ﬁmwsm\‘f\%ﬂ KUNGL

OCH 1 TEKNISKA

‘ém\:%zsjé/é HOGSKOLAN

Faults, Errors and Failures

Dependability tree
4 <|’availability
attributes safety
\reliability

— fault tolerance
fault prevention
fault removal

(_ fault forecasting

faults
_impairments errors
failures

dependability <
means <

p. 2 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Examples of failures

« eBay Crash
* Ariane 5 Rocket Crash

p. 3 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

eBay Crash

» eBay: giant internet auction house
— A top 10 internet business
— Market value of $22 billion
— 3.8 million users as of March 1999
— Access allowed 24 hours 7 days a week

e June 6, 1999

— eBay system is unavailable for 22 hours with
problems ongoing for several days

— Stock drops by 6.5%, $3-5 billion lost revenues
— Problems blamed on Sun server software

p. 4 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Ariane 5 Rocket Crash

Ariane 5 rocket exploided 37 seconds after lift-off on
June 4, 1996
Error due to software bug:

— Conversion of a 64-bit floating point number to a 16-bit
integer resulted in an overflow

— In response to the overflow, the computer cleared its
memory

— Ariane 5 interpreted the memory dump as an
instruction to its rocket nozzles

Testing of full system under actual conditions not
done due to budget limits

Estimated cost: 60 million $

p. 5 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Fault

Fault is a physical defect, imperfection or flaw
that occurs in hardware or software

Example: - short between wires
- break in transistor

- infinite program loop

p. 6 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Error

Error is a deviation from correctness or
accuracy

Example: Suppose a line is physically shortened to 0
(there is a fault). As long as the value on line is
supposed to be 0, there is no error.

Errors are usually associated with incorrect values in
the system state.

p. 7 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIab

Failure

Failure is a non-performance of some action
that is due or expected

Example: Suppose a circuit controls a lamp (0 = turn
off, 1 = turn on) and the output is physically shortened
to O (there is a fault). As long as the user wants the
lamp off, there is no failure.

A system is said to have a failure if the service it
delivers to the user deviates from compliance with the
system specification.

p. 8 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Cause-and-effect relationship

* Faults can result in errors. Errors can lead
to system failures

* Errors are the effect of faults. Failures are
the effect of errors

p. 9 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Software

« Definitions of physical, computational and system
levels are more confusing when applied to
software
— physical level = program code
— computational level = values of the program state

— system level = software system running the program

« Bug in a program is a fault. Possible incorrect
values caused by this bug is an error. Possible
crush of the operating system is a failure.

p. 10 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Origins of faults

« specification mistakes

— incorrect algorithms, incorrectly specified requirements
(timing, power, environmental)

« implementation mistakes
— poor design, software coding mistakes
» component defects

— manufacturing imperfections, random device defects,
components wear-outs

 external factors
— radiation, lightning, operator mistakes

p. 11 - Design of Fault Tolerant Systems - Elena Dubrova, ESDIlab

Cause-and-effect relationship

specification

mistakes \ software

faults

implementation

mistakes system

m failures

external
factors hardware
faults
component /
defects

p. 12 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Common-mode faults

« A common-mode fault is a fault which occur
simultaneously in two or more redundant
components

» Caused by phenomena that create dependancies
between components
— common communication bus
— shared environmental conditions
— common source of power
— design mistake

« Design diversity is the implementation of one or
more variant of the redundant component

p. 13 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Hardware faults

 Fault duration specifies the length of time
that a fault is active
— permanent fault

* remains in existence indefinitely if no corrective
action is taken (stuck-at fault)

— transient fault

» can appear and disappear within a very short period
of time (caused by lightning)

— intermittent fault

* appear, disappears and then reappears repeatedly
(weak solder joint)

p. 14 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault models

« Itis very difficult to analyze a system
without assuming some fault models
— hard to design test procedures
— hard to simulate faults

» To make the problem more manageable,
we need to restrict our attention to a subset
of all faults what can occur

p. 15 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault models

» Fault model is a logical abstraction
describing the functional effect of physical
defect

