p. 45 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example (cont.)

- Suppose the data to be encoded is $d = [1110]$
- We multiply d by G to get $c = [1110001]$
- Suppose an error has occurred in the last bit of c
 - c is transformed to $[1110000]$
- By multiplying $[1110000]$ by H , we $s = [001]$
- s matches the last column of H
 - the error has occurred in the last bit of the codeword
- We correct $[1110000]$ to $[1110001]$ and decode it to $d = [1110]$ by taking the first 4 bits of data

p. 46 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (7,4) Hamming code, lexicographic

- Generator matrix corresponding to the lexicographic parity check matrix is

$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- So, data $d = [d_0 d_1 d_2 d_3]$ is encoded as $c = [d_3 d_0 d_1 p_1 d_2 p_2 p_3]$ where p_1, p_2, p_3 are parity check bit defined by

$$p_1 = d_0 + d_1 + d_2$$

$$p_2 = d_0 + d_2 + d_3$$

$$p_3 = d_1 + d_2 + d_3$$

p. 47 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Error correction

- If parity check matrix is lexicographic, the error correction can be implemented using a decoder and XOR gates
- The first level of XOR gates compares stored check bits with re-computed ones
- The result of the comparison is the syndrome $[s_0 s_1 s_2]$, which is fed into the decoder
- For the syndrome $s = i$, $i \in \{0, 1, \dots, 7\}$, i^{th} output of the decoder is high
- The second level of XOR gates complements the i^{th} bit of the word, thus correcting the error

p. 48 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Code distance of Hamming codes

- The code distance of a Hamming code is 3, so it can correct single-bit error
- Often extended Hamming code is used, which can correct single-bit error and detect double-bit errors
 - obtained by adding a parity check bit to every codeword of a Hamming code
 - if $c = [c_1 c_2 \dots c_n]$ is a codeword of a Hamming code, $c' = [c_0 c_1 c_2 \dots c_n]$ is the corresponding extended codeword, where c_0 is the parity bit

p. 49 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Extended Hamming code

- The parity check matrix of an extended (n,k) Hamming code is obtained as follows
 - add a zero column in front of a lexicographic parity check matrix of an (n,k) Hamming code
 - attach a row consisting of all 1's as $n-k+1^{\text{th}}$ row of the resulting matrix
- **Example:** Extended $(1,1)$ Hamming code

$$H = \left[\begin{array}{c|c} 0 & 1 \\ \hline 1 & 1 \end{array} \right]$$

p. 50 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Cyclic codes

- Cyclic codes are special class of linear codes
- Used in applications where burst errors can occur
 - a group of adjacent bits is affected
 - digital communication, storage devices (disks, CDs)
- Important classes of cyclic codes:
 - Cyclic redundancy check (CRC)
 - used in modems and network protocols
 - Reed-Solomon code
 - used in CD and DVD players

p. 51 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Cyclic code: Definition

- A linear code is called **cyclic** if any end-around shift of codeword produces another codeword
 - if $[c_0 c_1 c_2 \dots c_{n-2} c_{n-1}]$ is a codeword, then $[c_{n-1} c_0 c_1 c_2 \dots c_{n-2}]$, is a codeword, too
- it is convenient to think of words as polynomials rather than vectors
 - for example, a codeword $[c_0 c_1 \dots c_{n-1}]$ is represented as a polynomial

$$c_0 \cdot x^0 + c_1 \cdot x^1 + \dots + c_{n-1} \cdot x^{n-1}$$

p. 52 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Polynomials

- Since the code is binary, the coefficients are 0 and 1
- For example, $d(x) = 1 \cdot x^0 + 0 \cdot x^1 + 1 \cdot x^2 + 1 \cdot x^3$ represents the data (1011)
- We always write least significant digit on the left

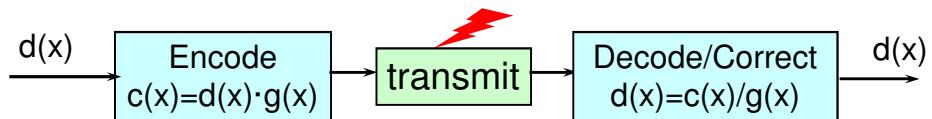
p. 53 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Polynomials

- The degree of a polynomial equals to its highest exponent
 - e.g. the degree of $1 + x^1 + x^3$ is 3
- a cyclic code with the generator polynomial of degree $(n-k)$ detects all burst errors affecting $(n-k)$ bits or less
 - n is the number of bits in codeword
 - k is the number of bits in data word

p. 54 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding/decoding



p. 55 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding

**Multiply data polynomial
by generator polynomial:**

$$c(x) = d(x) \cdot g(x)$$

Calculations are performed in Galois Field GF(2):

