Two approaches

• Qualitative evaluation
 – aims to identify, classify and rank the failure modes, or event combinations that would lead to system failures

• Quantitative evaluation
 – aims to evaluate in terms of probabilities the attributes of dependability (reliability, availability, safety)
Common dependability measures

- failure rate
- mean time to failure
- mean time to repair
- mean time between failures
- fault coverage
Failure rate

• failure rate
 – expected # of failures per time-unit
 – example
 • 1000 controllers working at t_0
 • after 10 hours: 950 working
 • failure rate for each controller:
 0.005 failures / hour
 (50 failures / 1000 controllers) / 10 hours
Reliability $R(t)$ is the conditional probability that the system will perform correctly throughout $[0,t]$, given that it worked at time 0

$$R(t) = \frac{N_{\text{operating}}(t)}{N_{\text{operating}}(t) + N_{\text{failed}}(t)}$$
Failure rate

- typical evolution of $\lambda(t)$ for hardware:

- bathtub: I infant mortality, II useful life, III wear-out

- for useful life period $\lambda = \text{constant}$, the reliability is given by

$$R(t) = e^{-\lambda t}$$
Exponential failure law

\[R(t) = e^{-\lambda t} \]

If \(\lambda \) is constant, \(R(t) \) varies exponentially as a function of time.
Time varying failure rate

• Failure rate is not always constant
 – software failure rate decreases as package matures
• Weibull distribution:

$$z(t) = \alpha \lambda (\lambda t)^{\alpha-1}$$

• if $\alpha=1$, then $z(t) = \text{constant} = \lambda$
 if $\alpha>1$, then $z(t)$ increases as time increases
 if $\alpha<1$, then $z(t)$ decreases as time increases

$$R(t) = e^{-(\lambda t)^\alpha}$$
Failure rate calculation

• determined for components
 – systems: combination of components
 – λ of the system = sum of λ of the components

• determine λ experimentally
 – slow
 • e.g. 1 failure per 100 000 hours (=11.4 years)
 – expensive
 • many components required for significance

• use standards for λ
MTTF

- MTTF: *mean time to failure* – expected time until the first failure occurs

- If we have a system of N identical components and we measure the time t_i before each component fails, then MTTF is given by

\[
MTTF = \frac{1}{N} \cdot \sum_{i=1}^{N} t_i
\]
MTTF

MTTF is defined in terms of reliability as:

\[MTTF = \int_{0}^{\infty} R(t) \, dt \]

If \(R(t) \) obeys the exponential failure law, then MTTF is the inverse of the failure rate:

\[MTTF = \int_{0}^{\infty} e^{-\lambda t} \, dt = \frac{1}{\lambda} \]
\[R(t) = e^{-\lambda t} \]
MTTF

• MTTF is meaningful only for systems which operate without repair until they experience a failure.
• Most of mission-critical systems undergo a complete check-up before the next mission:
 – all failed redundant components are replaced
 – system is returned to fully operational state
• When evaluating reliability of such system, mission time rather than MTTF is used.
MTTR

- MTTR: mean time to repair
 - expected time until repaired
- If we have a system of \(N \) identical components and \(i \)th component requires time \(t_i \) to repair, then MTTR is given by

\[
MTTR = \frac{1}{N} \sum_{i=1}^{N} t_i
\]
MTTR

- difficult to calculate
- determined experimentally
- normally specified in terms of repair rate

repair rate \(\mu \), which is the average number of repairs that occur per time period

\[
MTTR = \frac{1}{\mu}
\]
MTTR

- Low MTTR requirement implies high operational cost
 - if hardware spares are kept on site and the site is maintained 24hr a day, MTTR = 30min
 - if the site is maintained 8hr 5 days a week, MTTR = 3 days
 - if system is remotely located MTTR = 2 weeks
MTBF

- MTBF: mean time between failures
 - functional + repair
 - MTBF = MTTF + MTTR
 - small time difference: MTBF ≈ MTTF
 - conceptual difference

MTBF

<table>
<thead>
<tr>
<th>MTTF</th>
<th>MTTR</th>
<th>MTTF</th>
<th>MTTR</th>
</tr>
</thead>
</table>

- time of 1st failure
- time of 2nd failure
- time

p. 17 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab
Fault coverage

- Fault detection coverage is the conditional probability that, given the existence of a fault, the fault is detected.
- Difficult to calculate.
- Usually computed as:

\[C = \frac{\text{number of faults which can be detected}}{\text{total number of faults}} \]
Example