« Different levels of modeling
— high, logic, transistor, layout

« Different fault models
— stuck-at, transition, coupling

p. 16 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Logic stuck-at fault model

* most commonly used model

* the effect of the fault is modeled by having
a line in the circuit permanently fixed to 0 or
1 value

« the basic functionality of the circuit is not
changed
— gates remain the same

— combinational circuit is not transformed to
sequential

p. 17 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Test set

 Test for a given fault is an assignment of
values for input variables, detecting this
fault

- Complete test set is a set of tests detecting
all faults in the circuit (of a specified type)

« Minimal complete test set is a complete test
set with the minimal number of tests

p. 18 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Truth-table based method for finding
tests for stuck-at faults

To find tests for some stuck-at fault o.:

» Write truth tables for the function without
fault, f, and the function with fault, f*

« All input assignments of the truth table for
which f = f* are tests for the fault o

p. 19 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example

1 o:s-a-0 X1 | Xo | X3 f i
x1 %_:)iL ololo] o 0
2 |4 olof1] o 0
5 ol1]o]| o 0
° DJ 111 1 1

x3 0
1{o]o]| o 0
1{o|1] o 0
f = x1x2 + x2x3 R 5 .

o -

%= x2x3 s 1

test for o

p. 20 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Circuit-based method for finding
tests for stuck-at faults

To find tests for a stuck-at fault o on some line i/
» Put on ja value opposite to o

» Make the output sensitive to i by selecting a path
and assigning values to other inputs of gates
along this path (1 for AND, 0 for OR, don’t care
for XOR)

» Try to assign values to other gates in the circuit
so that there are no conflicts

* If not possible, choose another path

« If not possible for all paths, o is undetectable

p. 21 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example

o s-a-0

1/0

(110) is the test for a
There are no other tests for o

1/0 means that the value is 1 in fault-free circuit and 0 in faulty circuit

p. 22 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

How to find a complete minimal test
set

» Find all tests for all stuck-at faults in the circuit

* Make a table
— One row for each fault (2-number of lines)
— One column for each test (2", n = number of inputs)

« Put a star is a test detects a fault

» Select a minimal number of tests which detect all
faults (i.e. choose a minimal subset of columns
which covers all rows)

p. 23 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example
00(01(10] 11
1 3 1:s-a-0 *
Di 1:s-a-1 *
5 2:s-a-0 *
2:s-a-1 *
3:s-a-0 ® | % *
3:s-a-1 *

The complete minimal test set is {(00),(01),(10)}

p. 24 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Examples of a faults covered by
stuck-at fault model

Vob x1 ﬂ ,
X2 — f=(x1+x2)

x1 p-type
] 1) The fault caused by x1 shorted
x2 —40—i p-type to Vdd can be modeled as stuck-
} ; at-1 fault at x1.
—i —i n-type 2) The fault caused by the drain
n-type and source of one of the n-type
Vss transistors shorted together can be
1 modeled as stuck-at-0 fault at the
- output.

p. 25 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example of a fault not covered by
stuck-at fault model

JVDD x1 ﬂ ,
X2 — f=(x1+x2)

x1 —Q—i p-type
] The fault cause by the marked
x2 | p-type broken line cannot be modeled by
stuck-at fault model. If the input
} § combination x1x2 = 10 is applied,
_i _i n-type neither n-type nor p-type transistors
ype are conducting. The output remains

-t
" in the state defined by the previous

Vss inputs (sequential behavior).

p. 26 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Transition fault

» Aline in a circuit or a cell in a memory
cannot change from a particular state to
another state
— suppose a memory cell containes a 0
—a 1 is written in the memory successfully

—if a 0 is attempted to be written to the cell, the
cell remains 1

—there is a 1-to0-0 transition fault

p. 27 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Coupling fault

» depend on more than one line

— short-circuit between two adjacent word lines in
a memory

— writing a value to a memory cell connected to
one word line also results in writing that value
to the memory cell connected to the other word
line

