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Abstract— A Kauffman network is an abstract model of gene regu-
latory networks. Each gene is represented by a vertex. An edge from
one vertex to another implies that the former gene regulates the latter.
Statistical features of Kauffman networks match the characteristics
of living cells. The number of cycles in the network’s state space,
called attractors, corresponds to the number of different cell types. The
attractor’s length corresponds to the cell cycle time. The sensitivity of
attractors to different kinds of disturbances, modeled by changing a
network connection, the state of a vertex, or the associated function,
reflects the stability of the cell to damage, mutations and virus attacks.
In order to evaluate attractors, their number and lengths have to be
computed. This problem is the major open problem related to Kauffman
networks. Available algorithms can only handle networks with less than
a hundred vertices. The number of genes in a cell is often larger. In this
paper, we present a set of efficient algorithms for computing attractors
in large Kauffman networks. The resulting software package is hoped to
be of assistance in understanding the principles of gene interactions and
discovering a computing scheme operating on these principles.

I. INTRODUCTION

The gene regulatory network is one of the most important signaling
networks in living cells. It is composed of the interactions of proteins
with the genome [1]. The major discovery related to gene regulatory
networks was made in 1961 by French biologists François Jacob and
Jacques Monod [2]. They found that a small fraction of the thousands
of genes in the DNA molecule acts as tiny ”switches”. By exposing a
cell to a certain hormone, these switches can be turned ”on” or ”off”.
The activated genes send chemical signals to other genes which, in
turn, get either activated or repressed. The signals propagate along
the DNA molecule until the cell settles down into a stable pattern.

Jacob and Monod’s discovery showed that DNA is not just a
blueprint for the cell, but rather an automaton which allows for the
creation of different types of cells. It answered the long open question
of how one fertilized egg cell could differentiate itself into brain cells,
lung cells, muscle cells, and other types of cells that form a newborn
baby. Each kind of cells corresponds to a different pattern of activated
genes in the automaton.

In 1969 Stuart Kauffman proposed using Boolean networks for
modeling gene regulatory networks [3]. Each gene is represented by
a vertex in a directed graph. An edge from one vertex to another
implies a causal link between the two genes. The ”on” state of a
vertex corresponds to the gene being expressed. Time is viewed as
proceeding in discrete steps. At each step, the new state of a vertex
v is a Boolean function of the previous states of the vertices which
are predecessors of v.

We discovered that many problems related to Kauffman networks
are similar to the problems in logic synthesis and verification of
electronic circuits. For example, the problem of finding relevant
elements in Kauffman networks [4] is similar to the problem of
removing redundancy in sequential logic circuits [5]. The problem
of identifying state cycles in Kauffman networks [6] is related to the
problem of image computation in model checking [7].

After examining the state-of-the-art in Kauffman networks, we
found that existing methods for their analysis are quite immature
compared to the approaches used in logic synthesis and verification.
There are efficient techniques for removing redundancy from a circuit

with millions of gates [5] and for verifying finite state machines with
1020 states [8]. The programs available for computing state cycles in
Kauffman networks can only deal with networks with less than 32
relevant vertices [9], [10], [11], [12]. The number of genes in a cell
is often larger. For example, the tiny worm Caenorhabditis elegans
has 19.099 genes. A small flower in the mustard family, Arabidopis,
has 25.498 genes [13].

To bridge this gap, we developed algorithms for redundancy
removal and partitioning for Kauffman networks that have linear-
time complexity and are feasible for networks with millions of
vertices [14], [15], [16]. These algorithms are first steps towards
solving the more central problem of computing state cycles in large
Kauffman networks, which is addressed in this paper.

II. KAUFFMAN NETWORKS

In this section, we give a brief introduction to Kauffman networks.
For a more detailed description, the reader is referred to [17].

