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Dedicated to my 94-year-old grandmother Margit Forslund who
had a stroke a few days ago.
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Outline of Talk

® Introduction

® Repulsion = local exclusion principle

© Local uncertainty principle

O General Lieb-Thirring type inequalities

® Applications to various interactions
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The interacting Bose gas

N-particle Hamiltonian with repulsive pair interaction W (x):

N

Ay =T+V+W =) (-8 +V(z))+ Y Wim;—xp),
Jj=1 1<j<k<N

acting on normalized ¢ € L2, (R™N). 2 — 1,

sym 2m

Total energy in the state ¥:

E[] = (¢, Hy) = Ty + Vi + Wy,
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Local particle density

The one-particle density associated to :

N
py(x) = Z/ (1, Tj1, T, T, TN H dxy,
j=1 TR ki

Normalized [pq py = N,
Jo v = expected number of particles on Q C R,
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Local particle density

The one-particle density associated to :
N

py(x) = Z/ (1, Tj1, T, T, TN H dxy,
j=1 TR ki

Normalized [pq py = N,
Jo P = expected number of particles on @ C R,

AIM: Replace functionals of ¢ € L2(R%) (where N — o0)
by functionals of p,, € L'(R%)
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The dilute gas (3D)

Dilute limit ap — 0 while N — oo

Lieb-Thirring bounds for interacting Bose gases Slide 6/28



The dilute gas (3D)

Dilute limit ap — 0 while N — oo

Gross-Pitaevskii limit: Na/L ~ const. =
= Eepldols  pyol(@) = |go(a)]?,

(Vo]
Ecpld] = / (IV[? + VIg[? + dmalg") d / 62 =
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The dilute gas (3D)

Dilute limit ap — 0 while N — oo

Gross-Pitaevskii limit: Na/L ~ const. =
Elo] = Ecpldo),  pyo(®) = |o(@)]%,
o 2 2 2
Eaplo] = [ (Vo + VIO + dmalo’ / 0f2 =
‘Thomas-Fermi’ limit: Na/L — oo =
Elho] = Etelpol,  pyo = pos
Etelp] == / (Vp + 4rap?) da, / p=N, p>0
R3 R3

Rigorous treatments first by Dyson 1957 (hard-sphere & V' = 0),
more recently and generally by Lieb, Yngvason, Seiringer, ...
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Pauli repulsion and energy inequalities

Pauli exclusion: say q¢ € N particles allowed in each one-particle
state of H} = —Apa + V(x)

= Lieb-Thirring inequality:  (Lieb, Thirring, 1975)
N
Hypasi =T +V = Z (=4 + V(z;))

j=1 oo

d
> =Yl = —aCa [ V@) i
k=0

& kinetic energy inequality:  (cf. Thomas-Fermi)

!/

N
c 2
Ty = Ejv 2d >—d/ a4q
v /Rde:1| e 2 ¢*d dew(:c) o
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Pauli repulsion and energy inequalities

Pauli exclusion: say q¢ € N particles allowed in each one-particle
state of H} = —Apa + V(x)

= Lieb-Thirring inequality:  (Lieb, Thirring, 1975)

N
Hypasi =T +V = Z (=4 + V(z;))
j=1 oo

d
> 03 2 o [ V@) de
k=0 Re
& kinetic energy inequality:  (cf. Thomas-Fermi)

N
c’ 2
Ty = Ejv 2d >—d/ a4q
v /]Rdezll e 2 ¢*d dew(w) o

Bosons: ¢ = N — oo = trivial bounds
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Energy inequalities for repulsive Bose gases

Replace Pauli repulsion by W.
Examples of new energy inequalities:  (pL, Portmann, Solovej, 2014)

For hard-sphere gas, W = W) with diameter a > 0, in 3D:

Ty + Wy > C’/3min{apw(m)2,p¢(m)5/3}dm

R

cp. E[to]/Vol — 4map? as a®p — 0
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Energy inequalities for repulsive Bose gases

Replace Pauli repulsion by W.
Examples of new energy inequalities:  (pL, Portmann, Solovej, 2014)

For hard-sphere gas, W = W) with diameter a > 0, in 3D:

Ty + Wy > c’/

min {apw(m)2, p¢(m)5/3} dx
R3

cp. E[to]/Vol — 4map? as a®p — 0

For hard disks, W = Wc';‘d, a>0,in 2D:

Ty+ Wy > C”’/ pu(@)’ da
= O Jea ¥ (Cin(app@) 22)),

cp. Efbo]/Vol — 4mp?/[Ina?p| as a®p — 0



Main idea: Local exclusion principle

Consider a d-dimensional box @, and the local energy (T + W)g =

N
Z/RdN XQ(mj) |V]'¢J|2 ZW i — x) |’(,ZJ|2 dx.
j=1

ksﬁj
If W > 0 then

N
(T+W)3 > Enpn(Q),
n=0

where E,(|Q]; W) is the g.s. energy for n particles on @ with
Neumann b.c., and p,,(Q) the n-particle probability distribution,