- multiplication modulo 2 = AND operation
- addition modulo 2 = XOR operation
- in GF(2), subtraction = addition

p. 56 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Properties of generator polynomial

- $g(x)$ is the generator polynomial for a linear cyclic code of length n if and only if $g(x)$ divides $1+x^n$ without a remainder

p. 57 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example of polynomial multiplication (1)

$$d(x) = (1011) = x^3 + x^2 + 1$$

k = 4

$$g(x) = x^3 + x + 1$$

$$c(x) = d(x) \cdot g(x)$$

$$= (x^3 + x^2 + 1) \cdot (x^3 + x + 1)$$

$$= x^6 + x^4 + x^3 + x^5 + x^3 + x^2 + x^3 + x + 1$$

$$= x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + 1$$

$$= (1111111)$$

n = 7

p. 58 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example of polynomial multiplication (2)

$$d(x) = (1010) = x^2 + 1$$

k = 4

$$g(x) = x^3 + x + 1$$

$$\begin{aligned}c(x) &= d(x).g(x) \\&= (x^3 + x + 1).(x^2 + 1) \\&= x^5 + x^3 + x^3 + x + x^2 + 1 \\&= x^5 + x^2 + x + 1 \\&= (1110010)\end{aligned}$$

n = 7

p. 59 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: (7,4) cyclic code

- Find a generator polynomial for a code of length $n=7$ for encoding of data of length $k=4$
- $g(x)$ should be of a degree $7-4=3$ and should divide $1+x^7$ without a remainder
- $1+x^7$ can be factored as
$$1+x^7 = (1+x+x^3)(1+x^2+x^3)(1+x)$$
- so, we can choose for $g(x)$ either $1+x+x^3$ or $1+x^2+x^3$

p. 60 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Parity check polynomial

- For a cyclic code with the generator polynomial $g(x)$, the check polynomial $h(x)$ is determined by

$$g(x) \cdot h(x) = 1 + x^n$$

- Since codewords are multiples of $g(x)$, for every codeword $c(x)$, it is hold that

$$c(x) \cdot h(x) = 0 \bmod 1 + x^n$$

p. 61 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Decoding

Divide received polynomial $c(x)$ by the generator polynomial $g(x)$:

$$d(x) = c(x) / g(x)$$

- Division is the polynomial division in $GF(2)$
- The remainder from the division is syndrome $s(x)$
 - if $s(x)$ is zero, no error has occurred

p. 62 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example of polynomial division (1)

$$\begin{array}{r} x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \underline{-} x^6 + x^4 + x^3 \\ \hline x^5 + x^2 + x + 1 \\ \underline{-} x^5 + x^3 + x^2 \\ \hline x^3 + x + 1 \\ \underline{-} x^3 + x + 1 \\ \hline 0 \end{array} \quad \left| \begin{array}{r} x^3 + x + 1 \\ \hline x^3 + x^2 + 1 \end{array} \right.$$

p. 63 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example of polynomial division (2)

$$\begin{array}{r} x^8 + x^5 + x^4 + x^2 + 1 \\ \underline{-} x^8 + x^6 + x^5 \\ \hline x^6 + x^4 + x^2 + 1 \\ \underline{-} x^6 + x^4 + x^3 \\ \hline x^3 + x^2 + 1 \\ \underline{-} x^3 + x + 1 \\ \hline x^2 + x \end{array} \quad \left| \begin{array}{r} x^3 + x + 1 \\ \hline x^5 + x^3 + 1 \end{array} \right.$$

p. 64 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Decoding (no error)

- if no error occurred, then the received codeword is the correct codeword $c(x)$
- therefore, $d(x) = c(x)/g(x)$

p. 65 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Decoding in presence of error

- Suppose an error has occurred, then

$$c^{\text{received}}(x) = c(x) + e(x), \text{ } e(x) \text{ - error polynomial}$$

$$d^{\text{received}}(x) = (c(x) + e(x))/g(x)$$

- Unless $e(x)$ is a multiple of $g(x)$, the received codeword will not be evenly dividable by $g(x)$

p. 66 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Decoding/detecting process