• Suppose your circuit has 10 lines and you use single-stuck at fault as a model
• Then the total number of faults is 20
• Suppose you have 1 undetectable fault
• Then the coverage is

\[C = \frac{19}{20} \]
Dependability modelling

- up to now: λ and $R(t)$ for components
- systems are sets of components
- system evaluation approaches:
 - reliability block diagrams
 - Markov processes
Serial system

- system functions if and only if all components function

reliability block diagram (RBD)
Serial system

\[C_1 \rightarrow C_2 \rightarrow \cdots \rightarrow C_N \]

if \(C_i \) are independent:

\[R_{\text{series}}(t) = \prod R_i(t) \]

\[\lambda_{\text{series}} = \sum_{i=1}^{N} \lambda_i \]
Parallel system

- system works as long as one component works
Parallel system

unreliability: \(Q(t) = 1 - R(t) \)

if \(C_i \) are independent: \(Q_{parallel}(t) = \prod_{i=1}^{N} Q_i(t) \)

\[
R_{parallel}(t) = 1 - \prod_{i=1}^{N} (1 - R_i(t))
\]
Reliability block diagram

- RBD
 - may be difficult to build
 - equations get complex
 - difficult to take coverage into account
 - difficult to represent repair
 - not possible to represent dependency between components
Markov chains

• Markov chains
 – illustrated by state transition diagrams

• idea:
 – states
 • components working or not
 – state transitions
 • when components fail or get repaired
Single-component system, no repair

• Only two states
 – one operational (state 1) and one failed (state 2)
 – if no repair is allow, there is a single, non-reversible transition between the states (used in availability analysis)
 – label λ corresponds to the failure rate of the component

![Diagram](image)
Single-component system with repair

• If repair is allowed (used in availability analysis)
 – then a transition between the failed and the operational state is possible
 – the label is the repair rate μ

\[\lambda \quad \mu \]

1 \quad 2
Failed-safe and failed-unsafe

- In safety analysis, we need to distinguish between failed-safe and failed-unsafe states
 - let 2 be a failed-safe state and 3 be a failed-unsafe state
 - the transition between the 1 and 2 depends on failure rate and the probability that, if a fault occurs, it is detected and handled appropriately (i.e. fault coverage C)
 - if C is the probability that a fault is detected, 1-C is the probability that a fault is not detected

\[
\begin{align*}
\lambda C & \quad 2 \\
\lambda (1-C) & \quad 3
\end{align*}
\]
Two-component system

- Has four possible states
 - O O state 1
 - F O state 2
 - O F state 3
 - F F state 4

- Components are assumed to be independent and non-repairable
- If components are in serial
 - state 1 is operational state, states 2,3,4 are failed states
- If components are in parallel
 - states 1,2,3 are operational states, state 4 is failed state
State transition diagram simplification

- Suppose two components are in parallel
- Suppose $\lambda_1 = \lambda_2 = \lambda$
- Then, it is not necessary to distinguish between between the states 2 and 3
 - both represent a condition where one component is operational and one is failed
 - since components are independent events, transition rate from state 1 to 2 is the sum of the two transition rates 2λ
Markov chain analysis

• The aim is to compute $P_i(t)$, the probability that the system is in the state i at time t
• Once $P_i(t)$ is known, the reliability, availability or safety of the system can be computed as a sum taken over all operating states
• To compute $P_i(t)$, we derive a set of differential equations, called state transition equations, one for each state of the system
Transition matrix

• State transition equations are usually presented in matrix form

• Transition matrix M has entries m_{ij}, representing the rates of transition between the states i and j
 – index i is used for the number of columns
 – index j is used for the number of rows

\[
M = \begin{bmatrix}
m_{11} & m_{21} \\
m_{12} & m_{22}
\end{bmatrix}
\]
Single-component system, no repair

- Transition matrix M has the form:

$$
M = \begin{bmatrix}
 -\lambda & 0 \\
 \lambda & 0
\end{bmatrix}
$$

- entries in each columns must sum up to 0
 - entries m_{ii}, corresponding to self-transitions, are computed as $-(\text{sum of other entries in this column})$
Single-component system with repair

Transition matrix M has the form:

$$M = \begin{bmatrix} -\lambda & \mu \\ \lambda & -\mu \end{bmatrix}$$
Single-component system, safety analysis

• Transition matrix M has the form:

$$M = \begin{bmatrix} -\lambda & 0 & 0 \\ \lambda C & 0 & 0 \\ \lambda (1-C) & 0 & 0 \end{bmatrix}$$
Two-component parallel system

- Transition matrix M has the form:

$$M = \begin{bmatrix}
-2\lambda & 0 & 0 \\
2\lambda & -\lambda & 0 \\
0 & \lambda & 0
\end{bmatrix}$$
Important properties of matrix M