A. Definition of Kauffman Networks

Kauffman networks are a class of random nk-Boolean net-
works [18]. A random nk-Boolean network is a synchronous Boolean
automaton with n vertices. Each vertex has exactly k incoming edges,
assigned at random, and an associated Boolean function. Functions
are selected so that they evaluate to the values 0 and 1 with given
probabilities p and 1− p, respectively. Time is viewed as proceeding
in discrete steps. At each step, the new state of a vertex v is a Boolean
function of the previous states of the predecessors of v.

A Kauffman network is a random nk-Boolean network with k =
2 and p = 0.5, i.e. each vertex has two predecessors and Boolean
functions are assigned to vertices independently and uniformly at
random from the set of 16 possible 2-variable Boolean functions [19].
The state σvi of a vertex vi at time t +1 is determined by the states
of its predecessors vl and vr, i, l,r ∈ {1,2, . . . ,n}, as:

σvi(t +1) = fvi(σvl (t),σvr (t))

where fvi : {0,1}2 → {0,1} is the Boolean function associated to
vi. The vector (σv1(t),σv2(t), . . . ,σvn(t)) represents the state of the
network at time t. An example of a Kauffman network with ten
vertices is shown in Figure 1. We use “·”, “+” and “′” to denote the
Boolean operations AND, OR and NOT, respectively.

B. Frozen and chaotic phases

The parameters k and p determine the dynamics of the network.
For a given probability p, there is a critical number of inputs, kc,
below which the network is in the frozen phase and above which the
network is in the chaotic phase [20]:

kc =
1

2p(1− p)
. (1)

If a network is in the frozen phase, then, independently of the initial
state, a stable state is reached after a few steps [21]. Small changes
in network’s connections, states of vertices, or associated Boolean
functions, typically create no variations in the network’s dynamics.
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Fig. 1. Example of a Kauffman network. The state of a vertex vi at time t +1
is given by σvi (t +1) = fvi (σvl (t),σvr (t)), where vl and vr are the predecessors
of vi, and fvi is the Boolean function associated to vi.

In the chaotic phase, the length of state cycles is of order of 2n.
The dynamics of the network is very sensitive to changes in network’s
connections, states of vertices, or associated Boolean functions [22].

On the critical line between the frozen and the chaotic phases,
the network exhibits self-organized critical behavior, ensuring both
stability and evolutionary improvements [23]. Statistical features of
random nk-Boolean networks on the critical line are shown to match
the characteristics of real cells and organisms [3], [24], [17]. For
p = 0.5, the critical number of inputs is kc = 2, so Kauffman networks
are on the critical line.

Apart from gene regulatory networks, Kauffman networks have
been applied to the problems of cell differentiation [25], immune
response [26], and evolution [27]. They have also attracted the interest
of physicists due to their analogy with disordered systems studied in
statistical mechanics, such as the mean field spin glass [28].

C. Attractors

Since the number of possible states of a Kauffman network is
finite (up to 2n), any sequence of consecutive states of a network
eventually converges to either a single state, or a cycle of states,
called attractor. The number and length of attractors represent two
important parameters of the cell modeled by a Kauffman network.
The number of attractors corresponds to the number of different
cell types. For example, humans have 20.000-25.000 genes (the
exact number is not known yet) and about 250 cell types [29]. The
attractor’s length corresponds to the cell cycle time. Cell cycle time
refers to the amount of time required for a cell to grow and divide
into two daughter cells. The length of the total cell cycle varies for
different types of cells.

The human body has a sophisticated system for maintaining normal
cell repair and growth. The body interacts with cells through a
feedback system that signals a cell to enter different phases of the
cycle [30]. If a person is sick, e.g suffers from cancer, then this
feedback system does not function normally and cancer cells enter
the cell cycle independently of the body’s signals. The number and
length of attractors of a Kauffman network serve as indicators of
the health of the cell modeled by the network [6]. The sensitivity
of attractors to different kinds of disturbances, modeled by changing
the state of a vertex, the associated Boolean function, or a network
connection, reflects the stability of the cell to damage, mutations and
virus attacks.

