

KUNGL
TEKNISKA
HÖGSKOLAN

International Master Program in System-on-Chip Design

Fault Tolerant System Design

Lecturer

Prof. Elena Dubrova
Dept. of Electronic and Embedded Systems
ICT/KTH

dubrova@kth.se
<http://www.ict.kth.se/~dubrova>

Teaching Assistant

Dr. Sha Tao
Department of Electronics
ICT/KTH

stao@kth.se

p. 3 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Office hours

- No fixed time
- Send me an email with your questions or ask for a meeting

p. 4 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Text book

- E. Dubrova, **Fault-Tolerant Design**,
Springer, 2013

p. 5 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Course evaluation

- 5 assignments (20%) (A-F, 60% to pass)
- Midterm exam (20%) (A-F, 60% to pass)
 - 18.5 - 20 A, 16.9 - 18.4 B, 15.3 -16.8 C,
13.7 - 15.2 D, 12 - 13.6 E, < 12 F
- Final exam (60%) (A-F, 60% to pass)
 - 55.3 - 60 A, 50.5 - 55.2 B, 45.7 - 50.4 C,
40.9 - 45.6 D, 36 - 40.8 E, < 36 F

p. 6 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Course evaluation

- Total grade will be based on the sum of the above three (A-F, 60% to pass)
 - 93 - 100 A, 85 - 92 B, 77 - 84 C, 69 - 76 D, 60 - 68 E, < 60 F

p. 7 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Assignments

- 5 assignments, worth 20% of the final grade
 - each consists of 4-5 tasks from textbook, see table at course webpage
 - should be handed to me on the due date (at the lecture)
 - late assignments will get 0 points

p. 8 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Examinations

- Midterm exam, 45 min, worth 20% of the final grade
 - will be done during 45 min during the 1st hour of the lecture on April 24th, 4-5 tasks
 - cannot be re-done
- Final exam, 4 hours, worth 60% of the final grade, June 1th, 8-12
 - 4 hours, 10-12 tasks

p. 9 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

PhD students

- Additional component for PhD students:
 - select 2 interesting papers/problems, related to the course material
 - bring them to me for discussion
 - you will read this paper/solve the problem, write a 2-page report and give a 20 min talk at the last lecture

p. 10 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Objectives

- understanding fault tolerance
 - faults and their effects (errors, failures)
 - redundancy techniques
 - evaluation of fault-tolerant systems
- balance
 - concepts, underlying principles
 - applications

p. 11 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Overview

- Introduction
 - definition of fault tolerance, applications
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
 - dependability means
- Dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
 - reliability block diagrams
 - Markov processes

p. 12 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Overview

- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy

p. 13 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

International Master Program in System-on-Chip Design

Introduction to Fault Tolerance

Fault tolerance

**fault-tolerance is the ability of a system
to continue performing its function
in spite of faults**

broken connection

hardware

bug in program

software

p. 15 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Easily testable system

- Easily testable system is one whose ability to work correctly can be verified in a simple manner

p. 16 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Why do we need fault-tolerance?

- It is practically impossible to build a perfect system
 - suppose a component has the reliability 99.99%
 - a system consisting of 100 non-redundant components will have the reliability 99.01%
 - a system consisting of 10.000 components will have the reliability 36.79%
- It is hard to foresee all the factors

p. 17 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Redundancy

- Redundancy is the provision of functional capabilities that would be unnecessary in a fault-free environment
 - replicated hardware component
 - parity check bit attached to digital data
 - a line of program verifying the correctness of the result

p. 18 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

History

- early computer systems
 - basic components had very low reliability
 - fault-tolerant techniques were need to overcome it
 - redundant structures with voting
 - error-detection and error correction codes

p. 19 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

History

- early computer systems
 - EDVAC (1949)
 - duplicate ALU and compare results of both
 - continue processing if agreed, else report error
 - Bell Relay Computer (1950)
 - 2 CPU's
 - one unit begin executing the next instruction if the other encouters an error
 - IBM650, UNIVAC (1955)
 - parity check on data transfers

p. 20 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

History

- Advent of transistors
 - more reliable components
 - led to temporary decrease in the emphasis on fault-tolerant computing
 - designers thought it is enough to depend on the improved reliability of the transistor to guarantee correct computations

p. 21 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

History

- last decades
 - more critical applications
 - space programs, military applications
 - control of nuclear power stations
 - banking transactions
 - VLSI made the implementation of many redundancy techniques practical and cost effective
 - Other than hardware component faults need to be tolerated:
 - transient faults (soft errors) caused by environmental factors
 - software faults

p. 22 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Applications

- **safety-critical** applications
 - critical to human safety
 - aircraft flight control
 - environmental disaster must be avoided
 - chemical plants, nuclear plants
 - requirements
 - 99.99999% probability to be operational at the end of a 3-hour period

