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1. Introduction [L1]

In this course there will be a strong focus on theory, i.e. definitions, theorems and proofs.
These things take time, effort and focus to absorb, so it is strongly advised to take your
own peaceful time to read, think and digest. The lectures will serve to guide you through
the reading material and offer points of discussion.

As the official course literature we will use the classic textbook of Rudin [Rud76], while
these notes will contain complementary material, reading suggestions, excersises, correc-
tions, etc. Some might find these notes to be a bit “dryer” than Rudin, while some may
even find Rudin a bit too dry. As an alternative/complement book some students may find
[Abb15] helpful (see in particular the epilogues to each chapter which include some historic
notes).

1.1. Lecture plan (OBS: preliminary).

L1 29/10 Introduction, Preliminaries
L2 2/11 Definition and properties of real numbers
L3 6/11 Cauchy sequences, upper and lower limits
L4 11/11 Bolzano-Weierstrass theorem
L5 12/11 ” / Problem session
L6 16/11 Topology in Rn, Metric spaces and their topology
L7 19/11 Compactness, Heine-Borel lemma
L8 26/11 Continuous functions
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L9 27/11 Baire’s theorem
L10 2/12 ” / Problem session
L11 3/12 Normed vector spaces, series
L12 9/12 Differentiable functions: mean-value theorem and its consequences
L13 10/12 Taylor series
L14 21/1 Riemann integral
L15 25/1 ” / Problem session
L16 27/1 Sequences and series of functions: uniform convergence
L17 1/2 ”
L18 4/2 Equicontinuous families, Arzelà-Ascoli theorem
L19 8/2 Stone-Weierstrass theorem, power series
L20 11/2 ” / Problem session
L21 15/2 Banach’s fixed point theorem and applications
L22 19/2 ”
L23 1/3 Inverse and implicit function theorems
L24 5/3 ”
L25 11/3 Summary/Repetition

— 15/3 Exam (don’t forget to register!)

1.2. Notes concerning notation/style.
We use bold face whenever a new term or concept is introduced, and it will also appear

in the index of these notes.
An asterisk (*) denotes optional (non-examinable) material for the curious student.
We will read : (colon) as “such that” (also abbreviated s.t.), and thus usually define sets

{x ∈ X : P (x)},
which reads “the set of all x in X such that P (x)”. Beware that it is also common to write

{x ∈ X | P (x)}.
where | could generally mean “subject to” (/ conditioned by / sv: betingat av).

Let us use the directed notation := for “defined to equal” and :⇔ “defined to be equiva-
lent”.

Conventions:

N = {0, 1, 2, . . .} natural numbers

N+ = {1, 2, . . .} positive integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} integers

Q = {p/q : p ∈ Z, q ∈ N+} rational numbers

Q+ = {x ∈ Q : x > 0} positive rational numbers

Q+ = {x ∈ Q : x ≥ 0} non-negative rational numbers

R = (−∞,+∞) real numbers

R+ = (0,+∞) positive real numbers

R+ = [0,+∞) non-negative real numbers

R∞ = [−∞,+∞] extended real numbers
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Abbreviations:
ex: example,
iff: if and only if (sv: omm, om och endast om),
WLOG: without loss of generality (sv: utan inskränkning),
STS: suffices to show (sv: RAV, räcker att visa)
sv: svenska/Swedish translation
corr: corrections

Acknowledgments. Significant parts of these lecture notes have been based on a course
on the foundations of analysis given by Lars Svensson at KTH Stockholm around 2004,
whose clarity, insight and uplifting spirit is gratefully acknowledged.
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2. Some preliminaries and notation [L1-2]

We assume that the reader is familiar with basic notions in calculus in one and several
variables, as well as linear algebra (first-year university courses). For convenience and
reference, let us recall a few fundamental mathematical concepts and algebraic notions.

2.1. Sets. Sets may be constructed using certain axioms (Zermelo-Fraenkel; see Section 2.9).
We will use the following notations:

• ∅ denotes the empty set.
• x ∈ A: x is an element of the set A
• x /∈ A: x is not an element of the set A
• ∃x: there exists an x
• @x: there exists no x
• ∃!x: there exists a unique x
• ∀x: for all x
• We say that A is a subset of B and write A ⊆ B if ∀x (x ∈ A⇒ x ∈ B).
• We say that A is a strict subset of B and write A ( B if A ⊆ B and A 6= B

(these are in analogy to ≤ and �, while e.g. Rudin uses ⊂ instead of ⊆).
• x ∈ A ∩B (“intersection of A and B”) if x ∈ A and x ∈ B.
• x ∈ A ∪B (“union of A and B”) if x ∈ A or x ∈ B.
• x ∈ A \B (“A minus B”) if x ∈ A but x /∈ B.
• P(A) denotes the set of all subsets of the set A (power set / sv: potensmängd).
• ¬P (“not P”) denotes the logical negation of P .

We may write & for “and” (∧ is also common but has many other uses), and ∨ for “or”.

2.2. Relations. A relation R on a set M is a subset of the cartesian product M ×M , i.e.

R ⊆M ×M.

If (x, y) ∈ R we may also write xRy. Furthermore, R is called:

• reflexive if xRx ∀x ∈M
• symmetric if xRy ⇒ yRx ∀x, y ∈M
• antisymmetric if xRy & yRx⇒ x = y ∀x, y ∈M
• transitive if xRy & yRz ⇒ xRz ∀x, y, z ∈M
• connex if ∀x, y ∈M xRy or yRx

We also define:

• Partial order: A reflexive, antisymmetric and transitive relation.
• Total order: A connex partial order.
• Equivalence relation: A reflexive, symmetric and transitive relation.

To every total order ≤ there is a strict total order < defined by a < b iff a ≤ b and
a 6= b (or, equivalently, iff ¬(b ≤ a)), and vice versa, a ≤ b :⇔

(
a < b or a = b

)
.

Relations between two different sets A and B may also be defined, to be subsets of A×B.

2.3. Functions. A function or map f : A → B may be regarded as a subset of A × B,
i.e. a certain type of relation on A × B. Namely, we usually call this set the graph of f .
Let us denote it graph(f) ⊆ A×B, with the property that to each x ∈ A there is a unique
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y ∈ B such that (x, y) ∈ graph(f), and we denote this y by f(x). The set A is called the
domain (sv: definitionsmängd) of f , while B is the codomain (sv: m̊almängd). The set

f(A) := {y ∈ B : ∃x ∈ A s.t. y = f(x)}
is the range or image (sv: bild/värdemängd) of f . For f : A → B we may also denote A
by dom(f) and f(A) by im(f).

Remark 2.1. It may be is useful in practice to consider A (source set/sv: källmängd) and
B (target set/sv: m̊almängd) as fixed sets of a given context (ex: A = Rn and B = Rm)
and then

f : A ⊇ dom(f)→ im(f) ⊆ B
is a (surjective) map from its domain to its range, which both could be strict subsets of A
resp. B. Recall that dom(f) might not be given explicitly but taken to be the largest set in
a given context (ex. A = R in one-variable calculus) for which the expressions for f(x) are
defined. Strictly speaking, such f is called a partial function from A to B: for all x ∈ A
there exists at most one y ∈ B s.t. (x, y) ∈ graph(f).

We may write f : A→ B, or A
f−→ B, or more explicitly

f : A → B
x 7→ f(x)

A function f : X → Y is called injective (or one-to-one) if it preserves inequality, i.e.

x 6= x′ ⇒ f(x) 6= f(x′) ∀ x, x′ ∈ X,
and surjective (or onto) if its range equals its codomain, f(X) = Y , i.e.

∀y ∈ Y ∃x ∈ X : f(x) = y.

Functions that are both injective and surjective are called bijective.

If X
f−→ Y and Y

g−→ Z then their composition is X
g◦f−−→ Z,

(g ◦ f)(x) := g
(
f(x)

)
, x ∈ X.

Note:

• If f and g are injective then g ◦ f is injective:
if x 6= x′ then f(x) 6= f(x′) and thus g(f(x)) 6= g(f(x′)).
• If f and g are surjective then g ◦ f is surjective:

if z ∈ Z then ∃ y ∈ Y s.t. g(y) = z, and thus ∃ x ∈ X s.t. f(x) = y, implying
g(f(x)) = z.
• Hence, if f and g are bijective then g ◦ f is bijective.

2.4. Infinite unions and intersections. Let I and X be sets and assume that I
f−→ P(X)

is a function. Let us denote

f(i) =: Ai, i.e. Ai ⊆ X if i ∈ I.
Thus I may be called an index set. Now define the union of all Ai’s by⋃

i∈I
Ai := {x ∈ X : ∃i ∈ I s.t. x ∈ Ai} .

In particular, if I = ∅ then
⋃
i∈∅Ai = ∅.
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We also define the intersection of all Ai’s by⋂
i∈I

Ai := {x ∈ X : ∀i (i ∈ I ⇒ x ∈ Ai)} .

Remark 2.2. If I = ∅ we have (a bit surprisingly) that⋂
i∈∅

Ai = X,

because for each i it holds that i ∈ I is false, i.e. that the implication (i ∈ I ⇒ x ∈ Ai) is
true.

The complement Aci of Ai in X is X \Ai, and we have the following relationships:(⋃
i∈I

Ai

)c
=
⋂
i∈I

Aci , (2.1)

(⋂
i∈I

Ai

)c
=
⋃
i∈I

Aci . (2.2)

Remark 2.3. When taking the complement of a set it is important to know what it is taken
with respect to. Often one assumes it to be understood which “background” set is being
considered. For example, it is in principle erroneous to write

Ac = {x : x /∈ A}.
If the “background” is X, i.e. A ⊆ X, one should (despite sometimes being more sloppy)
instead write

Ac = {x ∈ X : x /∈ A} = X \A.

2.5. Pullback and pushforward. Assume that f : X → Y , then we have two induced
maps, the pushforward

f∗ : P(X)→ P(Y )

and the pullback
f∗ : P(Y )→ P(X),

defined
f∗(A) := {f(x) ∈ Y : x ∈ A} =: f(A), if A ⊆ X,
f∗(B) := {x ∈ X : f(x) ∈ B} =: f−1(B), if B ⊆ Y.

The latter notations are usually the ones used in practice (and correct also if f is invertible).

2.5.1. f∗ respects unions and intersections. Let I be an index set and assume that for each
i ∈ I we have a set Bi ⊆ Y (we also assume that I 6= ∅). Note then that

f∗

(⋂
i∈I

Bi

)
=
⋂
i∈I

f∗(Bi). (2.3)

Namely, if x is an element of the l.h.s. then by definition f(x) is an element of
⋂
i∈I Bi ⊆

Bj ∀j ∈ I. Thus x ∈ f∗(Bj) for all j ∈ I, so x ∈
⋂
j∈I f

∗(Bj).