In order to evaluate attractors, their number and length have to
be computed. This problem is the major problem in the analysis of

algorithm REMOVEREDUNDANT (V,E)
/* I. Simplification of vertices with one predecessor */
for each v ∈V do

if two incoming edges of v come from the same vertex then
Simplify fv;

/* II. Constant propagation */
R1 = Ø;
for each v ∈V do

if fv is a constant then
Append v at the end of R1;

for each v ∈ R1 do
for each u ∈ Sv−R1 do

Simplify fu by substituting constant fv;
if fu is a constant then

Append u at the end of R1;
Remove all v ∈ R1 and all edges connected to v;
/* III. Simplification of vertices with 1-variable functions */
for each v ∈V do

if fv is a 1-variable function then
Remove the edge (u,v), where u is the
predecessor of v on which v does not depend;

/* IV. Elimination of vertices with no outputs */
R2 = Ø;
for each v ∈V do

if Sv = Ø then
Append v at the end of R2;

for each v ∈ R2 do
for each u ∈ Pv−R2 do

if all ancestors of u are in R2 then
Append u at the end of R2;

Remove all v ∈ R2 and all edges connected to v;
end

Fig. 2. The algorithm for finding redundant vertices in Kauffman networks.

Kauffman networks, for which no efficient solution is found so far.
Available algorithms for exact computation of attractors can only
handle networks with less than 32 non-redundant vertices [9], [10],
[11], [12]. For larger networks, the median instead of the exact
values on the number of attractors is computed using the following
technique [12]. Repeatedly, an initial state is chosen at random
and the attractor reachable from this state is computed. If 1000
consecutive attempts yield no new attractor, the algorithm terminates.
The resulting number is used as a lower bound on the number of
attractors in the network.

III. REDUNDANCY REMOVAL

Redundancy is an essential feature of biological systems, ensuring
their correct behavior in presence of internal or external disturbances.
An overwhelming percentage (about 95%) of DNA of humans
is redundant to the metabolic and developmental processes. Such
“junk” DNA is believed to act as a protective buffer against genetic
damage and harmful mutations, reducing the probability that any
single, random offense to the nucleotide sequence will affect the
organism [31].

In the context of Kauffman networks, redundancy is defined as
follows. Let G = (V,E) be a Kauffman network, where V is the set
of vertices and E ⊆V ×V is the set of edges connecting the vertices.

Definition 1: A vertex v ∈V of a Kauffman network G is redun-
dant if the network obtained from G by removing v has the same
number and length of attractors as G.

If a vertex in not redundant, it is called relevant [9].
In [9], an algorithm for computing the set of all redundant vertices

was presented. This algorithm has a high complexity, and therefore
is only applicable to small Kauffman networks with up to a hundred
vertices. In [15], we presented an algorithm REMOVEREDUNDANT

(Figure 2), which quickly finds structural redundancy and some
simple cases of functional redundancy. The phases II and IV
of REMOVEREDUNDANT are similar to the decimation procedure
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Fig. 3. Reduced network GR for the Kauffman network in Figure 1.

of [11], although a detailed comparison is hard to do because no
pseudocode is shown in [11]. The ordering of the phases of the
algorithm is very important. For example, if the phase IV is performed
before the phase II, then usually less redundant vertices are found.

Let Pv = {u ∈ V | (u,v) ∈ E} be a set of predecessors of v ∈ V
and Sv = {u ∈V | (v,u) ∈ E} be a set of successors of v.

REMOVEREDUNDANT first checks whether there are vertices v
with two incoming edges coming from the same vertex. If yes, the
associated functions fv are simplified.

Then, REMOVEREDUNDANT classifies as redundant all vertices v
whose associated function fv is constant 0 or constant 1. Such vertices
are collected in a list R1. Then, for every vertex v ∈ R1, successors
of v are visited and the functions associated to the successors are
simplified. The simplification is done by substituting the constant
value of fv in the function of the successor u. If as a result of
the simplification the function fu reduces to a constant, then u is
appended to R1.