• Sum of the entries in each column is 0
• Positive sign of an i_{th} entry indicates that the transition originates from the i_{th} state
• In reliability analysis, M allows us to distinguish between the operational and failed states
 – each failed state i has a zero diagonal element m_{ii} (a failed state cannot be left)
State transition equations

• Let $P(t)$ be a vector whose i_{th} element is the probability $P_i(t)$, the probability that the system is in the state i at time t

• The matrix representation of a system of state transition equations is given by

$$\frac{d}{dt} P(t) = M \cdot P(t)$$
Two-component parallel system

- Using transition matrix derived earlier, we get:

\[
\begin{bmatrix}
\frac{d}{dt} P_1(t) \\
\frac{d}{dt} P_2(t) \\
\frac{d}{dt} P_3(t)
\end{bmatrix}
=
\begin{bmatrix}
-2\lambda & 0 & 0 \\
2\lambda & -\lambda & 0 \\
0 & \lambda & 0
\end{bmatrix}
\begin{bmatrix}
P_1(t) \\
P_2(t) \\
P_3(t)
\end{bmatrix}
\]

- This represents the following system of equations

\[
\begin{align*}
\frac{d}{dt} P_1(t) &= -2\lambda P_1(t) \\
\frac{d}{dt} P_2(t) &= 2\lambda P_1(t) - \lambda P_2(t) \\
\frac{d}{dt} P_3(t) &= \lambda P_2(t)
\end{align*}
\]
By solving these equations, we get

\[P_1(t) = e^{-2\lambda t} \]
\[P_2(t) = 2e^{-\lambda t} - 2e^{-2\lambda t} \]
\[P_3(t) = 1 - 2e^{-\lambda t} + e^{-2\lambda t} \]

Since the \(P_i(t) \) are known, we can compute the reliability of the system as a sum of probabilities taken over all operating states

\[R_{\text{parallel}}(t) = P_1(t) + P_2(t) = 2e^{-\lambda t} - e^{-2\lambda t} \]
Comparison to RBD result

• Since \(R = e^{-\lambda t} \), the previous equation can be written as

\[
R_{\text{parallel}}(t) = 2R - R^2
\]

• which agrees with the expression derived using RBD

• two results are the same because we assumed that the failure rates of the two components are independent
Dependant component case

- The value of Markov chains become evident when component failures cannot be assumed to be independent
 - load-sharing components
 - examples: electrical load, mechanical load, information load
- If two components share the same load and one fails, the additional load on the second component increases its failure rate
Parallel system with load sharing

- As before, we have four states, but after the 1st component failure, the failure rate of the 2nd component increases.

![Diagram of parallel system with load sharing](image)
Parallel system with load sharing

- State transition equations are:

\[
\begin{bmatrix}
 \frac{d}{dt} P_1(t) \\
 \frac{d}{dt} P_2(t) \\
 \frac{d}{dt} P_3(t) \\
 \frac{d}{dt} P_4(t)
\end{bmatrix}
= \begin{bmatrix}
 -\lambda_1 - \lambda_2 & 0 & 0 & 0 \\
 \lambda_1 & -\lambda_2' & 0 & 0 \\
 \lambda_2 & 0 & -\lambda_1' & 0 \\
 0 & \lambda_2' & \lambda_1' & 0
\end{bmatrix}
\begin{bmatrix}
 P_1(t) \\
 P_2(t) \\
 P_3(t) \\
 P_4(t)
\end{bmatrix}
\]

\[
\begin{aligned}
 \frac{d}{dt} P_1(t) &= (-\lambda_1 - \lambda_2)P_1(t) \\
 \frac{d}{dt} P_2(t) &= \lambda_1 P_1(t) - \lambda_2' P_2(t) \\
 \frac{d}{dt} P_3(t) &= \lambda_2 P_1(t) - \lambda_1' P_3(t) \\
 \frac{d}{dt} P_4(t) &= \lambda_2' P_2(t) + \lambda_1' P_3(t)
\end{aligned}
\]
Effect of the load

• If $\lambda'_1 = \lambda_1$ and $\lambda'_2 = \lambda_2$, the equation of load sharing parallel system reduces to well-known

\[R_{\text{parallel}}(t) = 2e^{-\lambda t} - e^{-2\lambda t} \]
Availability evaluation

- Difference with reliability analysis:
 - in reliability analysis components are allowed to be repaired as long as the system has not failed
 - in availability analysis components can also be repaired after the system failure
Two-component standby system

- First component is primary
- Second is held in reserve and only brought to operation if the first component fails
- We assume that
 - fault detection unit which detect failure of the primary component are replace is with standby is perfect
 - standby component cannot fail while in the standby mode
State transition diagram for reliability analysis with repair

State 1: both OK
State 2: primary failed and replaced by spare
State 3: both failed

Repair replaces a broken component by a working one.

\[M = \begin{bmatrix} -\lambda_1 & \mu & 0 \\ \lambda_1 & -\lambda_2 - \mu & 0 \\ 0 & \lambda_2 & 0 \end{bmatrix} \]
State transition diagram for availability analysis with repair

States are the same.