N N
n =1, n Pp, = .
> m(@ > @) /Q Py
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Local exclusion for fermions

cp. Dyson, Lenard, 1967

Let 1 € A" L?(R?) be a wave function of n fermions and let ) be
a d-cube. Then

VP > (n— 1)~ / W2 da,
/ DL o

hence e, > (n — 1) .72, where e, := |Q|*/E,, (convenient ren.).
It follows that

2
(T + WPauIi)g > |Qﬂ|-2/d (/Q p¢($) dx — 1)+ .
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Local exclusion for anyons/intermediate statistics

DL, Solovej, 2011-2013
Anyons (abelian) with interchange phase e®™ € U(1):

en(|@Q|; n-anyon interaction) > (n — 1)41.C,
Lieb-Liniger intermediate statistics, Wi (x) = ndé(x), n > 0:

en(1Ql; WiL) > (n— 1)1 & (n|@Q))?

Lemma (Local exclusion principle in terms of p)

Q e(v) o) da —
T+ W)} > 20 (/QM )d 1)+,

where for anyons e(y) = Co = const.
and for Lieb-Liniger e(7y) = &11(y)? concave in v = 1|Q).
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Local exclusion for pair-interacting repulsive Bose gas

Using

Lemma (n-interaction in terms of pair-interaction)

For W > 0 one has

—_

en(|Q W) = 362(|Q|;(n—1)W) > S(n=1iea(|QLW)

[\

where ex(|Q|, A\W') is monotone increasing and concave in A > 0.

4

one obtains

Theorem (Local exclusion principle in terms of p)

Q - le(lQW) o) dop —
rew)g > 2 (/pr( )d 1)+,
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Local uncertainty principle

Combine exclusion with uncertainty

Lemma (Local uncertainty principle)

Let 1) be an N-particle wave function on R?, and Q a d-cube with
volume |Q|. Then

1+2/d
95 prw /4 d _szQp¢dm
YT T (Jgpy da)?d Q4

where the constants c1,cy > 0 only depend on d.

Idea of proof: [ |V./py|? and Poincaré-Sobolev inequality on @
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General Lieb-Thirring type inequalities

General assumptions on W:

Assumption 1 (Local exclusion)

Given W, there exists a function e(y) with
1(QD = 7IQI*™, a7 >0,

where e(7y) is monotone increasing and concave in vy with e(0) = 0,
such that for any finite cube ), any N > 1 and all normalized
Y € HY(R) the local energy satisfies

(T +W)3 %{g%@(LMp—Q+
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General Lieb-Thirring type inequalities

General assumptions on W:

Assumption 2 (Local uncertainty)

Given W, there exist o > 0 and constants S1,So > 0 such that for

any finite cube Q, any N > 1 and all normalized 1) € H'(R) we
have

Jory 2 o Joru
51 ArRL S [QPR/d° for0 <a <2,

T+ W) > a2l
( )1/; (fQ p11p+ /d) 5 fobu
1(fQ py)2/aF2/d=1 - 2|Q|2/d7

for v > 2.
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General Lieb-Thirring type inequalities

We also need a boundedness assumption on e(7),
QK(FY) = min{e(f)/)?K}a K > Oa

(arbitrarily strong exclusion cannot be matched by uncertainty)

Theorem (Lieb-Thirring inequality)

Let W satisfy Assumption 1 & 2 with an « > 0 and e replaced by
ey - Then there exists an explicit constant Cq o > 0, such that
for any N > 1 and all normalized ) € H'(R), the total energy
satisfies the bound

Ty+Wy = Caax /Rd ex (7(2/py(@))) py(a) T da.

DL, Portmann, Solovej, 2014
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Proof uses a splitting algorithm

cp. DL, Solovej, 2011-2013

Qo0
A A
A A
AlA
AABB A A A A BABA
A A B A AAAB

Split a cube Qp C R? recursively until each sub-cube contains ~ 2
particles (B) or < 2 particles (A). Apply local uncertainty on every
cube with non-constant density. Apply local exclusion on B-cubes,
which also cover for A-cubes with ~constant density.
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Proof cont.

The cases 0 < @ < 2 and « > 2 reverse the roles of monotonicity
and concavity of e(vy). The latter requires stronger uncertainty.