Conversely, if x is an element of the r.h.s. then x ∈ f∗(Bi) ∀i ∈ I, so f(x) ∈ Bi ∀i ∈ I.
Thus f(x) ∈

⋂
i∈I Bi and x ∈ f∗

(⋂
i∈I Bi

)
.
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In a similar way one may verify that

f∗

(⋃
i∈I

Bi

)
=
⋃
i∈I

f∗(Bi). (2.4)

2.5.2. f∗ respects unions but not intersections. Let Ai ⊆ X, i ∈ I. That

f∗

(⋃
i∈I

Ai

)
=
⋃
i∈I

f∗(Ai) (2.5)

is left as an exercise. However, that f∗ does not preserve intersections may be seen by a
simple counterexample:

Example 2.4. Let X = Z and Y = N and define f : X → Y by f(x) = x2. Let A = {x ∈
Z : x < 0}, B = {x ∈ Z : x > 0}. Then f∗(A) = f∗(B) = N \ {0} = {1, 2, 3, . . .}, and thus
f∗(A) ∩ f∗(B) = N \ {0} 6= ∅, however f∗(A ∩B) = f∗(∅) = ∅.

Exercise 2.1. Prove (2.4)-(2.5) and come up with other counterexamples for f∗.

2.6. Some basic algebraic notions. We can’t do analysis without some algebra. In fact
we will see that a large part of analysis is about linear algebra (usually in infinite-dimensional
vector spaces). Let us recall a few basic notions here.

2.6.1. Binary compositions. A binary composition ∗ on a set M is a map

M ×M → M
(x, y) 7→ x ∗ y

The composition is called

• associative if (x ∗ y) ∗ z = x ∗ (y ∗ z) ∀x, y, z ∈M ,
• commutative if x ∗ y = y ∗ x ∀x, y ∈M .

2.6.2. Unit. If there exists an element e ∈M such that

e ∗ x = x ∗ e = x ∀x ∈M

then e is called a unit. Units are unique because, if e and e′ are units, then e = e ∗ e′ = e′.

2.6.3. Inverse. An element x ∈ M has a left inverse y if y ∗ x = e, right inverse z if
x ∗ z = e, and inverse y if y ∗ x = x ∗ y = e. If ∗ is associative and if y and z are inverses
to x (actually it is sufficient that y is right inverse to x and z left inverse to x) then

z = z ∗ e = z ∗ (x ∗ y) = (z ∗ x) ∗ y = e ∗ y = y. (2.6)

In other words, inverses are unique whenever ∗ is associative.

2.6.4. Distributivity. Let ∗ and � be two binary compositions on M . We say that ∗ is
distributive over � if

x ∗ (y � z) = (x ∗ y) � (x ∗ z) ∀x, y, z ∈M (2.7)

and

(y � z) ∗ x = (y ∗ x) � (z ∗ x) ∀x, y, z ∈M. (2.8)
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2.6.5. Basic algebraic structures. From these notions we can define a variety of basic math-
ematical structures as follows:

Monoid: Set with an associative binary composition and a unit.
Group: Monoid where every element has an inverse.
Abelian group: Commutative group.
Ring: A set R with two binary compositions, called addition (+) and multiplication

(·), and such that (R,+) is an abelian group and (R, ·) is a monoid, and where
multiplication is distributive over addition. Furthermore, it should hold that 0 ·x =
x · 0 = 0 for all x ∈ R, where 0 denotes the additive unit in R and is called zero
(sv: nollan). The additive inverse to x ∈ R is denoted −x.

Ring with unit: Ring where multiplication has a unit, usually denoted 1 and called one
(sv: ettan) or the identity.

Commutative ring: Ring with commutative multiplication.
Field (sv: kropp): Commutative ring with unit, where every nonzero element has a mul-

tiplicative inverse.
Ordered field: A field F on which a strict total order < is defined, such that

(i) if x, y, z ∈ F and y < z then x+ y < x+ z
(ii) if x, y ∈ F, x > 0 and y > 0 then xy > 0.
If x > 0 we call x positive, and if x < 0 we call x negative.

Vector space over a field: A set V is a vector space over the field F if we have defined
two maps

V × V +−→ V
(v, w) 7→ v + w

and
F× V ·−→ V
(α, v) 7→ αv

such that (V,+) is an abelian group, and the following holds for all α, β ∈ F and
v, w ∈ V :
(i) 0Fv = 0V (0F, 0V additive units in F resp. V ),

(ii) 1Fv = v (1F multiplicative unit in F),
(iii) (α+ β)v = (αv) + (βv),
(iv) α(v + w) = (αv) + (αw),
(v) (αβ)v = α(βv).

2.6.6. Typical examples.

1. If A is a set then we let F = Fun(A,A) denote the set of all functions f : A → A.
We can then introduce the binary composition

F × F ◦−→ F
(f, g) 7→ f ◦ g

where f ◦ g is the usual composition of the functions f and g. If id denotes the
identity on A, id(x) = x ∀x ∈ A, then we have that (F, ◦) is a monoid with unit id.

2. If

G = {g ∈ F : g is a bijection : A→ A}
then (G, ◦) is a group.

3. Typical examples of rings are Z (the integers), polynomials in one or several variables
with coefficients in a ring, as well as square (n × n) matrices. If R is a ring, then
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we denote Rn×m the set of matrices of size n×m (n rows, m columns) with entries
in R. Hence, Rn×n is a ring, and if F is a field, then Fn×m is a vector space over F.

4. Typical examples of fields are Q (the rational numbers), R (the real numbers) and
C (the complex numbers), as well as rational functions (quotients of polynomials
over nonzero polynomials) in one or several variables with coefficients in some field.
If F is a field then Fn×n is not a field unless n = 1 (why?). Note that Q and R are
ordered fields, while C is not ordered (cf. Exercise 3.5).

5. Let M be an arbitrary set and F a field. Let [corr]

V = Fun(M ;F) := {f : f is a function from M to F} ⊆ P(M × F)

the set of F-valued functions on M , and define addition

V × V +−→ V
(f, g) 7→ f + g

via (f + g)(m) := f(m) + g(m), for m ∈M , and scalar multiplication

F× V ·−→ V
(α, f) 7→ α · f = αf

via (α ·f)(m) := α ·
(
f(m)

)
. You may then verify (exercise) that V becomes a vector

space over F.
Now introduce the support (sv: stödet) of a function f : M → F by

supp f := {m ∈M : f(m) 6= 0},
and let

Vfin := {f ∈ V : supp f is finite}.
It is a suitable exercise to verify that if α ∈ F and f, g ∈ Vfin then αf + g ∈ Vfin, i.e.
Vfin is a subspace of V (cf. below).

It is possible to prove (the axiom of choice is needed) that every vector space can
be realized (or represented) as Vfin for some set M . In addition M is a basis of Vfin,
in the sense that the functions m̂ : M → F, m ∈M , defined by

m̂(x) =

{
1 if x = m,

0 if x 6= m,

form a basis of Vfin.

2.6.7. Linear maps. A map L : V →W , where V and W are vector spaces over F, is called
linear if

L(αx+ βy) = αL(x) + βL(y) ∀ α, β ∈ F, x, y ∈ V.
The kernel, ker, and the image, im, of a map L : V →W are defined by

kerL := {x ∈ V : L(x) = 0},
imL := {L(x) ∈W : x ∈ V }.

A subset U of a vector space V is called a subspace of V if it is closed under the operations:

α, β ∈ F, x, y ∈ U ⇒ αx+ βy ∈ U.
We note (exercise) that kerL and imL of a linear map L are subspaces of V resp. W .
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If α1, α2, . . . , αn ∈ F and v1, v2, . . . , vn ∈ V then α1v1+α2v2+. . .+αnvn is called a linear
combination of the vectors v1, v2, . . . , vn. The set (subspace) of linear combinations

{α1v1 + α2v2 + . . .+ αnvn ∈ V : α1 ∈ F, . . . , αn ∈ F}
is called the linear span of {v1, . . . , vn} and is denoted SpanF{v1, . . . , vn} (we drop the
subscript F if it is understood) or Fv1 + Fv2 + . . .+ Fvn.

2.7. Quotients. Let M be a set and ∼ an equivalence relation on M . Then we can define
the equivalence class [x] of x ∈M by

[x] := {x′ ∈M : x ∼ x′}.
One verifies (exercise) that

x ∼ y ⇒ [x] = [y]

and that
x � y ⇔ ¬(x ∼ y) ⇒ [x] ∩ [y] = ∅,

in other words the equivalence classes give rise to a partition of M into disjoint subsets.
Conversely, one may observe that any partition of M into disjoint subsets gives rise to an
equivalence relation (defined x ∼ y iff they are in the same subset). Given M and ∼, the
set of equivalence classes is denoted

M/∼ =
{

[x] ∈ P(M) : x ∈M
}
,

and is also called M modulo ∼, or the quotient of M by ∼.
Let ∗ be a binary composition on M and ∼ an equivalence relation. We say that ∼

respects ∗ if
x ∼ x′ & y ∼ y′ ⇒ x ∗ y ∼ x′ ∗ y′ ∀ x, y ∈M.

Then we can define an induced binary composition ∗̃ on M/∼ through

M/∼ ×M/∼
∗̃−→ M/∼

([x], [y]) 7→ [x ∗ y]

This is well defined since if [x] = [x′] and [y] = [y′], i.e. x ∼ x′ and y ∼ y′, then x∗y ∼ x′∗y′,
i.e. [x ∗ y] = [x′ ∗ y′].

Exercise 2.2. Show that if ∗ is commutative, associative, has a unit, etc., and ∼ respects
∗, then ∗̃ is commutative, associative, has a unit, etc.

2.8. Cardinality.

Definition 2.5. We say that two sets X and Y have the same cardinality iff there exists
a bijection f : X → Y . We then write cardX = cardY or |X| = |Y | (the latter notation
|X| = cardX is more common for finite sets). Furthermore, we write cardX ≤ cardY iff
there exists an injection f : X → Y .

Exercise 2.3. Show that

1) if cardX = cardY then cardY = cardX
2) if cardX = cardY and cardY = cardZ then cardX = cardZ
3) cardX = cardX

In other words, the cardinality behaves like an equivalence relation among sets (despite not
being able to form the set of all sets).
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A set X is called countable if cardX = cardN.

Theorem 2.6. Assume that A1, A2, . . . are countable. Then
⋃∞
n=1An is countable.

Proof. Write
A1 = {a1,0, a1,1, a1,2, . . .}
A2 = {a2,0, a2,1, a2,2, . . .}
A3 = {a3,0, a3,1, a3,2, . . .}
...

and form the zig-zag snaking sequence

{a1,0, a1,1, a2,0, a3,0, a2,1, a1,2, a1,3, a2,2, a3,1, . . .},

which, after skipping any duplicates (it is a set and not a list), is in bijection to ∪nAn. �

Example 2.7. In particular, Q = ∪n∈N+(−Qn ∪ Qn) can be arranged in this way by
increasing denominator,

Q1 = {0/1, 1/1, 2/1, . . .},
Q2 = {0/2, 1/2, 2/2, . . .},
Q3 = {0/3, 1/3, 2/3, . . .},

etc., so cardQ = cardN.

Exercise 2.4. a) Show that N and N× N have the same cardinality.
b) Show that the real interval (0, 1) and R have the same cardinality.

Note that cardX ≤ cardP(X), because we can map f : X 3 x 7→ {x} ∈ P(X) injectively
(the image of f is the set of all singleton subsets of X). The following fundamental
theorem of set theory shows that cardX 6= cardP(X) (i.e. the power set of X has strictly
higher cardinality than X).

Theorem 2.8 (Cantor’s theorem). Let X be a set. There exists no surjection from X
to P(X).

Proof. Let X
f−→ P(X) be an arbitrary function and form the set

C = {x ∈ X : x /∈ f(x)}.