Second, REMOVEREDUNDANT finds all vertices whose associated
function fv is a single-variable function. The edge between v and the
predecessor of v which v does not depend on is removed.

Next, REMOVEREDUNDANT classifies as redundant all vertices
which have no successors. Such vertices are collected in a list R2.
For every vertex v ∈ R2, both predecessors of v are visited. If all
successors of some predecessor u ∈ Pv are redundant, u is appended
at the end of R2.

The worst-case time complexity of REMOVEREDUNDANT is
O(|V |+ |E|), where |V | is the number of vertices and |E| is the
number of edges in G.

As we mentioned before, REMOVEREDUNDANT might not identify
all cases of functional redundancy. For example, a vertex may have
a constant output value due to the correlation of its input variables.
For example, if a vertex v with an associated OR (AND) function
has predecessors vl and vr with functions fvl = σv j and fvr = σ′v j

,
then the value of fv is always 1 (0). Such cases of redundancy are
not detected by REMOVEREDUNDANT.

Let GR be the reduced network obtained from G by remov-
ing redundant vertices. The reduced network for the example
in Figure 1 is shown in Figure 3. Its state transition graph is
given in Figure 4. Each vertex of the state transition graph rep-
resents a 5-tuple (σ(v1)σ(v2)σ(v5)σ(v7)σ(v9)) of values of states
on the relevant vertices v1, v2, v5, v7, v9. There are two attrac-
tors: {01111,01110,00100,10000,10011,01011}, of length six, and
{00101,11010,00111,01010}, of length four. By Definition 1, by
removing redundant vertices we do not change the total number and
length of attractors in a Kauffman network. Therefore, GR has the
same number and length of attractors as G.

IV. PARTITIONING

The vertices of GR induce a number of connected components.
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Fig. 4. State transition graph of the Kauffman network in Figure 3. Each
state is a 5-tuple (σ(v1)σ(v2)σ(v5)σ(v7)σ(v9)).

Definition 2: Two relevant vertices are in the same component if
and only if there is an undirected path between them.

A path is called undirected if it ignores the direction of edges.
Connected components can be computed in O(|V |+ |E|) time,

where |V | is the number of vertices and |E| is the number of edges
of GR, using the following algorithm [32]. To find a connected
component number i, the function COMPONENTSEARCH(v) is called
for a vertex v which has not been assigned to a component yet.
COMPONENTSEARCH does nothing if v has been assigned to a
component already. Otherwise, COMPONENTSEARCH assigns v to
the component i and calls itself recursively for all predecessors and
successors of v. The process repeats with the counter i incremented
until all vertices are assigned.

In [16], we have shown that attractors of a Kauffman network can
be computed compositionally from the attractors of the connected
components of GR. Let {G1,G2, . . . ,Gp} be the set of components
of GR, Ni be the number of attractors of Gi, Li j be the length of the
jth attractor Gi and I = I1× I2× . . .× Ip be the Cartesian product of
sets Ii = {i1, i2, . . . , iNi}, i = {1,2, . . . , p}, j = {1,2, . . . ,Ni}. Then, the
total number of attractors in GR is given by

N = ∑
∀(i1,...,ip)∈I

p

∏
j=2

(((L1i1 •L2i2)•L3i3) . . .•L j−1i j−1)◦L ji j

where ”•” is the least common multiple operation and ”◦” is the
greatest common divisor operation. The maximum length of attractors
is given by

Lmax = max
∀(i1,...,ip)∈I

((L1i1 •L2i2)•L3i3) . . .•Lpip

where ”•” is the least common multiple operation.

V. COMPUTATION OF ATTRACTORS

To be able to compute attractors in a large Kauffman network, it
is important to use an efficient representation for its set of states, and
for the transition relation on this set. In our current implementation,
we use Reduced Ordered Binary Decision Diagrams (ROBDDs) [33].