- We detect errors by checking whether $c^{\text{received}}(x)$ is evenly dividable by $g(x)$
- If yes, we assume that there is no error and $d^{\text{received}}(x) = d(x)$
- If there is a reminder, we assume that there is an error

p. 67 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Undetectable errors

- However, if $e(x)$ is a multiple of $g(x)$, the remainder of $e(x)/g(x)$ is 0 and the error will not be detected

p. 68 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example of error detection

$$d(x) = (1011) = x^3 + x^2 + 1$$

$$g(x) = x^3 + x + 1$$

$$c(x) = d(x).g(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

Let $e(x) = x^3 + 1$, then $c^{\text{received}} = x^6 + x^5 + x^4 + x^2 + x$

$$c^{\text{received}(x)}/g(x) = (x^3 + x^2) + x/(x^3 + x + 1)$$

Reminder is not 0, so the error is detected

p. 69 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

HW for encoding/decoding of cyclic codes

- Encoding and decoding is done using linear feedback shift registers (LFSRs)
- LFSR implements polynomial division by generator polynomial $g(x)$

p. 70 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

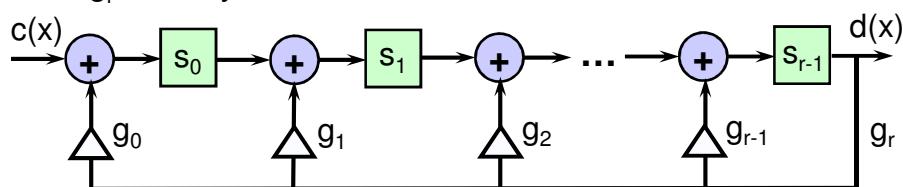
LSFR

- Linear feedback shift register consists of:
 - register cells s_0, s_1, \dots, s_{r-1} , where $r = n-k$ is the degree of $g(x)$
 - XOR-gates between the cells
 - feedback connections to XOR, with weights
 - clock

p. 71 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

LFSR

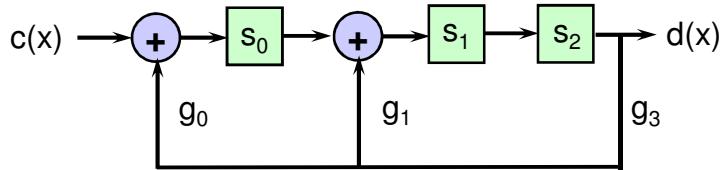
- Weights g_i are the coefficients of the generator polynomial $g(x)=g_0+g_1x^1+\dots+ g_rx^r$
 - $g_i=0$ means 'no connection'
 - $g_i=1$ means 'connection'
 - g_r is always connected



p. 72 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example

- LFSR for $g(x)=1+x+x^3$



$$s_0' = s_2 + c(x)$$

$$s_1' = s_0 + s_2$$

$$s_2' = s_1$$

p. 73 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: decoding, no error

Suppose the word to decode is [1010001], i.e
 $c(x) = 1 + x^2 + x^6$. Most significant bit is fed first.

	$c(x)$	s_0	s_1	s_2	$d(x)$
t_0		0	0	0	
t_1	1	1	0	0	0
t_2	0	0	1	0	0
t_3	0	0	0	1	0
t_4	0	1	1	0	1
t_5	1	1	1	1	0
t_6	0	1	0	1	1
t_7	1	0	0	0	1

$$s_0' = s_2 + c(x)$$

$$s_1' = s_0 + s_2$$

$$s_2' = s_1$$

$$d(x) = 1 + x + x^3.$$

Most significant bit
comes out first.

p. 74 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: decoding, with error

Suppose an error has occurred in the 4th bit, i.e. we received [1011001] instead of [1010001].

	$c(x)$	s_0	s_1	s_2	$d(x)$
t_0		0	0	0	
t_1	1	1	0	0	0
t_2	0	0	1	0	0
t_3	0	0	0	1	0
t_4	1	0	1	0	1
t_5	1	1	0	1	0
t_6	0	1	0	0	1
t_7	1	1	1	0	0

$$\begin{aligned}s_0^+ &= s_2 + c(x) \\ s_1^+ &= s_0 + s_2 \\ s_2^+ &= s_1\end{aligned}$$

The syndrome [110] matches the 4th column of the check matrix H.

p. 75 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding for separable cyclic codes

- Division can be used for encoding of a separable (n,k) cyclic code
 - shift data by n-k positions, i.e. multiply d(x) by x^{n-k}
 - use LFSR to divide $d(x) x^{n-k}$ by g(x). The remainder r(x) is contained in the register
 - append the check bits r(x) to the data by adding r(x) to $d(x) x^{n-k}$:

$$c(x) = d(x) x^{n-k} + r(x)$$

p. 76 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: encoding for (7,4) code