Then there exists no c ∈ X such that f(c) = C. Because if C = f(c) were to hold then by
definition of C we find

c ∈ C ⇒ c /∈ C,
and

c /∈ C ⇒ c ∈ C.
This contradiction proves the theorem. �

Example 2.9. Starting from X = ∅ we may form

P(∅) = {∅},
P
(
P(∅)

)
=

{
∅, {∅}

}
,

P
(
P
(
P(∅)

))
=

{
∅, {∅},

{
{∅}
}
,
{
∅, {∅}

}}
,
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and so on. Writing P0(∅) = ∅, P1(∅) = {∅} and Pn+1(∅) = P(Pn(∅)) we have |P0(∅)| = 0

and |Pn(∅)| = 2̂ (2̂ · · · 2)︸ ︷︷ ︸
n−1

if n ≥ 1. More generally, if X is some finite set then |P(X)| = 2|X|.

Given X and Y such that cardX ≤ cardY and cardY ≤ cardX we would like to conclude
that cardX = cardY , and indeed this is true as the following (surprisingly deep) theorem
shows:

Theorem 2.10 (Schröder-Bernstein’s theorem). If X
f−→ Y and Y

g−→ X are injective

then there exists a bijection X
h−→ Y .

For a short proof we will use a first instance of a fixpoint theorem:

*Theorem 2.11 (Tarski’s fixpoint theorem). Assume that F : P(X)→ P(X) is mono-
tone increasing, i.e.

A ⊆ B ⇒ F (A) ⊆ F (B).

Then there exists M ⊆ X such that F (M) = M .

*Proof. Let I = {A ⊆ X : A ⊆ F (A)}. Since ∅ ⊆ F (∅) we have ∅ ∈ I and thus I is
non-empty. Now form the set

M =
⋃
A∈I

F (A).

If A ∈ I then A ⊆ F (A) ⊆ M , and by monotonicity F (A) ⊆ F (M). Therefore also
M ⊆ F (M), i.e. M ∈ I. We conclude that M ⊆ F (M) ⊆M . �

*Proof of Theorem 2.10. Define F : P(X)→ P(X) by

F (A) :=
(
g(f(A)c)

)c
(where f(A)c = Y \ f(A) and g(f(A)c)c = X \ g(f(A)c)). Then, by injectivity of f and g,

A ⊆ B ⇒ f(A) ⊆ f(B) ⇒ f(A)c ⊇ f(B)c ⇒ g(f(A)c) ⊇ g(f(B)c)

⇒ g(f(A)c)c ⊆ g(f(B)c)c.

Hence F is monotone increasing. By Theorem 2.11 there then exists M ⊆ X such that
F (M) = M . Let N = f(M)c and consider the figure

ĨŝŐƐ
tĞĚŶĞƐĚĂǇ͕�KĐƚŽďĞƌ�Ϯϴ͕�ϮϬϮϬ ϭϳ͗Ϯϲ

We must then have that M
f−→ f(M) is bijective, call it f |M (the restriction of f to M),

and so is N
g−→ g(N), call it g|N . Now define a map h : X → Y by

h(x) :=

{
f |M (x) if x ∈M,

(g|N )−1(x) if x ∈M c,
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which is a bijection. �

Exercise 2.5. Let p ∈ R and show that R and R\{p} have the same cardinality. Also show
that if a < b then [a, b] and (a, b) have the same cardinality.

2.9. *Rough sketch of ZFC. When mathematics was put on a sound logical foundation
through works of Cantor, Dedekind, Frege, Gödel, Russel, Weierstrass and others (late
1800’s to early 1900’s), it was eventually understood that sets cannot be arbitrarily defined.
Below is a rough sketch of Zermelo and Fraenkel’s proposal for an axiomatic system
of sets (for more details on this topic we refer to courses in mathematical logic, or e.g.
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory):

1. There exists a set ∅, called the empty set, which contains no elements. That is,

∀x x /∈ ∅

2. Two sets are equal if and only if they have the same elements, i.e.

A = B ⇔ ∀x (x ∈ A⇔ x ∈ B)

3. The union of two sets is a set, i.e. if A and B are sets then there exists a set C,
denoted A ∪B, such that

∀x
(
x ∈ A ∪B ⇔ (x ∈ A ∨ x ∈ B)

)
4. The intersection of two sets is a set, i.e. if A and B are sets then there exists a

set C, denoted A ∩B, such that

∀x
(
x ∈ A ∩B ⇔ (x ∈ A & x ∈ B)

)
5. All subsets of a given set form a new set, called the power set (sv: potensmängden),

i.e. if A is a set then there exists a set B, denoted P(A), such that

∀x
(
x ∈ P(A)⇔ x ⊆ A

)
(note that x ⊆ A means by definition that ∀y (y ∈ x⇒ y ∈ A)).

6. If P is a one-variable predicate (property, sv: egenskap/ett-ställigt predikat), i.e.
(in formal logic) a well-formulated formula in our formal language with one free
variable x, and if A is a set, then there exists a set AP whose elements are exactly
those elements x in A such that P (x). We denote this set

AP = {x ∈ A : P (x)}.

7. If A is a set then there exists a set B, denoted {A}, whose only element is A. That
is,

∀x
(
x ∈ {A} ⇔ x = A

)
.

8. If A and B are sets then there exists a set C, denoted A×B and called the cartesian
product of A and B, whose elements consist of all ordered pairs (a, b) with a ∈ A
and b ∈ B.

9. Axiom of choice: every surjection has a right inverse.
10. Axiom of infinity: There exists a set N, called the natural numbers, such that
∅ ∈ N and

∀x
(
x ∈ N⇒ x ∪ {x} ∈ N

)
.

https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
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Remark to 6.: This axiom protects us from Russel’s paradox. Namely, Gottlob Frege
initially thought that one may form sets more arbitrarily, so that for example

R = {x : x /∈ x}
could be a set. But then Bertrand Russel observed that this yields a contradiction:

R ∈ R⇒ R /∈ R and R /∈ R⇒ R ∈ R.
Remarks to 9.: In accordance with our conventions, we call a function g : B → A a right

inverse to f : A→ B if f ◦ g = idB, where idB is the identity on B, idB(y) = y ∀y ∈ B. g is
called left inverse to f if g ◦ f = idA and inverse to f if it is both left and right inverse to f .

Some mathematicians prefer to leave out the axiom of choice or use weaker versions
of it. We will probably not discuss this further but may use ZFC and ZF to refer to
Zermelo-Fraenkel (ZF) with and without the axiom of choice (C).

Remarks to 10.: The set x′ := x∪{x} is called the successor to x, and we can make the
following formal definition, that was proposed by von Neumann, for the natural numbers
N:

0 := ∅,
1 := 0′ = {0},
2 := 1′ = {0, 1},
...

n+ 1 := n′ = {0, 1, . . . , n},
...

This also gives a natural total order on N defined by ∀n,m ∈ N
n ≤ m ⇔ n ⊆ m.

Note: we are interested in the existence and order of N, while in practice we forget about
this set structure and shall never write 2 ∈ 5 or things like that.
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3. Definition and properties of the real numbers [L2-5]

3.1. Reading tip. First make sure you understand and feel comfortable with the basic
terminology of Section 2. Compare to your previous courses and/or other resources such
as wikipedia (but keep in mind varying conventions!). Also check that you are comfortable

with the summation symbol notation, e.g.
∑b

j=a

∑j2+5
k=j2

ej+k [Rud76, Notation 1.34].

Read/compare to [Rud76, Chapter 2 up to 2.15] for properties of sets, functions and
cardinality.

It is advised to read [Rud76, Chapter 1] in conjunction with Section 3.2 below. The parts
about complex numbers should be no surprise but may be skimmed over as the focus in
this course is real analysis.

See [Rud76, Chapter 1 Appendix] for details on the construction of the reals, and (op-
tionally) [Abb15, Ch. 1.7] for further discussion on the logical issues involved.

Parts of [Rud76, Chapter 3, up to 3.19] enter already in this section for real sequences
and will be generalized to Rn and metric spaces in Section 4. In particular, recall/practice
the proof of [Rud76, Theorem 3.3]!

3.1.1. Typos in Rudin.

• in Eq. (4) the square is misplaced
• in Definition 1.5 (ii) it should be y < z
• in Theorem 1.21 it should be stressed that y > 0
• in Exercise 3.3 the < is misplaced

3.1.2. Exercises. Rudin Ch. 1: 1-7,20; Ch. 2: 1,4-5; Ch. 3: 1-5
Exam 2014-04-23: problems 1-2. Exam 2019-06-15: problems 1-2. Exam 2020-06-15: prob-
lem 2. Exam 2015-03-21: problem 3.

3.1.3. Aims. Concepts discussed in this Section:

• definitions and properties of real numbers
• Cauchy sequences (in R)
• upper and lower limits

Learning outcomes: After this Section you should be able to

• describe the construction and properties of real numbers
• apply the theory to solve mathematical problems including the construction of sim-

ple proofs

3.2. Constructing numbers. Our route to constructing numbers will be the following:

ZF(C)
deeper→ ↓

N = {0, 1, 2, . . .}
simple→ ↓

Q+ = {p/q : p, q ∈ N, q 6= 0}
deeper→ ↓

R+ = {x ∈ R : x ≥ 0}
simple→ ↓

R ⊇ Q ⊇ Z ⊇ N
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R may also be defined by the axioms we wish that it should have, or as a type of
completion of Q.

Note that the deeper steps are “transcendent” in the sense that we achieve a lift from
something finite to countably infinite, and then to uncountably infinite.

3.2.1. Construction of Z and Q. Starting from N with its usual laws for addition (+) and
multiplication (·), we may define Z and Q simply using equivalence relations and quotients.

As a preparation we first consider the integers Z. Our motivation is to study pairs of
natural numbers:

N× N 3 (x, y) should correspond to x− y ∈ Z. (3.1)

Thus, if (a, b) corresponds to a−b ∈ Z and (c, d) to c−d ∈ Z then it makes sense to demand
that

(a, b)+(c, d) := (a+c, b+d) should correspond to (a−b)+(c−d) = (a+c)−(b+d). (3.2)

Furthermore, the product (a − b)(c − d) = ac + bd − (ad + bc) in Z may be represented in
N× N as

(a, b) · (c, d) := (ac+ bd, ad+ bc). (3.3)

However, we have several ways of writing the same number x − y ∈ Z as a pair of natural
numbers x, y ∈ N. To make things consistent we also want that pairs be identified x− y =
x′ − y′ iff x+ y′ = x′ + y. Note that the latter can be formulated completely within (N,+).
Thus, define an equivalence relation ∼ on N× N by

(x, y) ∼ (x′, y′) ⇔ x+ y′ = x′ + y. (3.4)

We may check that with this definition, ∼ respects not only addition but also multiplication,
namely if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) are pairs in N× N, then

(a+ c, b+ d) ∼ (a′ + c′, b′ + d′) (3.5)

and

(ac+ bd, ad+ bc) ∼ (a′c′ + b′d′, a′d′ + b′c′). (3.6)

Namely the latter translates within (N,+, ·) to

ac+ bd+ a′d′ + b′c′ = a′c′ + b′d′ + ad+ bc (3.7)

which should correspond to

ac+ bd− ad− bc = a′d′ + b′c′ − a′c′ − b′d′ ⇔ (a− b)(c− d) = (a′ − b′)(c′ − d′). (3.8)

Thus we define the set of all integers Z as the quotient by ∼ (identifying equivalent pairs)

Z := N× N/∼,

and corresponding laws for addition and multiplication

Z× Z → Z(
[(a, b)], [(c, d)]

) +7→ [(a+ c, b+ d)],(
[(a, b)], [(c, d)]

) ·7→ [(ac+ bd, ad+ bc)].
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Eventually we may conclude that this construction yields our usual laws for the integers,
and with the injection N 3 x 7→ [(x, 0)] ∈ Z we may also define our usual way of writing
x− y := [(x, y)] ∈ Z for any x, y ∈ N. This gives rise to an embedding, or identification,

N ↪→ Z. (3.9)

A total order on Z is given by

[(x, y)] ≤ [(x′, y′)] ⇔ x+ y′ ≤ x′ + y. (3.10)

Exercise 3.1. Fill in the details in this construction! That is,

a) Verify that (3.4) defines an equivalence relation.
b) Verify (3.5) and (3.6) (note that you are not allowed to use subtraction freely yet!).
c) Verify that addition and multiplication defined on Z as above is well defined, commu-

tative, associative, and that multiplication is distributive over addition. Also check
that [(0, 0)] is additive unit (sv: nolla) and [(1, 0)] is multiplicative unit (sv: etta).

d) Verify that (3.10) is a well-defined total order.

