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Outline of Talk

@ Fractional statistics in 2D and the emergence of anyons

® An average-field theory for almost-bosonic anyons

© Local exclusion principle and universal energy bounds

® Anyons in a harmonic trap and many-anyon trial states
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Identical particles and statistics in 2D

Particle exchange in 2D: ¥ € L2((R%)N) =~ Q L2(R2)
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Identical particles and statistics in 2D

Particle exchange in 2D: ¥ € L2((R%)N) =~ Q L2(R2)

U(X1,. .3 Xj, oo, Xy o e oy XN) :em”\I/(xl,...,xk,...,xj,...,xN)

k e’®™ € U(1) any phase
PR e \ ------- : o =0: bosons
S Xj Xk ¢ a=1: fermions

Recent studies of anyons Slide 3/24



Identical particles and statistics in 2D

Particle exchange in 2D: ¥ € L2((R%)N) =~ Q L2(R2)

U(X1,. .3 Xj, oo, Xy o e oy XN) :em”\I/(xl,...,xk,...,xj,...,xN)

K e’®™ € U(1) any phase
PR e \ ------- : o =0: bosons
S X5 Xk ¢ o =1: fermions

anyons: ‘fractional’-statistics quasiparticles in confined systems
— expected to arise in fractional quantum Hall systems

~1970 Souriau, Streater & Wilde ...  Leinaas & Myrheim '77; Goldin, Menikoff & Sharp '81; Wilczek '82 ...
Reviews by  Frohlich '90, Wilczek '90, Lerda 92, Myrheim '99, Khare '05, Ouvry '07, Stern '08, ...

Past rigorous QM studies by  Baker, Canright & Mulay '93,  Dell'Antonio, Figari & Teta '97
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How to create an anyon in the lab?
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How to create an anyon in the lab?

e Need several particles!
e Need 2D!
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

Zj eC
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

e Two species of particles in a plane (bosons or fermions)
e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state

U(z,w) = 0(z)c(z) [J(z — wi) [J(wi — wye)" e B/

3k i<k
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

Zj eC

e Two species of particles in a plane (bosons or fermions)
e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state

‘II(Zv W) = (I'(Z)C(Z) H(z] - wk) H(wl — wk)n €_B|W|2/4
Jik i<k
= Effective Hamiltonian for ® with a reduced magnetic field and
a=ap—1/n
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Modelling anyons mathematically — anyon gauge

€i2pa7r ei(2p+1)a7r
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Modelling anyons mathematically — anyon gauge

1

Think: free kinetic energy Ty = % ;yzl(—ivj)Q acting on multi-valued

U, = UQ\DO, U .= Hez¢]k_H Rj T Rk

i<k <k |ZJ o Zk’

€i2pa71' ei(2p+1)a7r
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Modelling anyons mathematically — magnetic gauge

Bosons (U € L2

Sym) in R? with Aharonov-Bohm magnetic interactions:

2 _ Xk)J‘
D} D;=—iVj+aA;, A, Z

_ 2
j=1 poy |XJ x|
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Modelling anyons mathematically — magnetic gauge

Bosons (U € L2,) in R? with Aharonov-Bohm magnetic interactions:

sym
. 2 N i
D,= 1S D2 D= iV, oA, A=Y TN
m = Ix;j — x|
j=1 k#j
These are ideal anyons. One can also model R-extended anyons:
(xj — xx) "
Aj(x)) = Z mv x| == max{|x], R}
k#j Y
= curlaA; = 2#@2 i’}{;k 20 ora Zéxk
k#j k#j
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Modelling anyons mathematically — magnetic gauge

Bosons (U € L2,) in R? with Aharonov-Bohm magnetic interactions:

sym
R i)
TQZI%ZDJ', D :—zV +aA.J, A ZlXJ——XkP
j=1 k#j
These are ideal anyons. One can also model R-extended anyons:
(xj — xx) "
Aj(xj) =) —"%,  |x|r:=max{|x|, R}
 [x; — Xy
k#j
1
= curlaA; = 2#@2 i’}{;k B0 9ra Zéxk
k#j k#j

We would like to understand the N-anyon ground state ¥y and energy

Eo(N) :=infspec Hy, Hyx=To+V = Z ( D} + V(x]))
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Compare with the ideal Fermi gas in 2D

Know: ¥y = /\kN:_ol Ok @i lowest states of Hj = —Ag2 + V/(x)

Recent studies of anyons Slide 8/24



Compare with the ideal Fermi gas in 2D

Know: ¥y = /\]kV:_O1 Ok @i lowest states of Hj = —Ag2 + V/(x)
The free Fermi gas in a box Q C R?:

N—

Eo(N)= > N ~2r (N/|Q))?Ql,

—_

o
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Compare with the ideal Fermi gas in 2D

Know: ¥y = /\]kV:_O1 Ok @i lowest states of Hj = —Ag2 + V/(x)
The free Fermi gas in a box Q C R%:

N—

Eo(N)= > N ~2r (N/|Q))?Ql,

—_

o

= ThomaS—Fermi apprOXimation: (Thomas, Fermi, 1927 — precursor to modern DFT)

(W, (Taz1 + V)W) ~ /R2 (27TQ\I/O(X)2 + V(X)Q%(X)>dx
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Compare with the ideal Fermi gas in 2D

Know: ¥y = /\]kV:_Ol Ok @i lowest states of Hj = —Ag2 + V/(x)
The free Fermi gas in a box Q C R%:

N—

Eo(N)= > N ~2r (N/|Q))?Ql,

—_

o

= Thomas—Fermi approximation: (Thomas, Fermi, 1927 — precursor to modern DFT)
(W, (Tas + V) W0) ~ /R (2row0? + V(x)oufx) ) dx
The Lieb—Thirring inequality: (Lieb, Thirring, 1975)
(W, (T + V)W) > /R (v 0u)? + V(<) 0u(x) ) dx
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Compare with the ideal Fermi gas in 2D

Know: ¥y = /\]kV:_Ol Ok @i lowest states of Hj = —Ag2 + V/(x)
The free Fermi gas in a box Q C R%:

N-1
Eg(N) = > A ~2ru(v ' N/IQ))*IQ),
k=0 o

= ThomaS—Fermi apprOXimation: (Thomas, Fermi, 1927 — precursor to modern DFT)

<\I/0, (Tazl + V)\If0> ~ /

o (QWV’lgq/o(xP + V(%) g%(x)> dx

The Lieb—Thirring inequality: (Lieb, Thirring, 1975) |V part.s in each state|

(U, Ty + V)T > /R 2 (CLT v og(x)? + V(x)g@(x))dx
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Average-field approximation

(see e.g. Wilczek 1990 review)
For anyons one may consider an average-field approximation

Bo(V) % inf [ (2rfalo)? + Vx)ot) )ax

Jo=N

where B = curl A =~ 2map with LLL energy/particle ~ |B].
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Average-field approximation

(see e.g. Wilczek 1990 review)
For anyons one may consider an average-field approximation

0>0

Eo(N) ~ inf /R2 (27r\a|g(x)2 + V(x)g(x))dx
Jo=N

where B = curl A =~ 2map with LLL energy/particle ~ |B].
A particular almost-bosonic limit & = [3/N leads to

£98[u] = /R (1(=i7 + BALPY uf* + VIuP), e H'®)

where curl A[|u|?] = 27|u|? and /3 the only parameter. oL, rougerie, 2015
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Average-field approximation for almost-bosonic anyons

Continued study of the average-field functional £%[u] is work in
progress with M. Correggi, R. Duboscq and N. Rougerie.
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A local exclusion principle for anyons

oh 1.1}
Recall: 2-particle exchange phase (2p + 1)« times .
But anyons can also have pairwise relative angular momenta +2gq.

€i2pom' ei(2p+1)a7r
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A local exclusion principle for anyons
oh I |

Recall: 2-particle exchange phase (2p + 1)« times .
But anyons can also have pairwise relative angular momenta +2gq.

= effective statistical repulsion bt solovej, 2013

€i2pom' ei(2p+1)a7r

2 1 O‘?V
Vetar(r) = [(2p + 1) — 24" 5 > —5
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A local exclusion principle for anyons

[e%

00 02 04 06 0.8 1.0

a = min 20+ 1o — 2
N pE{O,l,.,.,N—Q}JIEZ‘( P ) q|

{ 1 if a =L is a reduced fraction with ;1 odd,

0 otherwise.
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Extended case

We use a magnetic Hardy inequality with symmetry
(cf. Laptev, Weidl, 1998; Hoffmann-Ostenhof?, Laptev, Tidblom, 2008; Balinsky...)
to consider the enclosed flux inside a two-particle exchange loop
subtracted with arbitrary pairwise angular momenta. Unwanted
oscillation can be controlled by smearing (but analysis is tricky!)