p. 23 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Applications

- **mission-critical** applications
 - it is important to complete the mission
 - repair is impossible or prohibitively expensive
 - Pioneer 10 was launched 2 March 1970, passed Pluto 13 June 1983
- requirements
 - 95% probability to be operational at the end of mission (e.g. 10 years)
 - may be degraded or reconfigured before (operator interaction possible)

p. 24 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Applications

- **business-critical** applications
 - users want to have a high probability of receiving service when it is requested
 - transaction processing (banking, stock exchange or other time-shared systems)
 - ATM: < 10 hours/year unavailable
 - airline reservation: < 1 min/day unavailable

p. 25 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

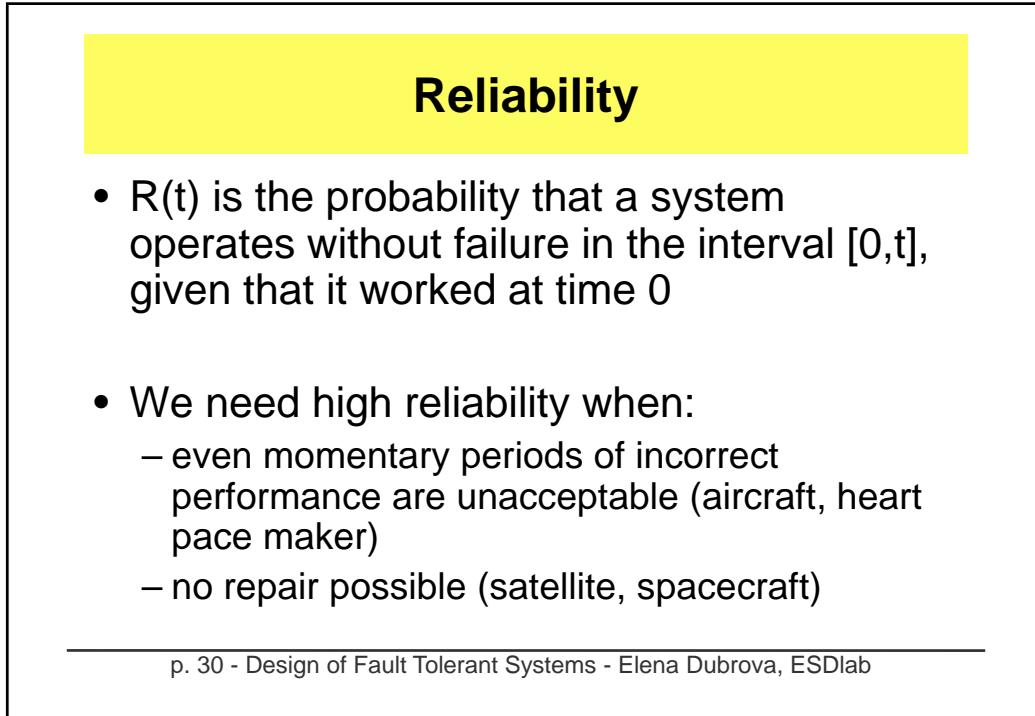
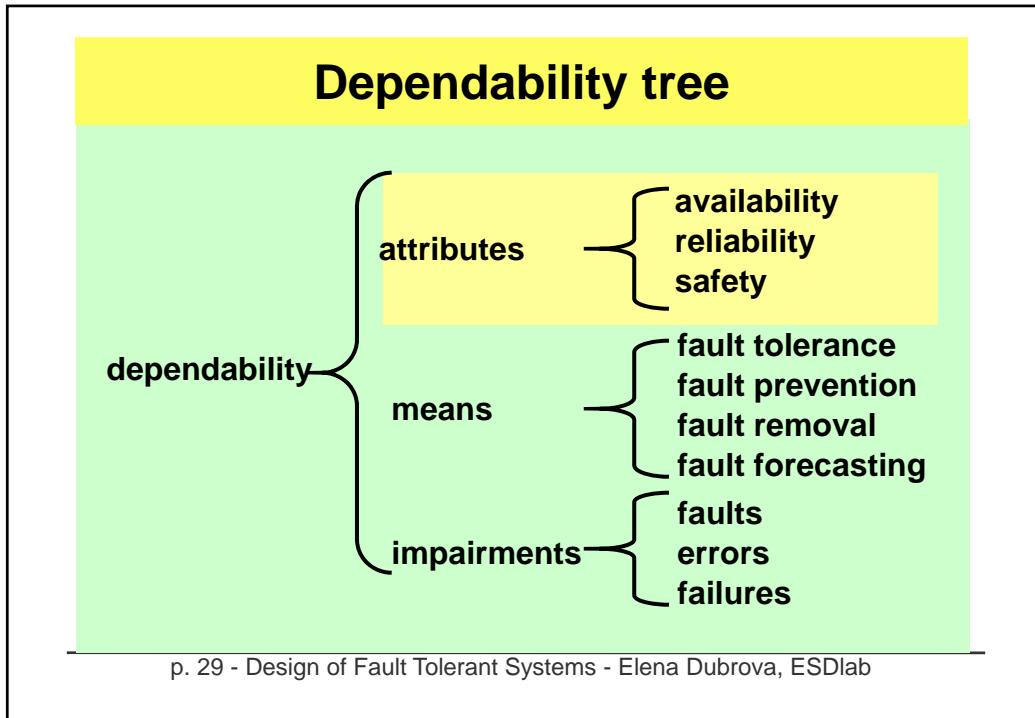
Applications