Similarly, for the rational numbers Q, our motivation is to study pairs of integers:

Z× (Z \ {0}) 3 (p, q) should correspond to
p

q
∈ Q,

where we would like that p/q = p′/q′ iff pq′ = p′q. The latter is formulated completely within
(Z,+, ·) that we constructed above. Thus, define an equivalence relation ∼ on Z× (Z\{0})

(p, q) ∼ (p′, q′) ⇔ pq′ = p′q. (3.11)

Then define the quotient

Q := Z× (Z \ {0})/∼ ,
with suitably defined operations for addition and multiplication,

Q×Q → Q(
[(a, b)], [(c, d)]

) +7→ [(ad+ bc, bd)],(
[(a, b)], [(c, d)]

) ·7→ [(ac, bd)].

Finally we may identify our usual way of writing p/q := [(p, q)] ∈ Q for any p, q ∈ Z, q 6= 0.
Again, we have an embedding Z 3 p 7→ [(p, 1)] ∈ Q and, recalling (3.9),

N ↪→ Z ↪→ Q.

Exercise 3.2. Again, fill in the details in this construction, repeating the steps of Exer-
cise 3.1.

3.2.2. Dedekind’s construction of R. Let

Q+ := {p/q ∈ Q : p, q ∈ N, q 6= 0}
denote the non-negative rational numbers with their natural total order induced from
N,

p/q ≤ p′/q′ ⇔ pq′ ≤ p′q, (3.12)

as well as the induced strict total order p/q < p′/q′ iff pq′ < p′q.

Definition 3.1. A proper subset S ( Q+ is called a (Dedekind) cut (sv: snitt) if

(i) ∀x ∈ S ∀y ∈ Q+ (y ≤ x⇒ y ∈ S) (closed/filling all rationals to the left)
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(ii) ∀x ∈ S ∃y ∈ S x < y (open to the right)

Thus, intuitively, a cut is similar to a half-open interval “[0, r + ε)” of rational numbers.

Example 3.2. To each r ∈ Q+ we may define the cut

r̂ := {x ∈ Q+ : x < r},

so that for example 0̂ = ∅ is a cut (the zero cut). However not all cuts are of this form!
For example we have also the cut

{x ∈ Q+ : x2 < 2},

which can be shown to be of a different type (recall that
√

2 /∈ Q).

Definition 3.3. Let us define the set of all non-negative real numbers as the set of all
cuts,

R+ := {S ∈ P(Q+) : S is a cut}.

Furthermore, addition in R+ is defined by

R+ × R+
+−→ R+

(S, T ) 7→ S + T := {x+ y ∈ Q+ : x ∈ S, y ∈ T},

and multiplication by

R+ × R+
·−→ R+

(S, T ) 7→ S · T := {xy ∈ Q+ : x ∈ S, y ∈ T}.

We may also define an order ≤ on cuts via inclusion

S ≤ T :⇔ S ⊆ T. (3.13)

One may verify that indeed S + T and S · T are cuts, and ≤ a total order, and show
that addition and multiplication are commutative and associative. Furthermore, 0̂ = ∅ is
the additive unit, while

1̂ = {x ∈ Q+ : x < 1}
is the multiplicative unit. One could also formally define (positive) infinity as the
improper cut

∞ = Q+.

As always the total order ≤ induces a strict total order

S < T :⇔ S ( T. (3.14)

We also note that if r1, r2 ∈ Q+ and r1 6= r2 then r̂1 6= r̂2, in other words r 7→ r̂ gives an
injective map or embedding Q+ ↪→ R+.

In this way we have constructed the non-negative real numbers R+. To construct all of
R we can proceed exactly as we did for Z by means of pairs of numbers, replacing (N,+, ·)
by (R+,+, ·). Namely, consider the equivalence relation ∼ on R+ × R+:

(x, y) ∼ (x′, y′) ⇔ x+ y′ = x′ + y. (3.15)



20 D. LUNDHOLM

Definition 3.4. Let us define the set of real numbers

R := R+ × R+/∼ = {[(x, y)] : (x, y) ∈ R+ × R+},

with addition and multiplication

R× R → R(
[(x, y)], [(x′, y′)]

) +7→ [(x+ x′, y + y′)],(
[(x, y)], [(x′, y′)]

) ·7→ [(xx′ + yy′, xy′ + x′y)].

A total order on R is defined by

[(x, y)] ≤ [(x′, y′)] ⇔ x+ y′ ≤ x′ + y. (3.16)

We may verify that (R,+, ·,≤) is an ordered field. Alternatively, we could have started
from all of Q and defined cuts there (this is what Rudin does) but some of the process
becomes a bit more tedious when there are also negative numbers to worry about. See
[Rud76, Chapter 1 Appendix] (with additional references) for further discussion.

The extended real numbers are defined with the additional two symbols

R∞ := R ∪ {−∞,∞},

and a few additional rules like (cf. [Rud76, p.12])

x ± ∞ = ±∞, x/(±∞) = 0, x · (±∞) = (± signx)∞, (3.17)

for any x ∈ R in the first two, while the third one is only defined if x 6= 0,

signx :=

{
+1, x > 0,

−1, x < 0.
(3.18)

Note that R∞ is not a field or ring, but is anyway handy when discussing limits for example.
Its order is given by

−∞ < x <∞ ∀x ∈ R. (3.19)

Exercise 3.3. Show that an arbitrary union of cuts is also a cut, unless it is all of Q+ (an
improper cut; recall that ∅ = 0̂ is also a (proper) cut).

Exercise 3.4. Verify the necessary properties for addition and multiplication on R+. What
is the multiplicative inverse S−1 of a nonzero cut S?

*Exercise 3.5. [Rudin Ch. 1 Exc. 8] Prove that no order can be defined in the complex field
C that turns it into an ordered field.

3.3. Supremum and infimum.

Definition 3.5. Given a totally ordered set (M,≤), and a subset A ⊆M we say that:

• x ∈M is an upper bound to A if x ≥ a ∀a ∈ A (A is bounded from above by x).
• x ∈M is a lower bound to A if x ≤ a ∀a ∈ A (A is bounded from below by x).
• x ∈M is a least upper bound to A, or its supremum, denoted supA, if it is an

upper bound to A and, if y is another upper bound to A, then y ≥ x (i.e. either
y = x or y > x). Equivalently,

(i) ∀a ∈ A a ≤ x (upper bound)
(ii) ∀y ∈M y < x⇒ ∃a ∈ A : y < a (anything smaller is not an upper bound).
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• x ∈ M is a greatest lower bound to A, or its infimum, denoted inf A, if it is
a lower bound to A and, if y is another lower bound to A, then y ≤ x (i.e. either
y = x or y < x).

A totally ordered set (M,≤) is said to have the supremum property if for every
nonempty subset A ⊆M that is bounded from above there exists supA ∈M (and if so, it
also has the corresponding infimum property; see [Rud76, Theorem 1.11])

Example 3.6. Consider the ordered field (Q,≤) and the subset (cut)

S = {p/q ∈ Q+ : p2/q2 < 2}.
Then S has an upper bound such as b = 3/2 ∈ Q (b2 = 9/4 > 2 > p2/q2), however S does
not have a least upper bound in Q (cf. [Rud76, Example 1.1]).

The most distinct feature of R (apart from being an ordered field) is that it has the
supremum and infimum properties.

Theorem 3.7 (Supremum property for R). Every nonempty subset A ⊆ R which is bounded
from above has a least upper bound supA ∈ R.

Proof. We assume WLOG that A ⊆ R+, considered as the set of cuts in Q+. Denote an
upper bound to A by the cut B ( Q+, i.e. T ∈ A⇒ T ⊆ B. Define

S := ∪A := {x ∈ Q+ : ∃T ∈ A s.t. x ∈ T},
i.e. the union of all the cuts in A.

If A = {0̂} then S = 0̂ = ∅. Otherwise, S contains the elements of at least one nonzero
cut. Further, by the existence of B ⊇ S we have S 6= Q+. Thus by Exercise 3.3, S is a cut.

Also, we verify that T ≤ S i.e. T ⊆ S for any T ∈ A, i.e. S is indeed an upper bound
for A. Furthermore, we verify that if T < S i.e. T ( S then there exists some T ′ ∈ A and
x ∈ T ′ such that x /∈ T . Hence T ( x̂ ( T ′, i.e. T < T ′ ∈ A, and T is not an upper bound
for A. Therefore S = supA. �

Remark 3.8. In the case that A 6= ∅ is not bounded from above we find that S = Q+ =∞,
and indeed in this case we can define supA := +∞ ∈ R∞. Similarly, if A is unbounded
from below we define inf A := −∞ ∈ R∞.

As applications consider [Rud76, Theorems 1.20 and 1.21]:

Theorem 3.9. The following holds for real numbers:

(a) If x, y ∈ R and x > 0 then there exists n ∈ N+ such that nx > y. (Archimedean
property of R.)

(b) If x, y ∈ R and x < y then there exists q ∈ Q such that x < q < y. (We say Q is
dense in R.)

(c) For every x ∈ R+ (x > 0) and every n ∈ N+ there exists a unique y ∈ R+ such that
yn = x. (We call y the n:th root of x.)

By uniqueness we may denote the n:th root of x > 0 by

n
√
x = x1/n = {q ∈ Q+ : qn < x} ∈ R+.

Exercise 3.6. Let A and B be nonempty sets of real numbers and assume that a ≤ b for
all a ∈ A and b ∈ B. Prove that supA and inf B are real numbers (i.e. not ±∞) and that
supA ≤ inf B.
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*Exercise 3.7 (Difficult!). Given x ∈ R, prove that

inf
{
|(2p+1)x−2q| : p, q ∈ Z

}
=

{
1/n, if x = m/n ∈ Q is a reduced rational with m odd,

0, otherwise.

This is a variant of Thomae’s popcorn function, and appears in some recent problems
in quantum mechanics [Lun19, Section 5.6].