A transition relation defines the next state values of the vertices in
terms of the current state values. We derive the transition relation in
the standard way [8], by assigning every vertex vi of the network a
state variable xvi and making two copies of the set of state variables:
s = (xv1 ,xv2 , . . . ,xvr ), denoting the variables of the current state, and
s+ = (x+

v1
,x+

v2
, . . . ,x+

vr
), denoting the variables of the next state. Using
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this notation, the characteristic formula for the transition relation of
a Kauffman network is given by:

T (s,s+) =
r∧

i=1

(x+
vi
↔ fi(xvi1

,xvi2
)),

where r is the number of relevant vertices, fi is the Boolean function
associated with the vertex vi and vi1 and vi2 are the predecessors of
vi.

As an example, consider the reduced Kauffman network in Figure 3
and its state transition graph in Figure 4. We have s = (xv1 ,xv2 ,
xv5 ,xv7 ,xv9) and s+ = (x+

v1
,x+

v2
,x+

v5
,x+

v7
,x+

v9
). The transition relation is

given by:

T (s,s+) = (x+
v1
↔ x′v7

)∧ (x+
v2
↔ xv9)∧ (x+

v5
↔ xv2)

∧ (x+
v7
↔ (xv1 + xv9))∧ (x+

v9
↔ x′v5

).

Let T i(s,s+) denote the transition relation describing the set of
next states s+ that can be reached from any current state s in exactly
i steps. For i = 2, T 2(s,s+) is computed as follows:

T 2(s,s+) = ∃s++.(T (s,s++)∧T (s++,s+)).

By applying squaring iteratively, we can obtain T 2i
(s,s+) in i steps

for any i [34].
On one hand, for any Kauffman network with r relevant vertices,

it cannot take more than 2r steps to reach an attractor from any state.
One the other hand, “overshooting” is not a problem because, once
entered, an attractor is never left. Therefore, for any initial state s,
the next state s+ obtained by the transition defined by T 2r

(s,s+) is
a state of an attractor.

Let Fi(s) denote the set of states reachable from a given set of
initial states in i steps. Using the transition relation T 2r

(s,s+), we
can compute the set of states F2r (s) that can be reached from any
state in 2r steps as:

F2r (s+) = ∃s.T 2r
(s,s+).

F2r (s+) represents the set of states of all attractors. It remains
to distinguish between different attractors. This can be done by
simulation as follows. An arbitrary state σ of F2r (s+) is picked up and
the sequence of σ’s next states is followed until σ is reached again.
The sequence of visited states represents an attractor. This process is
repeated starting from a state of F2r (s+) not visited yet until F2r (s+)
is covered.

Our simulation results show that the number and lengths of
attractors in a Kauffman network with n vertices are of order of

√
n.

Therefore, the number of states in F2r (s+) is of order of
√

n ·√n = n.
Thus, enumerating all states of F2r (s+) is feasible in practice.

VI. SIMULATION RESULTS

This section shows simulation results for Kauffman networks of
sizes from 10 to 107 vertices (Table I). Column 2 gives the average
number of relevant vertices computed using REMOVEREDUNDANT.
Column 3 shows the average size of the largest connected component
of the subgraph GR induced by the relevant vertices and column
4 gives the average number of components. Column 5 shows the
average number of attractors.

The simulation results show that we need to find a better way
of partitioning. Currently, the size of the largest component of the
subgraph induced by the relevant vertices (column 3) is Θ(r), where
r is the number of relevant vertices in the subgraph, i.e. we observe
so called “giant” component phenomena [35]. A technique resulting
in a more balanced partitioning is needed.

total average average average average
number number of size of number number

of relevant the largest of of
vertices vertices component components attractors

10 5 5 1.1 2.67
102 25 25 1.4 11.7
103 93 92 1.8 23.9∗
104 270 266 2.4 -
105 690 682 3.1 -
106 1614 1596 3.7 -
107 3502 3463 4.3 -

TABLE I
SIMULATION RESULTS. AVERAGE VALUES FOR 1000 NETWORKS.