Repair replaces a broken component by a working one. Here we assume that there is only one repair team.

$$M = \begin{bmatrix} -\lambda_1 & \mu & 0 \\ \lambda_1 & -\lambda_2 - \mu & \mu \\ 0 & \lambda_2 & -\mu \end{bmatrix}$$
If we assume that there are two independent repair teams, then μ on the edge from 3 to 2 gets the coefficient 2 (the rate doubles).

$$M = \begin{bmatrix}
-\lambda_1 & \mu & 0 \\
\lambda_1 & -\lambda_2 & -\mu & 2\mu \\
0 & \lambda_2 & -2\mu
\end{bmatrix}$$
Availability analysis

- None of the diagonal elements of M are 0
- By solving the system, we can get $P_i(t)$ and compute the availability as a sum of probabilities taken over all operating states
- Usually steady-state availability rather than time-dependent one is of interest
- As time approaches infinity, the derivative of the right-hand side of the equation $d/dt P(t) = M \cdot P(t)$ vanishes and we get time-independent relationship

$M \cdot P(\infty) = 0$
Two-component standby system

• Using transition matrix derived earlier, we get the following system of equations

\[
\begin{aligned}
-\lambda_1 P_1(\infty) + \mu P_2(\infty) &= 0 \\
\lambda_1 P_1(\infty) - (\lambda_2 + \mu) P_2(\infty) + \mu P_3(\infty) &= 0 \\
\lambda_2 P_2(\infty) - \mu P_3(\infty) &= 0
\end{aligned}
\]

• By solving the equations, we get

\[
A(\infty) \approx 1 - (\lambda/\mu)^2
\]
Safety evaluation

- The state transition equations are:

\[
\frac{d}{dt} \begin{bmatrix} P_1(t) \\ P_2(t) \\ P_3(t) \end{bmatrix} = \begin{bmatrix} -\lambda & 0 & 0 \\ \lambda C & 0 & 0 \\ \lambda(1-C) & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_1(t) \\ P_2(t) \\ P_3(t) \end{bmatrix}
\]
Safety evaluation

- By solving these equations, we get
 \[P_1(t) = e^{-\lambda t} \]
 \[P_2(t) = C(1 - e^{-\lambda t}) \]
 \[P_3(t) = (1-C) - (1-C)e^{-\lambda t} \]
- Since the \(P_i(t) \) are known, we can compute the reliability of the system as a sum of probabilities of being the operational and fail-safe states

\[
R(t) = P_1(t) + P_2(t) = C + (1-C)e^{-\lambda t}
\]
- At time \(t=0 \), the safety is 1. As time approaches infinity, the safety approaches \(C \)
How to deal with cases of systems with “k out of n choices”

• Suppose we want to solve the following task:

 What is the probability that more than two engines in a 4-engine airplane will fail during a t-hour flight if the failure rate of a single engine is \(\lambda \) per hour?

• The probability that more than two engines fail can be expressed as:

 \[
P_{>2 \text{ failed}} = \binom{4}{1} P_{1 \text{ works}} P_{3 \text{ failed}} + P_{4 \text{ failed}} \\
 = 1 - (P_{4 \text{ works}} + \binom{4}{3} P_{3 \text{ work 1 failed}} + \binom{4}{2} P_{2 \text{ work 2 failed}})
 \]

• Only probabilities of mutually exclusive events can be summed up like this
“k out of n choices”

• “k out of n choices” can be computed as

\[
\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}
\]

• For example

\[
\binom{4}{2} = \frac{4!}{(4-2)! \cdot 2!} = 6
\]
Example cont.

So, we get

\[P_{\geq 2 \text{ failed}} = 4 \, P_{1 \text{ works 3 failed}} + P_{4 \text{ failed}} \]

where

\[P_{1 \text{ works 3 failed}} = R \,(1-R)^3 \]
\[P_{4 \text{ failed}} = (1-R)^4 \]

where \(R \) is the reliability of a single engine computed as \(R = e^{-\lambda t} \)
Summary

• Methods for evaluating the reliability, availability and safety of a system
 – RBDs
 – Markov chains
Next lecture

• Hardware redundancy

Read chapter 4 of the text book