3.4. Sequences of real numbers. A function

N → R
n 7→ xn

(3.20)

is called a sequence (in R / of real numbers), and may also be written either

x0, x1, x2, . . . , or xn, n = 0, 1, 2 . . . , or (xn)∞n=0, (3.21)

or simply (xn)n or (xn) if it is understood that n ∈ N. It is equally common and logical to
index sequences using n ∈ N+, and they may also be interpreted as countably infinite lists.

Remark 3.10. A common convention (used by Rudin for example) is to write sequences
using curly brackets, i.e.

{x0, x1, x2, . . .} or {xn}∞n=0, or simply {xn},

which will be acceptable due to its widespread use, however strictly speaking we would like
to reserve this notation for sets (what will then be the difference between (xn) and {xn}?).

A sequence x0, x1, x2, . . . is called

• bounded if ∃B ∈ R s.t. |xn| < B ∀n ∈ N
• bounded from above if ∃B ∈ R s.t. xn < B ∀n ∈ N
• bounded from below if ∃B ∈ R s.t. xn > B ∀n ∈ N
• increasing if xn ≤ xm if n ≤ m
• decreasing if xn ≥ xm if n ≤ m
• strictly increasing/decreasing if xn < xn+1 resp. xn > xn+1 ∀n ∈ N
• monotonic if increasing or decreasing
• convergent if ∃y ∈ R such that

∀ε > 0 ∃N ∈ N s.t. ∀n
(
n ≥ N ⇒ |xn − y| < ε

)
.

We then say that the sequence (xn) converges to y, or xn → y as n→∞, and call
y the limit of (xn). We also write limn→∞ xn = y.
• Cauchy if

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N ∀m ≥M |xn − xm| < ε.

Theorem 3.11. Every bounded monotonic sequence of real numbers is convergent.

Proof. Let us assume that xn ≤ xn+1 ≤ B ∈ R for all n ∈ N. Then the set

E = {xn : n ∈ N} (3.22)

is a non-empty and bounded from above subset of R. Hence, by Theorem 3.7, there exists
supE = y ∈ R such that xn ≤ y ∀n ∈ N. Further, if ε > 0 we have y − ε < y, so there
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exists N ∈ N such that y−ε < xN (because otherwise we would have found an even smaller
upper bound to the sequence). In other words,

y − ε < xN ≤ xn ≤ y ∀ n ≥ N, (3.23)

which proves that xn → y as n→∞.
The case that xn ≥ xn+1 ≥ B is completely analogous. �

Theorem 3.12. Every Cauchy sequence in R is bounded.

Proof. Assume x0, x1, x2, . . . is Cauchy, and choose ε = 1. Then, by definition, there exists
N ∈ N s.t. |xn − xm| < 1 if n,m ≥ N . In particular, we have |xn − xN | < 1 for all n ≥ N .
Hence

− 1 < xn − xN < 1 ∀ n ≥ N, (3.24)

i.e.

xN − 1 < xn < xN + 1 ∀ n ≥ N. (3.25)

This shows that the sequence (xn) is bounded, because its first part (x0, x1, . . . , xN−1) is a
finite list and thus also bounded (by its maximum resp. minimum). �

Theorem 3.13. Convergent sequences in R are Cauchy.

Proof. Assume that xn → y as n → ∞. Take ε > 0, then ∃ N ∈ N s.t. |xn − y| < ε if
n ≥ N . Hence, if n,m ≥ N we have

|xn − xm| = |xn − y + y − xm| ≤ |xn − y|+ |y − xm| < ε+ ε, (3.26)

by the triangle inequality. This proves that (xn) is Cauchy. �

Corollary 3.14. Convergent sequences in R are bounded.

We also prove a useful immediate consequence of Theorem 3.11:

Theorem 3.15 (Interval enclosure / Intervallkapsling; [Rud76, Thm. 2.38]). Let

In = [an, bn] = {x ∈ R : an ≤ x ≤ bn}, n ∈ N, (3.27)

be a sequence of closed intervals, and assume that In ⊇ In+1 6= ∅ for all n ∈ N. Then there
exists c ∈ R which is contained in all In, i.e.⋂

n∈N
In 6= ∅. (3.28)

Proof. We have an ≤ an+1 ≤ bn+1 ≤ bn for all n ∈ N. This means that (an) is an increasing
and bounded from above sequence, which is convergent by Theorem 3.11:

an → a∗, n→∞, (3.29)

for some a∗ ∈ R. Furthermore, it must hold that a∗ ≤ bn ∀n ∈ N.
In the same way we see that

bn → b∗, n→∞, (3.30)

for some b∗ ∈ R, for which a∗ ≤ b∗.
It follows that [a∗, b∗] =

⋂
n∈N In and c may be choosen arbitrarily within this interval

(or it happens that c = a∗ = b∗). �
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Remark 3.16. Note that it is necessary in the above theorem that the intervals are closed
and nonempty, since e.g.⋂

n>0

(0, 1/n) = {x ∈ R : ∀n > 0 (0 < x < 1/n)} = ∅.

We ask you to review a few of the well-known properties of limits (see [Rud76, Theo-
rem 3.3] for the proofs (where you may replace complex by real if you want), however try
to do them yourself first to practice the concept of limits):

Theorem 3.17 (Limit arithmetic). If (xn) and (yn) are sequences in R and if limn→∞ xn =
x ∈ R and limn→∞ yn = y ∈ R then

(a) limn→∞(xn + yn) = x+ y,
(b) limn→∞ cxn = cx for any c ∈ R,
(c) limn→∞(xnyn) = xy,
(d) limn→∞

1
xn

= 1
x provided that xn 6= 0 ∀n and x 6= 0.

3.4.1. Subsequences. If (xn) is a sequence in R and the function

N ϕ−→ N
n 7→ n′

(3.31)

is strictly increasing, i.e.

n1 < n2 ⇒ n′1 = ϕ(n1) < ϕ(n2) = n′2, (3.32)

then we call the sequence x ◦ ϕ : N → R a subsequence of x = (xn). In other words, the
sequence x0, x1, x2, . . . has a subsequence x0′ , x1′ , x2′ , . . . if for any pair of indices i < j ⇒
i′ < j′ (and we can then write i′ = ϕ(i) as above).

Another way to illustrate this concept is with a diagram:

n ∈ N N 3 n′ = ϕ(n)

R
x′n = xn′

ϕ

x
x′

where (x′n) = x′ = x ◦ ϕ is the subsequence to x = (xn).

Example 3.18. Consider the sequence a = (an) with subsequence a′ = (a′n) = (an′):

a0, a1, a2, a3, a4, a5, a6, a7, . . .

= = = =

a′0 a′1 a′2 a′3 . . .

= = = =

a0′ a1′ a2′ a3′ . . .

that is, 0′ = 1, 1′ = 3, 2′ = 4, 3′ = 6, etc.

Lemma 3.19. Every sequence of real numbers contains a monotonic subsequence.
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Proof. Let x0, x1, x2, . . . be a sequence in R and define the set

P = {n ∈ N : n ≤ m⇒ xn ≥ xm}. (3.33)

A mental image of P is

N

If P is infinite, i.e. ∃0′ < 1′ < 2′ < . . ., i′ ∈ P , then x0′ ≥ x1′ ≥ x2′ ≥ . . ., in other words
we have found a decreasing subsequence.

If P is finite then there exists some N ∈ N such that n ≥ N ⇒ n /∈ P . That is,
∀n ≥ N ∃m > n with xn < xm. But this means that we can construct a strictly increasing
subsequence, because if we have chosen 0′ < 1′ < . . . < n′ such that N ≤ 0′ and x0′ < x1′ <
. . . < xn′ then we know there exists (n+ 1)′ > n′ such that xn′ < x(n+1)′ . �

Note also that if a sequence converges to a limit xn → y, y ∈ R, then any subsequence
(xn′) also converges to the same limit xn′ → y, as n→∞.

3.4.2. Limits in R∞. In the extended real number system R∞ we may define the following
useful extended notions of limits:

Given a sequence (xn) in R, if for every B ∈ R there is an N ∈ N such that n ≥ N ⇒
xn ≥ B (resp. xn ≤ B) then we say that xn diverges/tends to infinity (resp. minus
infinity) as n→∞ and write

xn →∞ resp. xn → −∞,

or

lim
n→∞

xn = +∞ resp. lim
n→∞

xn = −∞.

Exercise 3.8. Extend the limit arithmetic Theorem 3.17 to all the cases that are acceptable
within the arithmetic of R∞ (i.e. ∞−∞ and 0 · ∞ are not acceptable, but 1/∞ = 0 is).

3.4.3. Upper and lower limits of sequences. Consider a sequence (xn) of real numbers, and
let E ⊆ R∞ be the set of (extended) limits of all possible subsequences of (xn):

E = {y ∈ R∞ : ∃(xn′) subsequence of (xn) s.t. xn′ → y as n→∞} (3.34)

(note E 6= ∅ (exercise)). We then define the upper and lower limits of (xn) as

lim sup
n→∞

xn := supE, resp. lim inf
n→∞

xn := inf E.

Example 3.20. Given the sequence xn = n
n+(−1)nn+1 , n = 1, 2, 3, . . ., we have

lim sup
n→∞

xn = +∞, lim inf
n→∞

xn =
1

2
, (3.35)

since for odd n, xn = n → ∞, and for even n, xn = n/(2n + 1) = 1/(2 + 1/n) → 1/2,
and furthermore any subsequence which mixes odd and even n indefinitely cannot converge
(hence these are the only possible limit points).
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Note that a sequence (xn) is convergent with limit limn→∞ xn = y iff [Rud76, Ex. 3.18c]

lim sup
n→∞

xn = lim inf
n→∞

xn = y ∈ R. (3.36)

Exercise 3.9. Show that E 6= ∅ in (3.34).

3.5. Bolzano-Weierstrass. We are reaching the end of our review of the most important
properties characterizing R, where we consider a first instance of the Bolzano-Weierstrass
(BW) theorem and some of its consequences:

Theorem 3.21 (Bolzano-Weierstrass for R). Every bounded sequence of real numbers con-
tains a convergent subsequence.

We supply two different proofs:

Proof of BW by means of a monotonic subsequence. If (xn) is a sequence in R and if |xn| ≤
B ∀n ∈ N then by Lemma 3.19 we may extract a monotonic subsequence (xn′), which is
also bounded. But then it is convergent by Theorem 3.11. �

Proof of BW by means of interval enclosure. Consider a bounded sequence (xn), say on the
finite interval [a0, b0]:

a0 ≤ xn ≤ b0, ∀ n ∈ N. (3.37)

Split this interval into two:

IL0 = [a0,
1
2(a0 + b0)], IR0 = [1

2(a0 + b0), b0],

and consider the corresponding sets of indices

NL0 = {n ∈ N : xn ∈ IL0 }, NR0 = {n ∈ N : xn ∈ IR0 }.
Since their union is infinite, either NL0 or NR0 must be infinite, or both. If NL0 is infinite then
let 0′ be the smallest number in NL0 and set a1 = a0 and b1 = 1

2(a0 + b0). If NL0 is finite

then instead we let 0′ be the smallest number in NR0 and set a1 = 1
2(a0 + b0) and b1 = b0.

Now assume by induction that we have constructed 0′, 1′, . . . , n′ and a0, b0, a1, b1, . . . , an, bn.
Form the sets

NLn = {i ∈ N : an ≤ xi ≤ 1
2(an + bn)}, NRn = {i ∈ N : 1

2(an + bn) ≤ xi ≤ bn}.