Another problem is that, on random graphs, ROBDDs blow up
more frequently than on sequential circuits. Currently, we cannot
compute the exact number of attractors in most networks with 103

vertices and larger. The number of attractors shown in column 5 for
networks with 103 vertices (marked with ”∗”) is the average value
computed for successfully terminated cases only. We did have occa-
sional blow ups for networks with 100 vertices as well. The number
of attractors shown in column 5 for networks with 100 vertices is the
average value computed for 1000 successfully terminated cases. In
our future work, we plan to investigate possibilities for implementing
the algorithm presented in Section V using Boolean circuits [36],
[37], [38], [39], rather than ROBDDs, and combined approaches [40],
[41]. We will also try reducing the state space by detecting equivalent
state variables [42] and by partitioning the transition relation [43].

VII. APPLICATIONS

In this section we present some ideas on how Kauffman networks
can be used for implementing Boolean functions and for achieving
fault-tolerance. The ideas we describe are preliminary, more research
is needed to justify them.

A. Implementing logic functions by Kauffman networks

An interesting direction of research is investigating how Kauffman
networks can be used for implementing logic functions. One possi-
bility is to use the states of relevant vertices of a network to represent
variables of the function, and to use the attractors to represent the
function’s values.

To be more specific, suppose that we have a Kauffman network
G with r relevant vertices v1, . . . ,vr and m attractors A1,A2, . . . ,Am.
The basins of attractions of Ai’s partition the Boolean space Br into
m connected components. We assign a value i, i ∈ {0,1, . . . ,m− 1}
to the attractor Ai and assume that the set of minterms represented
by the states in the basin of attraction of Ai is mapped to k. Then, G
implements the function f : {0,1}r → {0,1, . . . ,m− 1} of variables
x1, . . . ,xr, where the value of the variable xi corresponds to the state
of relevant vertex vi. The mapping is unique up to permutation of m
output values of f . If m = 2, then G implements a Boolean function.

As an example, consider the Kauffman network G shown in
Figure 5. The vertices v4 and v5 are relevant vertices, determining the
dynamic of G according to the reduced network in Figure 6(a). The
state transition graph of the reduced network is shown in Figure 6(b).
There are two attractors, A1 and A2. We assign the logic 0 to A1 and
the logic 1 to A2. The initial states 00,01 and 10 terminate in the
attractor A1 (logic 0) and the initial state 11 terminates in the attractor
A2 (logic 1). So, G implements the 2-input Boolean AND.

481

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 05:35 from IEEE Xplore.  Restrictions apply.



0

v1

σv3σv5

v0

v4

v7

v5v2

v6

1

v3

σ′v6
σv7

σ′v1
+σv2

σv2 +σv3

σv4 +σ′v5

σ′v2
+σv7

Fig. 5. Example of a network implementing the 2-input AND.

B. Stability

Extensive experimental results confirm that Kauffman networks are
tolerant to faults, i.e. typically the number and length of attractors
are not affected by small changes [24], [17]. The following types of
fault models are used to model the effects of diseases, mutations, or
injuries on a cell:

• a predecessor of a vertex v is changed, i.e. the edge (u,v) is
replaced by an edge (w,v), v,u,w ∈V ;

• the state of a vertex is changed to the complemented value;
• Boolean function of a vertex is changed to a different Boolean

function.

On one hand, the stability of Kauffman networks is due to the large
percentage of redundancy in the network. Θ(n−√n) of n vertices
are typically redundant. On the other hand, the stability is due to the
non-uniqueness of the network representation. The same dynamic
behavior can be achieved by many different Kauffman networks. For
instance, the 2-input AND gate could be implemented in many other
ways than the one shown in Figure 5. For example, the reduced
network in Figure 7 has the same state transition graph as the one in
Figure 6.