- Let $d(x) = x+x^3$ and $g(x)=1+x+x^3$

- $n=7, k=4$

- shift data by $n-k=3$ positions:

$$d(x) \cdot x^3 = (x+x^3)x^3 = x^4+x^6$$

- divide $d(x) x^{n-k}$ by $g(x)$ to compute the $r(x)$

$$x^4+x^6 = (1+x^3)(1+x+x^3)+(1+x)$$

- $c(x) = d(x) x^{n-k} + r(x)$

$$c(x) = 1+x+x^4+x^6$$

p. 77 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

CRC codes

- Cyclic Redundancy Check (CRC) codes are separable codes with specific generator polynomials, chose to provide high error detection capability for data transmission and storage
- Common generator polynomials are:

CRC-16: $1 + x^2 + x^{15} + x^{16}$

CRC-CCITT: $1 + x^5 + x^{12} + x^{16}$

CRC-32: $1 + x + x^2 + x^4 + x^7 + x^8 + x^{10} + x^{11} + x^{12} + x^{16} + x^{22} + x^{23} + x^{26} + x^{32}$

p. 78 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

CRC codes

- CRC-16 and CRC-CCITT are widely used in modems and network protocols in the USA and Europe, respectively, and give adequate protection for most applications
 - the number of non-zero terms in their polynomials is small (just four)
 - LFSR required to implement encoding and decoding is simpler
- Applications that need extra protection, e.g. DD, use CRC-32

p. 79 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding/decoding

- The encoding and decoding is done either in software, or in hardware using the usual procedure for separable cyclic codes
- To encode:
 - shift data polynomial right by $\deg(g(x))$ bit position
 - divided it by the generator polynomial
 - the coefficients of the remainder form the check bits of the CRC codeword

p. 80 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding/decoding

- The number check bits equals to the degree of the generator polynomial
 - an CRC detects all burst error of length less or equal than $\deg(g(x))$
- CRC also detects many errors which are larger than $\deg(g(x))$
 - apart from detecting all burst errors of length 16 or less, CRC-16 and CRC-CCITT are also capable to detect 99.997% of burst errors of length 17 and 99.985% burst errors of length 18

p. 81 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reed-Solomon codes

- Reed-Solomon (RS) codes are a class of separable cyclic codes used to correct errors in a wide range of applications including
 - storage devices (tapes, compact disks, DVDs, bar-codes), wireless
 - communication (cellular telephones, microwave links), satellite
 - communication, digital television, high-speed modems (ADSL, xDSL).

p. 82 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reed-Solomon codes

- The encoding for Reed-Solomon code is done the using the usual procedure
 - codeword is computed by shifting the data right $n-k$ positions, dividing it by the generator polynomial and then adding the obtained remainder to the shifted data
- A key difference is that groups of m bits rather than individual bits are used as symbols of the code.
 - usually $m = 8$, i.e. a byte.
 - the theory behind is a field Z^m_2 of degree m over $\{0,1\}$

p. 83 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Encoding

- An encoder for an RS code takes k data symbols of s bits each and computes a codeword containing n symbols of m bits each
- A Reed-Solomon code can correct up to $\lfloor n-k \rfloor/2$ symbols that contain errors

p. 84 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example: RS(255,223) code

- A popular Reed-Solomon code is RS(255,223)
 - symbols are a byte (8-bit) long
 - each codeword contains 255 bytes, of which 223 bytes are data and 32 bytes are check symbols
 - $n = 255$, $k = 223$, this code can correct up to 16 bytes containing errors
 - each of these 16 bytes can have multiple bit errors.

p. 85 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Decoding

- Decoding of Reed-Solomon codes is performed using an algorithm designed by Berlekamp
 - popularity of RS codes is due to efficiency this algorithm to a large extent.
- This algorithm was used by Voyager II for transmitting pictures of the outer space back to Earth
- Basis for decoding CD in players

p. 86 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Summary of cyclic codes

- Any end-around shift of a codeword produce another codeword
- code is characterized by its generator polynomial $g(x)$, with a degree $(n-k)$, n = bits in codeword, k = bits in data word
- detect all single errors and all multiple adjacent error affecting $(n-k)$ bits or less

p. 87 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Unordered codes

- Designed to detect unidirectional errors
- An error is **unidirectional** if all affected bits are changed to either $0 \rightarrow 1$ or $1 \rightarrow 0$, but not both
- Example:
 - correct codeword: 010101
 - same codeword with unidirectional errors:

110101	000101
111101	000001
111111	000000

p. 88 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Unidirectional error detection

- **Theorem:** A code C detects all unidirectional errors if and only if every pair of codewords in C is unordered
- two binary n -tuples x and y are **ordered** if either $x_i \leq y_i$ or $x_i \geq y_i$ for all $i \in \{1, 2, \dots, n\}$
- Examples of ordered codewords:

0110 < 0111 < 1111

0110 > 0100 > 0000

p. 89 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Unidirectional error detection