If NLn is infinite then let its smallest element > n′ be denoted (n + 1)′ and set an+1 = an
and bn+1 = 1

2(an + bn). If NLn is finite then instead we let (n+ 1)′ be the smallest number

in NRn which is > n′ and set an+1 = 1
2(an + bn) and bn+1 = bn.

We have then the following for every n ∈ N:

xn′ ∈ [an, bn] ⊇ [an+1, bn+1]. (3.38)

By the interval enclosure Theorem 3.15 we have⋂
n≥0

[an, bn] 6= ∅. (3.39)

Furthermore, since we half the considered interval each time, it holds that |an+1 − bn+1| =
|an − bn|/2, so if an → a∗ and bn → b∗ as n→∞ then necessarily a∗ = b∗. In other words
∩[an, bn] contains exactly one element c ∈ R. We then have that

|xn′ − c| ≤ |bn − an| ≤ 2−n|b0 − a0| → 0 (3.40)

as n→∞, i.e. (xn′) is convergent. �
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We have already shown in Theorem 3.13 that convergent sequences in R are necessarily
Cauchy. Using BW we can also prove the non-trivial converse, that any Cauchy sequence
in R necessarily converges.

Theorem 3.22. Every Cauchy sequence in R converges.

Proof. Let (xn) be a Cauchy sequence. By Theorem 3.12 it is necessarily bounded, and
hence by Theorem 3.21 it contains a convergent subsequence, let us denote it (xn′) and
xn′ → y as n→∞ for some y ∈ R. Take ε > 0 and choose N ∈ N such that |xn − xm| < ε
if n,m ≥ N . By the triangle inequality,

|xn − y| = |xn − xn′ + xn′ − y| ≤ |xn − xn′ |+ |xn′ − y|, (3.41)

where the first term is smaller than ε for all n ≥ N since n′ ≥ n ∀n. Possibly taking an
even larger N , we can also ensure by the fact that xn′ → y that the second term is smaller
than ε. This proves that xn → y as n→∞. �

3.6. Uncountability of R. See [Rud76, Thm. 2.14] (Cantor’s diagonal process) concerning
the fact that R is an uncountable set. In a sense, we have added to Q all the limits of all
possible Cauchy sequences, which is of strictly greater cardinality. This will be made precise
in the next section, however let us note some similarity to the second proof of BW above:

Consider any real number x in the interval

I0 = [0, 1) = {x ∈ R : 0 ≤ x < 1}.

Then either

x ∈ IL0 := [0, 1/2) or x ∈ IR0 := [1/2, 1).

Associate i0 ∈ {0, 1} with i0 = 0 in the former case and i0 = 1 in the latter. We repeat
the process with I1 = IL0 in the former case and in the latter we take I1 = IR0 . That is, we
now split this interval I1 into two and assign a digit i1 ∈ {0, 1} according to in which half x
resides. Repeating this construction yields smaller and smaller intervals In (of length 2−n)
and results in the binary representation of x in terms of a (countable) sequence of bits:

x = 0.i1i2i3 . . . , in ∈ {0, 1}.

(A computationally more convenient way to repeat each step is to multiply x by 2 and then
assign in = 0 if x ∈ I0, and in = 1 if x ∈ [1, 2). In the latter case we subtract 1 from x.
Then repeat the process with n replaced by n+ 1.)

Conversely, given an arbitrary sequence of bits

(in) : N+ → {0, 1},

we may associate a sequence of rational numbers

x0 = 0, xn = xn−1 + 2−nin, n ∈ N+.

This sequence (xn) in Q is monotone increasing and bounded, and thus has a limit in R
which is precisely x = limn→∞ xn.

Theorem 3.23 (Cantor’s diagonal process; [Rud76, Thm. 2.14]). The set of all sequences
N→ {0, 1} is uncountable.
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We would then conclude that cardR = card [0, 1) > cardN. Note however that with
repeating sequences of 1’s we have two ways of writing the same limit, e.g.

0.0111111 . . . = 0.1000000 . . . ,

and therefore there are a few details left to be filled in here. (Rudin also avoids this. If
you are curious this is discussed further in [Abb15, Chapter 1.6].) We will arrive at an
alternative proof on the uncountability of R (using Baire’s theorem) in the next section.
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4. Topology of metric spaces [L6-10]

The picture of spaces that we would like to convey in this Section is the following:

Rn ↪→ pos. def. quadratic ↪→ normed ↪→ metric ↪→ topological.

4.1. Reading tip. After the preparations and the special case R that was analyzed in
detail in the previous section, here we shall cover the remainder of [Rud76, Chapter 2-3] as
well as parts of [Rud76, Chapter 4] (uniform continuity is deferred to Section 6). However
the order of the material is a bit different, and we start by recalling properties of Rn that
will be generalized to metric spaces, which is the main focus of Rudin.

The topological notions defined in Rudin Ch 2.15-2.26 are central to the course!
Note regarding 2.18 and 2.43-44: The concept of “perfect sets” is not part of the syllabus

of the course, however it is recommended to read through Ch 2.43-44 as nice examples of
concepts in metric spaces. (And in case there would be a problem on the exam about
“perfect sets”, the definition of “perfect” would be given in the problem formulation.)

Some further remarks concerning notation, Rudin Ch 2.17-2.18:
Rudin’s definition of a neighborhood in 2.18(a) is non-standard, and we would simply

call this an open ball. (Nowadays in most books, a “neighborhood of a point p” is defined
to be any subset (alt: open subset) V ⊆ X which contains Br(p) for some r > 0.) In R
we refer to (open/closed/half-open) intervals, which may be embedded as line segments
in Rn. Rudin also talks about k-cells which we may call products of intervals or simply
boxes. Some concepts might be initially defined differently than Rudin (such as closed
sets) but then shown to be equivalent.

By the end of this Section we take the opportunity to recall/note a few facts concerning
series (in a suitable generalization). This is discussed in Rudin’s Chapter 3, however we as-
sume some familiarity with this material, in particular the convergence tests, from previous
courses in calculus. We finally provide examples of Banach spaces (not in Rudin(!)).

4.1.1. Exercises. Rudin Ch. 2: 6-16, 20-26, 30; Ch. 3: 20-25; Ch. 4: 1-7, 14-19, (23-24)
Exam 2015-03-21: problem 1. Exam 2019-01-14: problem 1. Exam 2019-06-15: problem 4.
Exam 2020-03-16: problem 1. Exam 2020-06-15: problem 1. Exam 2020-08-19: problem 1.

4.1.2. Aims. Concepts discussed in this Section:

• open and closed sets, compact sets
• Heine-Borel lemma
• continuous functions
• metric spaces and their topology

Learning outcomes: After this Section you should be able to

• explain the basic theory of metric spaces
• apply the theory to solve mathematical problems including the construction of sim-

ple proofs

4.2. Topology in Rn. In essence, topology is about specifying roughly(1) how close the
points of a set are to each other, so that we can talk about convergence, and also in which
ways the points are connected. As a preparation let us begin by recalling notions of topology
in Rn.

(1)That is, more qualitatively, while geometry would be more about quantitative distances etc.
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As usual we let Rn denote the set of n-tuples, i.e. lists (x1, x2, . . . , xn) with n com-
ponents/coordinates x1, . . . , xn ∈ R. Addition and scalar multiplication are defined
component/coordinate-wise:

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

t(x1, . . . , xn) := (tx1, . . . , txn), t ∈ R,
making Rn an n-dimensional vector space over R.

In Rn we use balls to discuss topology:

Br(x) := {y ∈ Rn : |x− y| < r}, x ∈ Rn, r > 0, (4.1)

denotes the open ball with radius r centered at the point x, where

|x| = |(x1, . . . , xn)| =

√√√√ n∑
j=1

x2
j (4.2)

is the usual euclidean norm in Rn. The ball Br(x) defines a typical open neighborhood
around the point x. Note that if y ∈ Br(x) is any point in this neighborhood then there
is also some (though possibly quite small) ball Br′(y) around y which also fits in the
neighborhood. Namely take any

0 < r′ < r − |y − x|, (4.3)

then, by the triangle inequality for the norm (4.2) (we shall come back to this in Section 4.8),

z ∈ Br′(y) ⇒ |z− y| < r′ ⇒ |z− x| ≤ |z− y|+ |y − x| < r ⇒ z ∈ Br(x), (4.4)

so indeed Br′(y) ⊆ Br(x). This means that there is some space to move about in a
neighborhood.

In general, an open set V ⊆ Rn is such that at every point x ∈ V there exists an open
neighborhood Br(x) around that point which is also contained in V , i.e. Br(x) ⊆ V for
some r > 0.

4.2.1. Sequences. A sequence in Rn is a function (let’s now use the index m ∈ N)

(xm) : N→ Rn,
or equivalently a countably infinite list of finite lists, or n-tuples,

x0 = (x0,1, x0,2, . . . , x0,n), x1 = (x1,1, x1,2, . . . , x1,n), . . . , xm = (xm,1, xm,2, . . . , xm,n), . . .

Naturally, a sequence is called bounded iff its values don’t escape to infinity, i.e. iff it
fits within some fixed (possibly very large but still finite) ball. WLOG (by taking an even
larger ball) we may compare it to a ball centered at the origin 0 = (0, . . . , 0), i.e.

(xm) bounded :⇔ ∃R > 0 such that xm ∈ BR(0) ∀m ∈ N. (4.5)

We say that the sequence (xm) converges to y ∈ Rn,

lim
m→∞

xm = y,

iff for any ε > 0 there exists N ∈ N so that

m ≥ N ⇒ |xm − y| < ε. (4.6)

This can be formulated in terms of balls that for any open ball/neighborhood at y, say
Bε(y), ε > 0, there is some integer N ≥ 0 such that the tail (xm)m≥N of the sequence
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is entirely contained within Bε(y). Thus by choosing smaller and smaller ε > 0 (“error
margins”) we see that by just taking large enough N we can confine the sequence arbitrarily
close to y.

We also extend the notion of Cauchy sequences, namely (xm) is Cauchy iff for any ε > 0
there exists N ∈ N so that

m, k ≥ N ⇒ |xm − xk| < ε. (4.7)

Note that there is an inherent symmetry here. Namely this may also be expressed symmet-
rically as follows: given an arbitrarily small ball at the origin (of radius ε), by taking a tail
of the sequence starting at a sufficiently large N , any pair of subsequent values xm,xk will
have their difference within that small ball. Similarly to the case R, the benefit of using
the notion of Cauchy sequences is that we will have a notion of convergence of a sequence
without specifying a convergence point.

Equivalent to this geometric interpretation using balls, we also have a coordinate-wise
interpretation. Since for any j ∈ {1, 2, . . . , n},

|xm,j − yj |2 ≤ |xm − y|2, (4.8)

it is clear that convergence according to (4.6) requires convergence in each coordinate in the
sense already defined in the previous section for sequences in R.

Proposition 4.1. Let us denote the projection Pj : Rn → R on the j:th coordinate,

Pj(x1, . . . , xn) := xj , j ∈ {1, 2, . . . , n}.
Then a sequence (xm) in Rn is:

1. bounded iff for all 1 ≤ j ≤ n, the sequence
(
Pj(xm)

)
m∈N in R is bounded.