1 _ @) 2
Vatar(r) = plr) 5, p(r) =min)| = = — 2
p /\ /\
a=1/3 EAVARER'REIRIL R
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Extended case (clustering)

a=2/3 r
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Universal bounds for the extended anyon gas

L L L
0.001 0.010 0.100

Theorem: [Larson, DL, 2016]

. . o(N) _ —\ _
.t —_— > =
There exists C' > 0 s.t J{]Hgl_l)ncfo i Ce(a, R\/0) o,
N/L?*=p
2 /N2
+7(j,, )" = 2ray, v —0,
where  e(a,y) ~ a7 “
2m|al, 721
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Lieb—Thirring inequalities for anyons

Theorem ([DL-Solovej '13] Lieb—Thirring inequality for anyons)
Let U be an N-anyon wavefunction on R? with any o € R. Then

(U, T,0) > Coz?v/2pq,(x)2dx,

R

for a constant C > 0,

So for a« = p/v with odd p and v > 1,

(U, HyU) > /

- (CI/72Q\I/ (x)% + V(X)Qq,(x)> dx
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Lieb—Thirring inequalities for anyons

DL, Solovej, 2013; LT with general local exclusion developed by DL, Nam, Portmann, Solovej, 2013-'15

Theorem ([Larson-DL '16] Lieb—Thirring inequality for anyons)

Let U be an N-anyon wavefunction on R? with any o € R. Then

(0, To¥) > C(joy)? /R L Pu(x)?dx,

for a constant C' > 0, where j., > /2v is first zero of .J., Bessel.

v

So for a« = p/v with odd p and v > 1,

(U, HyU) > /

- (szlg\p (x)% + V(X)Qq,(x)>dx
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Anyons in a harmonic trap

Harmonic oscillator Hamiltonian:

N
1 . o mw?
]:
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Anyons in a harmonic trap

Harmonic oscillator Hamiltonian:
N 1 mw2
j=1

Rigorous bounds for the ground-state energy Ey(N):

HN‘ang mom. L = W(N-l- ‘L—FOéN(N I)D (Chitra, Sen, 1992)
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Anyons in a harmonic trap

Harmonic oscillator Hamiltonian:

j=1
Rigorous bounds for the ground-state energy Ey(N):
HN‘ang mom. [ > W (N—i— ‘L—l—aN(N I)D (Chitra, Sen, 1992)
Cijh, < Eo(N)/(wN2) < Co Va,N (L solovi 2013 Larson, DL 2016

cp. with fermions in 2D: Ey(N) ~ */Tng% as N — oo
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Anyons in a harmonic trap — exact spectrum

Exact N = 2 spectrum: Leinaas, Myrheim, 1977
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Anyons in a harmonic trap — exact spectrum

Numerical N = 3 spectrum: Murthy, Law, Brack, Bhaduri, 1991; Sporre, Verbaarschot, Zahed, 1991
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Anyons in a harmonic trap — exact spectrum

Numerical N = 4 spectrum: Sporre, Verbaarschot, Zahed, 1992
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Anyons in a harmonic trap — qualitative spectrum

P

E/w —
Eof (WN¥2) —

10

~N%2
f

Tl'/2

0
g —
Schematic N — oo spectrum: Chitra, Sen, 1992 (0 = aw)
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Anyons in a harmonic trap — current lower

5
E

Rigorous lower bound: DL, Solovej, 2013/'14, improved in Larson, DL, 2016
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Upper bounds: many-anyon trial states

V3

v, Vs

N = vK particles arranged into v complete graphs (V,, &)
a =L even:

v N
Ya(z) = [T lziel ™S |TT TI G| I] #o(zr)
k=1

i<k q=1(j,k)e&,

(cf. Moore-Read (Pfaffian), Read—Rezayi)
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Upper bounds: many-anyon trial states

Vl J Vg - T

N = vK particles arranged into v complete graphs (V,, &)
a =L even:

v N
Ya(z) = [T lziel ™S |TT TI G| I] #o(zr)
k=1

i<k 4=1 (j,k)EE,
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Upper bounds: many-anyon trial states

V1 Vo

N = vK particles arranged into v complete graphs (V,, &)
a =L even:

v N
Ya(z) = [T lziel ™S |TT TI G| I] #o(zr)
k=1

i<k 4=1 (j,k)EE,

(cf. Moore—Read (Pfaffian), Read—Rezayi)
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Upper bounds: many-anyon trial states

V1 Vo

N = vK particles arranged into v complete graphs (V,, &)

a =L odd:
v K-1
Ya(z) = [zl *S|{TT TI Gw* N\ ¢k (ziev,)
j<k a=1(j,k)e&, k=0

(cf. Moore-Read (Pfaffian), Read—Rezayi)
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