C. Evolvability

An essential feature of living organisms is their capability to adapt
to a changing environment. Kauffman networks have been shown to
be successful in evolving to a predefined target function.

As an example, suppose that the following three mutations are
applied to the network in Figure 5:

1) edge (v4,v5) is replaced by (v3,v5);
2) edge (v2,v3) is replaced by (v3,v3);

(a) (b)

00

01

10

11A1

v4 v5

σv5

A2

σv4 +σ′v5

Fig. 6. (a) Reduced network for the Kauffman network in Figure 5. (b)
Its state transition graph. Each state is a pair (σ(v4)σ(v5)). There are two
attractors: A1 = {01,10} and A2 = {11}.

σv4 σv5

v4 v5

σv5

Fig. 7. An alternative reduced network for the 2-input AND.

(b)(a)
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00

11
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v5v3

σ′v3
+σv5

σv3 +σ′v5

Fig. 8. (a) Reduced network for the Kauffman network in Figure 5, after
three mutations described in Section VII-C have been applied. (b) Its state
transition graph. Each state is a pair (σ(v3)σ(v5)). There are two attractors:
A1 = {01,10} and A2 = {00,11}.

3) edge (v7,v3) is replaced by (v5,v3).
After removing redundant vertices from the resulting modified net-
work, we obtain the reduced network shown in Figure 8. Its state
space has two attractors, A1 and A2. If we assign the logic 0 to A1
and the logic 1 to A2, then the initial states 00 and 11 terminate in 1,
while 01 and 10 terminate in 0. So, the modified network implements
the 2-input Boolean XNOR.

The example given above is intended to demonstrate that an
evolution from one functionality to another is possible.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a set of algorithms for the analysis of Kauffman
networks. Redundancy removal and partitioning algorithms have been
presented previously in [14], [15], [16]. The algorithm for computing
attractors is a new contribution, as well as the proposed applications.

We would like to stress that the major challenge is the size
of the networks we are targeting. Small Kauffman networks are
of theoretical interest only. They cannot adequately model gene
interactions of living cells. We aim at developing a practical software
package, applicable to real world size problems.

A software package that can model gene interactions is of primary
importance to biology and medicine. Such a package will provide a
framework for obtaining simulation results that can be independently
evaluated by in vivo experiments. It can be used for various purposes,
including:

1) to study the effects of diseases, mutations, or injuries on a cell;
2) to infer gene interactions that produce abnormal cells, e.g.

cancer;
3) to understand the process of aging of a cell over time.

In the future, we will also investigate possibilities for enhancing
Kauffman networks as a model. Kauffman networks have a number
of drawbacks. First, input connectivity of gene regulatory networks is
much higher than k = 2. For example, it is more than 20 in β-globine
gene of humans and more than 60 for the platelet-derived growth
factor β receptor [17]. We will consider networks with a higher input
connectivity k and a smaller probability p, satisfying the equation
(1).

Second, using Boolean functions for describing the rules of regula-
tory interactions between the genes seems too simplistic. It is known
that the level of gene expression depends on the presence of activating
or repressing proteins. However, the absence of a protein can also
influence the gene expression [17]. Using multiple-valued functions
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instead of Boolean ones for representing the rules of regulations could
be a better option.

Third, the number of attractors in Kauffman networks is a function
of the number of vertices. However, organisms with a similar number
of genes may have different numbers of cell types. For example,
humans have 20.000-25.000 genes and more than 250 cell types [29].
The flower Arabidopis has a similar number of genes, 25.498, but
only about 40 cell types [44]. We will investigate which other factors
influence the number of attractors.

As a longer-term goal, we will attempt to develop a computing
scheme based on the principles of gene interactions. A living cell is,
essentially, a molecular computer that configures itself as part of the
execution of its code. By understanding how genes interact with each
other, we might find a way to build a novel type of computer chips.
As silicon transistor technology approaches nano-meter dimensions
and its speed and integration slow down, the need for new ways of
computing becomes more and more evident.
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