2. convergent iff for all 1 ≤ j ≤ n, the sequence
(
Pj(xm)

)
m∈N in R is convergent.

3. Cauchy iff for all 1 ≤ j ≤ n, the sequence
(
Pj(xm)

)
m∈N in R is Cauchy.

Exercise 4.1. Think through and prove Proposition 4.1. Note that you may also use (prove)
a geometric fact that a small enough box fits inside a ball and vice versa. In a simplified
form, centered at the origin and rescaled to a cube, this could be stated as follows:

Proposition 4.2. For any x = (x1, . . . , xn) ∈ Rn it holds

1√
n
|x| ≤ max

(
|x1|, |x2|, . . . , |xn|

)
≤ |x|. (4.9)

4.2.2. Bolzano-Weierstrass (BW).

Theorem 4.3 (Bolzano-Weierstrass for Rn). Every bounded sequence in Rn contains a
convergent subsequence.

Again there are two ways to generalize BW from the case n = 1 (Theorem 3.21):

Proof of BW by means of subsequences. Repeat the steps of the one-variable case, using
Proposition 4.1. Namely, given a sequence (xm)m∈N which is bounded we may consider the
sequence P1(xm) = xm,1 which is bounded and pick a subsequence P1(xm′) = xm′,1 which
converges (by BW in R, Theorem 3.21) or which is even monotonic (by Lemma 3.19).
Now consider the corresponding sequence (xm′) in Rn and do the same analysis in the
second coordinate, P2(xm′) = xm′,2. Again we may pick a subsequence, call it (xm′′,2)
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which converges (or is even monotonic). Note that we will also have convergence (resp.
monotonicity) of the other sequence (P1(xm′′)) = (xm′′,1), since it is a subsequence of
(xm′,1). We repeat this process a finite number n of times and arrive at a subsequence
(xm(n)) which converges in each coordinate, and therefore converges in Rn. �

For the second approach, split a large enough box into smaller boxes and use the following
generalization of the interval enclosure theorem (exercise):

Theorem 4.4 (Box enclosure / Intervallkapsling i Rn; [Rud76, Thm. 2.39]). Let

Im = ×nj=1[am,j , bm,j ] = {x ∈ Rn : am,j ≤ xj ≤ bm,j , 1 ≤ j ≤ n}, m ∈ N, (4.10)

be a sequence of closed boxes in Rn, and assume that Im ⊇ Im+1 6= ∅ for all m ∈ N. Then
there exists x ∈ R which is contained in all Im, i.e.⋂

m∈N
Im 6= ∅. (4.11)

A third way of deriving BW is via notions of compactness (cf. [Rud76, Thm. 2.42]) that
we will return to below.

Our most important corollary to BW is:

Theorem 4.5. Every Cauchy sequence in Rn converges.

Proof. The proof is identical to the case n = 1 (recall Theorem 3.22). Namely, any Cauchy
sequence (xm) in Rn is bounded (exercise) and therefore contains a convergent subsequence
(xm′) by BW, say xm′ → y as m→∞. Then, by the triangle inequality in Rn,

|xm − y| = |xm − xm′ + xm′ − y| ≤ |xm − xm′ |+ |xm′ − y|, (4.12)

which can be made arbitrarily small by just taking m′ ≥ m ≥ N large enough. �

Exercise 4.2. Complete the second proof of BW.

4.2.3. Topological notions. We recall for convenience a few other useful topological notions
in Rn that should be familiar from several-variable calculus:

Definition 4.6.

• An inner/interior point x of a set A ⊆ Rn is such that Br(x) ⊆ A for some r > 0.
• A subset F ⊆ Rn is called closed if its complement F c = X \ F is open.
• A subset B ⊆ Rn is called bounded if ∃R > 0 s.t. B ⊆ BR(0).
• A subset K ⊆ Rn is called compact if it is closed and bounded.

Remark 4.7. Our definition of a closed set is the easiest to generalize, however we shall see
below that it is equivalent to the one that is often used in metric spaces (also by Rudin).

Theorem 4.8. In Rn we have the following:

(a) A set U ⊆ Rn is open iff every point x ∈ U is an inner point.
(b) A set F ⊆ Rn is closed iff for any sequence (xm) in Rn

F 3 xm → y ∈ Rn ⇒ y ∈ F,
i.e. “we cannot converge out of closed sets”.

(c) If Ui, i ∈ I (some index set), are open sets then also
⋃
i∈I Ui is open. In other

words, arbitrary unions of open sets are open.
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(d) If U1, . . . , UN are open sets then
⋂N
i=1 Ui is open. In other words, finite intersections

of open sets are open.
(e) Finite unions of closed sets are closed.
(f) Arbitrary intersections of closed sets are closed.

Exercise 4.3. Prove Theorem 4.8 (note that they will be generalized below).
(Hint: For (e) and (f) the relationships for complements (2.1) and (2.2) are useful.)

4.3. Metric spaces. (cf. Rudin 2.15-17)

Definition 4.9. Let X be a set. A metric (or distance function) d on X is a map

X ×X d−−→ R+ = {x ∈ R : x ≥ 0}
such that

(i) d(x, y) = d(y, x) ∀x, y ∈ X (symmetric)
(ii) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X (triangle inequality)
(iii) d(x, y) = 0⇔ x = y ∀x, y ∈ X (non-degenerate)

The pair (X, d) is called a metric space (and we also call the set X a metric space if d is
understood).

Example 4.10. X = Rn with d(x,y) := |x − y| is our most familiar example of a metric
space (and in fact, as will be discussed further in Section 4.8, any normed vector space is also
a metric space). In particular, R is a metric space with distance function d(x, y) = |x− y|.
Example 4.11. Let X = S2 := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unit sphere
with d(x,y) defined as the length of the geodesic curve (i.e. the shortest path along a great
circle) connecting the points x ∈ S2 and y ∈ S2. Then (X, d) is a metric space.

Example 4.12. Let X be any set and define d : X ×X → {0, 1} ⊆ R+ by

d(x, y) =

{
1 if x 6= y,

0 if x = y.
(4.13)

This is called the discrete metric on X.

Example 4.13. Let X = Z2 be the integer lattice points in the plane and define the
distance d(x,y) between any two such lattice points to be the minimal number of steps
(considering the edges connecting the points to be aligned with the coordiate axes) that
need to be traversed to go from x to y. This defines a metric space.

Example 4.14. Let M be a finite set and X = P(M) the set of all subsets of M . Define
d : X ×X → N ⊆ R+ by

d(A,B) = |A4B| = card(A4B), (4.14)

where
A4B := (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A) (4.15)

denotes the symmetric difference of the sets A and B in X. Then d may be verified to
be a metric on X.

Example 4.15. Any subset Y ⊆ X of a metric space (X, d) is also a metric space with
metric on Y given by the restriction of d to Y × Y , i.e. d|Y×Y : Y × Y → R+, where
d|Y×Y (x, y) = d(x, y) for all x, y ∈ Y . This is called the subspace metric.
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Exercise 4.4. Verify that the discrete metric (4.13) is a metric. Try to realize the discrete
metric space (X, d) as a metric subspace of Rn with its standard metric, at least for very
small (finite) sets X.

Exercise 4.5. Verify that (4.14) defines a metric on X.
(Hint: use Venn diagrams for example.)

4.3.1. Topology in metric spaces. Inspired by our sense of topology of Rn using balls, we
make the following definitions in metric spaces, simply by measuring distances using the
given metric.

Definition 4.16 (Metric topology). Let (X, d) be a metric space.

• A subset V ⊆ X is called open iff

∀x ∈ V ∃ε > 0 s.t. ∀y ∈ X
(
d(x, y) < ε ⇒ y ∈ V

)
.

• An open “ball” at x ∈ X of radius r > 0 is

Br(x) := {y ∈ X : d(x, y) < r}.
(Rudin calls this a neighborhood Nr(x) of x. We may also just simply call it a
ball in X and ignore its actual geometry.)

Hence an open set is such that at any one of its points there is enough room to
contain also some open “ball” or neighborhood around the point. We may say that
the set consists solely of inner points:
• Given a subset A ⊆ X, a point x ∈ A is called an inner/interior point of A iff

there exists a neighborhood at x which is enclosed in A, i.e. ∃r > 0 s.t. Br(x) ⊆ A.
• A subset F ⊆ X is called closed iff its complement F c = X \ F is open.
• A subset B ⊆ X is called bounded iff it fits in some finite “ball”, i.e. if there exists
p ∈ X and R > 0 s.t. B ⊆ BR(p).

Theorem 4.17. If (X, d) is a metric space, then

(a) an open “ball” Br(x) is an open set,
(b) ∅ and X are open and closed,
(c) if V and W are open then V ∩W is open,
(d) if U is a set of open sets then their union

∪ U = {x ∈ X : ∃V ∈ U s.t. x ∈ V } (4.16)

is also open,
(e) if F and S are closed then F ∪ S is closed,
(f) if F is a set of closed sets then their intersection

∩ F = {x ∈ X : x ∈ F ∀F ∈ F} (4.17)

is also closed.

The proof is left as Exercise 4.7.

Remark 4.18. Note that if the intersection of any pair of open sets is open, then also the
intersection of any finite number of open sets is open.

Furthermore, the finiteness of intersections in (c) cannot be relaxed if we want to have a
reasonable sense of topology, namely if we consider the intervals In = (−1/n, 1/n) = B1/n(0)
to be open in the metric space R, then their intersection

⋂
n≥1 In = {0} is not open (it is
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in fact closed, and the only subsets of R which are both open and closed are ∅ and R itself;
cf. Exercise 4.14).

We will not leave the realm of metric spaces in this course, however let us simply remark
that any family of subsets having the above properties (b), (c) and (d) (the open sets)
defines a “topology”:

Definition 4.19 (Topology). Let X be a set and let T ⊆ P(X) be a set of subsets of X.
Then T is called a topology on X, and the elements in T are called the open sets of this
topology, if the following holds:

(i) ∅ and X belong to T,
(ii) V ∈ T and W ∈ T ⇒ V ∩W ∈ T

(iii) U ⊆ T ⇒ ∪U ∈ T.

The pair (X,T) is then called a topological space.

Exercise 4.6. Sketch the “balls” for the examples of metric spaces in Section 4.3.

Exercise 4.7. Prove Theorem 4.17 by extending the use of balls from Rn to metric spaces.
For example, for (c) one may note that for any r1, r2 > 0 and x ∈ X

Br1(x) ∩Br2(x) = Bmin(r1,r2)(x). (4.18)

Exercise 4.8. Let B be a bounded subset of a metric space (X, d). Prove that there is a
real number M such that d(x, y) < M for every pair of points x, y ∈ B.

Exercise 4.9. Define by

B̄r(x) := {y ∈ X : d(x, y) ≤ r} (4.19)

the closed “ball” of radius r ≥ 0 at x ∈ X. Show that indeed it is closed.

Exercise 4.10. Prove that for the discrete metric space (X, d) in Example 4.12, every
subset A ⊆ X is both open and closed.