- **maintenance postponement** applications
 - avoid unscheduled maintenance
 - should continue to function until next planned repair (economical benefits)
 - examples:
 - remotely controlled systems
 - telephone switching systems (in remote areas)

p. 26 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Goals of fault tolerance

**The main goal of fault tolerance is
to increase the dependability of a system**



p. 27 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Dependability

**Dependability
is the ability of a system to
deliver its intended level of
service to its users**

p. 28 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

High reliability examples

- airplane:
 - $R(\text{several hours}) = 0.999\ 999\ 9 = 0.97$
- spacecraft:
 - $R(\text{several years}) = 0.95$

p. 31 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reliability versus fault tolerance

- Fault tolerance is a technique that can improve reliability, but
 - a fault tolerant system does not necessarily have a high reliability
 - a system can be designed to tolerate any single error, but the probability of such error to occur can be so high that the reliability is very low

p. 32 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reliability versus fault tolerance

- A highly reliable system is not necessarily fault tolerant
 - a very simple system can be designed using very good components such that the probability of hardware failing is very low
 - but if the hardware fails, the system cannot continue its functions

p. 33 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

How fault tolerance helps

- Fault tolerance can improve a system's reliability by keeping the system operational when hardware or software faults occur
 - a computer system with one redundant processor can be designed to continue working correctly even if one of the processors fails
 - **QUESTION:** Will a fault-tolerant system always be more reliable than an individual component?

p. 34 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Availability

- $A(t)$ is the probability that a system is functioning correctly at the instant of time t
- depends on
 - how frequently the system becomes non-operational
 - how quickly it can be repaired

p. 35 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Steady-state availability

- Often the availability assumes a time-independent value after some initial time interval
- This value is called **steady-state** availability A_{ss}
- Steady-state availability is often specified in terms of **downtime** per year
 - $A_{ss} = 90\%$, downtime = 36.5 days/year
 - $A_{ss} = 99\%$, downtime = 3.65 days/year

p. 36 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reliability versus availability

- reliability depends on an **interval** of time
- availability is taken at an **instant** of time
- a system can be highly available yet experience frequent periods of being non-operational as long as the length of each period is extremely short

p. 37 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

High availability examples

- examples
 - transaction processing
 - ATM: $A_{ss}=0.9_3$ (< 10 hours/year unavailable)
 - banking: $A_{ss}=0.997$ (< 10 s/hour unavailable)
 - computing
 - supercomputer centres
 $A_{ss}=0.997$ (< 10 days/year unavailable)
 - embedded
 - telecom: $A_{ss}=0.9_5$ (< 5 min./year unavailable)

p. 38 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

How fault tolerance helps

- Fault tolerance can improve a system's availability by keeping the system operational when a failure occurs
 - a spare processor can perform the functions of the system, keeping it available for use, while the primary processor is being repaired

p. 39 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Safety

- Safety is the probability that a system will either perform its function correctly or will discontinue its operation in a safe way
- System is safe
 - if it functions correctly, or
 - if it fails, it remains in a safe state

p. 40 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

High safety examples

- railway signalling
 - all semaphores red
- nuclear energy
 - stop reactor if a problem occur
- banking
 - don't give the money if in doubt

p. 41 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Reliability versus safety

- Reliability is the probability that a system will perform its functions correctly
- Safety is the probability that a system will either work correctly or will stop in a manner that causes no harm

p. 42 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

How fault tolerance helps

- Fault tolerance techniques can improve safety by turning a system off if a failure of a certain sort is detected
 - in a nuclear power plant the reaction process should be stopped if some discrepancy is detected

p. 43 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Summary: attributes of dependability

- reliability:
 - continuity of service
- availability:
 - readiness for usage
- safety:
 - non-occurrence of catastrophic consequences

p. 44 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Next lecture

- Faults, error and failures
- Design philosophies to combat faults

**Read chapters 1 and 2 of the
text book**