Lemma (Combining exclusion and uncertainty)

Let e(y) be as in Assumption 1, and p := [, p/|Q|. For0 < a <2,

/626(7(2/ PP < e((2/)) ( /Q preid 4 /Q P1+2/d> ,

while for o > 2,

e(y(2/p)p T < e(v(@/p) ( [ AT [ el ).
Q Q Q )

k
1Q;1~*%e(v(1Q;1)) 1
Plus, for A-cubes Q;: < - '
! ; 1Qp|~2/de(v(|Qg])) ~ 1 — 2 min{a2}
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Application: Inverse-square repulsion

For W(zx) = Wy/|z|?, Wy > 0:
e2(|Q); W) = const.(Wp) =: e,

SO
Ty + Wy > Cd,27ee/ p¢($)1+2/d dex.
R4

Proceeding as in the case of fermions =
T+W+V> —C’/ V|42 dg,
Rd
which e.g. can be applied to additional Coulomb interactions

(= nearest-neighbour V') to prove thermodynamic stability for
charged bosons with inverse-square repulsive cores.

Lieb-Thirring bounds for interacting Bose gases Slide 19/28



Application: Lieb-Liniger model

Interaction: Wi (z) =nd(x), n >0

Proposition:

ea(|Ql WiL) > &uL(n|@Q))? =t e(v),

2—a)/d

bounded and concave with v = 7|Q|( , a=1.

Theorem /Corollary:

T+ Wiy = Cin [ 6u(20/po@)? pola)’ do.
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Application: Lieb-Liniger model

Interaction: Wi (z) =nd(x), n >0
Proposition:

ea(|Ql WiL) > &uL(n|@Q))? =t e(v),

bounded and concave with vy = 7|Q|(?~)/? o = 1.

Theorem /Corollary:

T+ Wiy = Cin [ 6u(20/po@)? pola)’ do.

CrL = Cp 142 2 1077 (far from optimal).
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Application: Hard sphere interaction

+00, lz|] < a,

Hard sphere: W"s(x) = { 0 2| > a

Proposition: (proof uses Dyson's Lemma)

2

ea(|Q W) 2 it =+ ()

i.e. linear in v = a|Q|?~®/4 o = 3. Use ejr_2(7).

Theorem /Corollary:

Chs = 0373“2 Z 10_6.
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Application: Power-law interaction in 3D

Interaction Ws(x) = Wolz| =" in d = 3.
For $ > 3 it has finite scattering length

1/(8-2) r(5=
ag = Ag <%> ,  where Ag := <B j>

Theorem /Corollary: For > 3 we have

5 \2/(6-2)
(552)

Wik = Chs/smi“{CAﬁlaﬁPw(w)Qaﬂ2pw(ar)5/3}dm,

R

¢ > 0.137 a constant.
For B — oo with Wy = a®~2 this reduces to the hard-sphere case.

For 8 — 3 it reduces to a simple bound involving Aglaﬁ — Wy/2.
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Counterexamples

Bounds of the form obtained for W33 cannot hold for sufficiently
regular potentials:

Proposition (Locally integrable potentials)

Let W € LY (R3) for some p > 3/2 and scattering length ay > 0
(possibly infinite). If there exists a constant C' > 0 such that the
inequality

T+ W)y 2 C [ minfawpy @), pu(@)?} da

holds for all v» € HY(R3*N) and N > 1, then C = 0.
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Counterexamples

For 0 < a < R and Wy > 0 let us define

+o0,  |z| <a,
Weor(x) = ¢ W, a < |z| <R,
0, lx| > R,

a modified hard-sphere interaction with scattering length ay > a.

Proposition (Skew potentials)
Let W = W, gr. Assume that for some constant C' > 0,

T+ W)y = C [ minfawpy(@). pu(@)?} da

holds for all ) € H*(R3N) and N > 1. We allow C to depend on
aw > 0 but not on the details of W (i.e. a, Wy, and range R).
Then C' = 0. )
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Application: Hard disk interaction

too,  |z[<a,

L. irhd oy
Hard disk: W (z) = { 0, |z > a.

Proposition: (proof uses Dyson's Lemma in 2D)

2
62(‘Q’;W;d) 2 2+ (_ In (2_1/27))4_ =: 6(7)7

bounded and concave in y = a|Q|?~%/4, o = 3.
Theorem /Corollary:

2
dx,

2py(x)
(T+ W)y 2 Cha /R 2+ (~In(apy(@)1?/2)),

Cha = 02’3’1 Z 10710,
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Application: Power-law interaction in 2D

Interaction Ws(x) = Wol|z| =" in d = 2.
For # > 2 it has finite scattering length

W 1/(8-2) _ 9 \2/(-2)
ag == | 5 ,  where Eg := m

Theorem/Corollary: For § > 2 we have

(x)>
(T'+Ws)y > Chd /Rz G+ <—ln (2—[)11;;%%(%)1/2))

dx,
_l’_

(2 > 2.24 a constant.

For 3 — oo with Wy = a®~2 this reduces to the hard-disk case.
For 5 — 2 and W) sufficiently large it reduces to the Lieb-Thirring
inequality.
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Application: Relativistic bosons

Relativistic bosons with Coulomb repulsion:

<w, ZF*&:%—;BM >>C/ z)'H da,

i<k

for d > 2.

Use fractional Poincaré-Sobolev inequalities for local uncertainty
and an elementary bound for exclusion.
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