» More difficult to test compared to stuck-at
and transition faults

p. 28 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Software faults

» Software differs from hardware in several
aspects:
— it does not age or wear out
— it cannot be deformed or broken
— it cannot be affected by environmental factors

— if deterministic, it always performs the same
way in the same circuimstances

p. 29 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Software faults

» Software may undergo several upgrades
during system life cycle

— reliability upgrade — aims to enhace software
reliability of security. Done by re-designing
some modules using better approaches

— feature upgrade — aims to enhace software
functionality. Likely to increase complexity and
thus decrease reliability by introducing new
bugs

p. 30 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Software faults

» Fixing bugs does not necessarily make
software more reliable

—new bugs may be introduced

* in 1991, a change f 3 lines of code in a program
containing millions lines of code caused a local
telephone system in California to stop

» Software is inherently more complex and
less regular than hardware

— achieving sufficient verification coverage is
very difficult

p. 31 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Statistic

» 60-65% of software faults originate from
— incomplete, missing, inadequate, inconsistent,
unclear requirements
» 35-40% of software faults originate from
— coding mistakes

— proportional to
* size of code
» number of paths in code

p. 32 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Dependability tree

dependability <

/'

measures

means

<

-

— availability
reliability
safety
performability
maintainability

_ testability

— fault avoidance

fault masking
fault tolerance

(fault forecasting

faults
_impairments errors
failures

p. 33 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Dependability means

» Dependability means are techniques
enabling the development of a dependable

system:

— fault tolerance
— fault prevention
— fault removal

— fault forecasting

p. 34 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault prevention

» avoid occurrence or introduction of faults

« quality control methods to avoid
specification or implementation mistakes
and component defects
— design reviewes
— component screening
— testing

p. 35 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault prevention

« human-made faults
— can be reduced by training
— or by decreasing the amount of information

p. 36 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault prevention

« software design faults
— structured programming, well-defined interface
— modularization
— extensive testing in realistic environment
— formal verification
— re-use old software

« deliberate malicious faults caused by viruses or
hackers
— firewalls or other security means

p. 37 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault prevention

« transient hardware faults
— prevent external disturbances
* shielding, grounding
— power problems
« filter, separate distribution
— o -radiation
* radiation-tolerant components

p. 38 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault prevention

* intermittent hardware faults
— overheating
« ventilation
— bad contacts
* avoid vibrations

— metastability (oscillation between 0 and 1)
* good synchronisation

p. 39 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault prevention

» permanent hardware faults

— component failure
* burn-in
(H/L temperature, H/L humidity, vibrate)
+ avoid extreme conditions
* early replacement
— power supply failures
« UPS (uninterruptable power supply), for life-critical
applications, have a battery

 design faults
— modularity and testing

p. 40 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault removal

» Performed during the development stage as
well as during the operational life of a
system
— development stage:

« verification, diagnosis and correction

— operational stage:
* corrective and preventive maintenance

p. 41 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault forecasting

» estimate faults

— present number

— future number

— consequences
« qualitatively

— search for causes of faults
 quantitatively

— failure rate, time to failure, time between
failures

p. 42 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault tolerance

« targets development of a system which
functions correctly in presence of faults
 achieved by some kind of

—redundancy allows either to detect or to mask a
fault
» Fault detection/masking are followed by
fault location, containment and recovery

—the goal is to reconfigure system to remove
faulty components

p. 43 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault detection

Fault detection is the process of recognising
that a fault has occurred

p. 44 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault location

Fault location is the process of determining where
a fault has occurred

p. 45 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault containment

Fault containment is the process of isolating a
fault and preventing its effect to propagate
throughout a system

p. 46 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Fault recovery

Fault recovery is the process of regaining
operational status

p. 47 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Summary

fault detection

— identify that a fault has occurred

fault location

— find where the fault is

fault containment

— prevent propagation of the fault

fault recovery

— modify structure to remove faulty component

— graceful degradation — continue operation with a
degraded performance

p. 48 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Next lecture

 Evaluation techniques

Read chapter 3
of the text book

p. 49 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