- A unidirectional error always changes a word x to a word y which is either smaller or greater than x
- A unidirectional error cannot change x to a word which is not ordered with x
- Therefore, if any pair of codewords are unordered, a unidirectional error will never transform a codeword to another codeword

p. 90 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

m-of-n code

- Code words are n bits in length and contain exactly m 1's
 - $C_d = 2$, detect single-bit errors
 - detects all unidirectional errors
- (+) simple to understand
- (-) if non-separable, encoding and decoding is difficult to organize

p. 91 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

k-of-2k code

- Take the original k bits of information and append k bits so that the resulting $2k$ -bit word has exactly k 1s
 - (-) 100% redundancy
 - (+) separable code, so encoding and decoding are easy to organize

data	3-of-6 code
000	000 111
001	001 110
010	010 101
...	...
111	111 000

p. 92 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Berger code

- Append c check bits to k data bits

$$c = \lceil \log_2(k+1) \rceil$$

- separable code
- how to create code word:
 - count number of 1's in k data bits
 - complement resulting binary number and append it to the data bits

p. 93 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example of Berger codeword

data = (0111010), $k = 7$

$$c = \lceil \log_2(7+1) \rceil = 3$$

number of 1's in (0111010) is 4 = (100)

complement of (100) is (011)

resulting codeword is (0111010011)

p. 94 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Berger code capability

- Berger code detects all unidirectional errors
- for the error detection capability it provides, the Berger code uses the fewest number of check bits of the available separable unordered codes

p. 95 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Arithmetic codes

- For checking arithmetic operations
 - before the operation, data is encoded
 - after the operation, code words are checked
- Arithmetic code is the invariant to “*” if:

$$A(b*c) = A(b) * A(c)$$

b, c - operands

$A(b), A(c), A(b*c)$ - codes for b, c and $b*c$

p. 96 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Examples of arithmetic codes

- Two common types of arithmetic codes are
 - AN codes
 - residue codes

p. 97 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

AN code

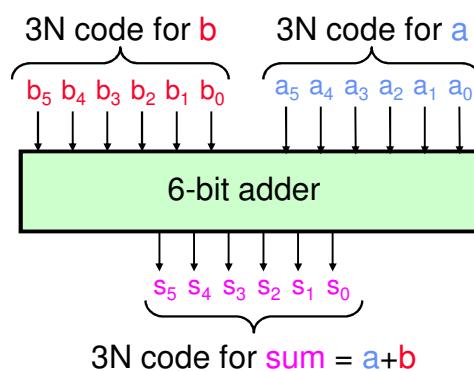
- AN code is formed by multiplying each data word N by some constant A
- AN codes are invariant to addition (and subtraction):

$$A(b + c) = A(b) + A(c)$$

- If no error occurred, $A(b+c)$ is evenly divisible by A

p. 98 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Adder protected by 3N code



Original data are 4-bit long. By multiplying them by 3, we obtain code words (6-bit long)

data	code word
0000	000000
0001	000011
0010	000110
...	...
1111	101101

p. 99 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Addition using 3N code - fault-free

Normal operation:

$$\begin{array}{r} a = 010010 \text{ (3N code of 6)} \\ + b = 000011 \text{ (3N code of 1)} \\ \hline s = 010101 \text{ (3N code of 7)} \end{array}$$

p. 100 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Addition using 3N code - with faults

$$\begin{array}{r} a = 010010 \quad (3N \text{ code of } 6) \\ + b = 000011 \quad (3N \text{ code of } 1) \\ \hline s = 010111 \quad (23 \text{ is not evenly divisible by } 3 \\ \text{i.e. not a valid code word}) \end{array}$$

↑

If s_1 is stuck to "1":

p. 101 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Selecting the value of A

- For binary codes, the constant A shouldn't be a power of two
 - otherwise multiplication by A results a left shift of the original data
 - error in a single bit yields a codeword evenly divisible by A (valid), so it will not be detected
- 3N code is easy to encode using $n+1$ bit adder: create $2N$ by shift and add N to it

p. 102 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Residue codes

- Residue codes are created by computing a residue for data and appending it to the data
- The residue is generated by dividing a data by an integer, called **modulus**.
- Decoding is done by simply removing the residue

p. 103 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Residue codes

- Residue codes are invariants with respect to addition, since

$$(b + c) \bmod m = b \bmod m + c \bmod m$$

where b and c are data words and m is modulus

- This allows us to handle residues separately from data during addition process.
- Value of the modulus determines the information rate and the error detection capability of the code

p. 104 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Next lecture

- Time redundancy

**Read chapter 6
of the text book**