4.3.2. Sequences in metric spaces. As usual, a sequence in a set X is a map (xn) : N→ X.

Definition 4.20. A sequence x0, x1, x2, . . . in a metric space (X, d) is called

• bounded if there exists y ∈ X and R > 0 such that

d(xn, y) < R ∀n ∈ N
• convergent if there exists some y ∈ X such that

∀ε > 0 ∃N ∈ N : n ≥ N ⇒ d(xn, y) < ε

We then write xn → y as n→∞, or limn→∞ xn = y.
• Cauchy if

∀ε > 0 ∃N ∈ N : n,m ≥ N ⇒ d(xn, xm) < ε

Another way to formulate Cauchy is using the notion of diameter:

Definition 4.21. The diameter of a subset E ⊆ X of a metric space (X, d) is the greatest
distance between any two of its elements,

diamE := sup{d(x, y) : x ∈ E, y ∈ E} ∈ R∞. (4.20)
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Then a sequence (xn) in X is Cauchy iff

lim
N→∞

diam{xn}n≥N = 0. (4.21)

Definition 4.22. A metric space is called complete (sv: fullständigt) if every Cauchy
sequence converges.

Example 4.23. By Theorem 4.5, Rn with its standard metric is a complete metric space.
However, Qn (with the subspace metric) is not complete.

Exercise 4.11. Prove that any Cauchy sequence in a metric space is bounded.

Exercise 4.12. Show that convergent sequences in a metric space are Cauchy, but that the
converse does not always hold (unless it is complete).

4.3.3. Limit points, closure and interior. (cf. Rudin 2.18-28)
Let us for convenience say that two sets A and B meet if their intersection A ∩ B is

non-empty (note e.g. that A and Ac do not meet). Compare the following definitions to
[Rud76, Def. 2.18]:

Definition 4.24. Let (X, d) be a metric space (or topological space) and A ⊆ X a subset.

• A point p ∈ X is called a limit point of A if for each open set V containing p
there exists some q ∈ V ∩ A, q 6= p. In other words, A \ {p} meets every open
neighborhood of p. In a metric space this is equivalent to:

∀r > 0 ∃q ∈ A s.t. 0 < d(p, q) < r. (4.22)

• The closure (sv: tillslutningen) Ā is defined to be the intersection of all closed sets
that contain A,

Ā := ∩{F ∈ P(X) : F closed, A ⊆ F}.
Hence A ⊆ Ā and Ā is the smallest closed set containing A.
• The interior (sv: inre) A◦ is defined to be the union of all open sets contained in
A,

A◦ := ∪{V ∈ P(X) : V open, V ⊆ A}.
Hence A◦ ⊆ A and A◦ is the largest open set contained in A.
• The boundary (sv: randen) of A is the set ∂A := Ā \A◦.
• A is called dense (sv: tät) in X if every nonempty open subset of X meets A. In

a metric space this is equivalent to:

∀x ∈ X, r > 0 ∃q ∈ A s.t. d(x, q) < r. (4.23)

Theorem 4.25 (Equivalent formulations). Let (X, d) be a metric space and A ⊆ X a
subset.

(a) A point p ∈ X is a limit point of A iff every open ball/neighborhood at p contains
infinitely many points of A. Or, equivalently, iff there exists a sequence (xn) in
A \ {p} such that xn → p.

(b) The set A is closed iff it contains all of its limit points, i.e. for any x ∈ X it holds
that, if A 3 xn → x as n→∞, then x ∈ A.

(c) The closure Ā is the union of A and the set of all limit points of A (hence A is
closed iff A = Ā).
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(d) The interior A◦ is the set of all inner points of A (hence A is open iff A = A◦).
(e) The set A is dense in X iff every point of X is either a point of A or a limit point

of A (hence A is dense in X iff Ā = X).

Proof.

(a) If p ∈ X is a limit point of A then by (4.22) we can for each n ∈ N+ find a point
xn ∈ A s.t. 0 < d(p, xn) < 1/n. This sequence (xn), as well as its intersection
with Bε(p) for any ε > 0, contains infinitely many points since otherwise the set
{d(p, xn)}n∈N+ of strictly positive numbers would be bounded from below by some
ε > 0. The converse is immediate by (4.22), that if a sequence A 3 xn → p then p
is a limit point of A.

(b) Let A be closed, i.e. Ac open, and let x ∈ X be the limit of a sequence in A,
A 3 xn → x. If x /∈ A then x ∈ Ac, and hence is an inner point of Ac. Thus there
is some r > 0 and a ball Br(x) ⊆ Ac, but then Br(x)∩A = ∅ which contradicts the
assumption that A 3 xn → x. Therefore x ∈ A.

Conversely, let A contain all its limit points and consider x ∈ Ac. Then since this
cannot be a limit point of A, by logical negation there exists a ball Br(x), r > 0,
with none of its points in A. That is, Br(x) ⊆ Ac and therefore x is an inner point
of Ac. Hence Ac is open and A is closed.

(c) Denote by A′ the set of limit points of A in X. We claim that A∪A′ is a closed set.
Namely, if x ∈ (A ∪ A′)c then it is neither in A nor a limit point of A. Thus there
exists a ball Br(x) ⊆ Ac. Furthermore, no point of this ball can be a limit point of
A, hence Br(x) ⊆ Ac ∩ (A′)c, which means that Ac ∩ (A′)c = (A ∪A′)c is open.

Since A ∪ A′ is a closed set, we obtain Ā ⊆ A ∪ A′ (it will be included in the
intersection). Furthermore, for each F s.t. A ⊆ F and F is closed, by (b) we have
A ∪A′ ⊆ F . Thus A ∪A′ ⊆ Ā (it remains included in the intersection).

(d) We have immediately that if x ∈ A◦ then x ∈ V ⊆ A for some open V , and therefore
x is an interior point of A. And conversely, if x is interior to A then x ∈ Br(x) ⊆ A◦
for some r > 0.

(e) If every nonempty open subset V meets A, then for every point x ∈ X, and any
r > 0, Br(x) meets A, which implies that either x ∈ A or x is a limit point of A.
Conversely, given an open subset V and x ∈ V , if x ∈ X is either in A or a limit
point of A, then any ball Br(x) ⊆ V will meet A.

�

Remark 4.26. A note on terminology: A limit point p ∈ X of a set A concerns an infinity
of different points of A accumulating to p. However recall that for a sequence (xn) we may
also talk about a point p ∈ X being the limit of the sequence, i.e. limn→∞ xn = p, but
this does not necessarily imply that p is a limit point of the set A = {xn : n ∈ N}, as is
exemplified by the constant sequence xn = p ∀n ∈ N. We can capture this difference by
calling p an accumulation point for the sequence, and a limit of the sequence, but not a
limit point of the corresponding set A = {p} (it has no limit points).

Example 4.27. Recall that by Theorem 3.9, Q is dense in R, namely if we take an open
set V 6= ∅ then there is a point x ∈ V and an open interval (x − ε, x + ε) ⊆ V . Thus we
may also find some q ∈ Q s.t. x− ε < q < x+ ε, i.e. q ∈ V .

Exercise 4.13. Show that Qn is dense in Rn.
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Remark 4.28. A metric (or topological) space is called separable if it contains a countable
dense subset. Hence Rn is separable.

Exercise 4.14. Show that the only subsets of R which are both open and closed are ∅ and
R.

Exercise 4.15. Show that if A ⊆ B then A◦ ⊆ B◦ and Ā ⊆ B̄.

4.3.4. Relative topology. (cf. Rudin 2.29-30)
Given a subset Y ⊆ X of a metric space (X, d) (or topological space), we can define

an induced topology on Y by defining a set A ⊆ Y to be open relative to Y iff there
exists some open set W in X such that V = Y ∩W . That is, the open sets of the relative
topology (or subspace topology inherited from X) are precisely

TY⊆X := {A ∈ P(Y ) : ∃W ⊆ X open s.t. A = Y ∩W}. (4.24)

Exercise 4.16. Verify that this defines a topology on Y in the sense of Definition 4.19, i.e.
that ∅ and Y are open, and finite intersections and arbitrary unions of open sets are open.

Exercise 4.17. Which sets are both open and closed relative to [a, b] ⊆ R? Why?

4.4. Compactness and Heine-Borel. (cf. Rudin 2.31-41)
Recall that closed and bounded sets in Rn are called compact. We will now revise this

definition to one which can be used also without a metric or a notion of boundedness (only a
topology, i.e. notion of what is an open set, is required), and even if we have a metric it turns
out that this definition better captures the properties we need of compactness in a general
space (and in fact, although compact metric spaces are always complete and bounded, not
every complete and bounded metric space is compact).

Definition 4.29 (Covering). Let T ⊆ P(X) denote the set of all open subsets of a metric
(or topological) space X, and let K ⊆ X be a subset.

• A subset U of T is called an open cover of K if K ⊆ ∪U , i.e., if every x ∈ K is an
element of some set V ∈ U .
• If V ⊆ U and if K ⊆ ∪V then V is called a subcover of U .
• If moreover V is finite (i.e. it contains only a finite number of open sets) then it is

called a finite subcover (sv: ändlig delövertäckning) of U .

Now we can make the following important and fundamental definition:

Definition 4.30 (Compactness). A subset K of a metric (or topological) space X is called
compact iff every open cover of K contains a finite subcover. Similarly, the space X itself
is called compact iff every open cover of X contains a finite subcover.

Theorem 4.31. Compact sets in metric spaces are necessarily closed.

*Remark 4.32. The same conclusion is true in any Hausdorff space: A topological space
is called a Hausdorff space iff for all p 6= q in X there exist open sets V and W s.t.
V ∩W = ∅, p ∈ V and q ∈W , i.e. “the topology separates points”.

Proof. Let K be a compact subset of a metric (or Hausdorff) space X and let p ∈ Kc. To
each q ∈ K there exist open disjoint sets Vq and Wq such that q ∈ Vq and p ∈ Wq. Since⋃
q∈K Vq ⊇ K and K compact there exists a finite number of points q1, . . . , qN in K such

that Vq1 ∪Vq2 ∪ . . .∪VqN ⊇ K. Now let Wp := Wq1 ∩Wq2 ∩ . . .∩WqN , then obviously p ∈Wp,
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Wp is open, and K ∩Wp ⊆ (Vq1 ∪ . . . ∪ VqN ) ∩Wp = ∅. This shows that Kc, being a union
of such Wp, is open. �

Theorem 4.33 (Heine-Borel theorem). A subset K ⊆ Rn is compact (in the sense of
Definition 4.30) if and only if K is closed and bounded.

Proof. Suppose K is closed and bounded and let U be an open cover of K. We now assume
that K cannot be covered by a finite subcover of U , and proceed with an iterative splitting
argument, similar to the second proof of BW (Exercise 4.2), leading to a contradiction.

Namely, consider a closed cube Q0 := [a, b]n ⊇ K. Split this cube into 2d smaller closed
cubes Q1,j of half the side length, (b − a)/2. Consider the closed sets K1,j := K ∩ Q1,j ,
j ∈ {1, . . . , 2n}. If no finite subset of U covers K then there is at least one of the K1,j that
is not covered by a finite subset of U (otherwise K would be covered by the union over all
j). Call this set K1 = K1,j and consider the cube Q1 = Q1,j .

Iterating this argument gives us a sequence K =: K0 ⊇ K1 ⊇ K2 ⊇ . . . such that for
all m ∈ N, Km is closed, nonempty and is of diameter diamKm ≤

√
n2−m(b − a) → 0 as

m → ∞. Furthermore, no finite subcover of U covers Km. If we pick xm ∈ Km then it
follows by BW (Theorem 4.3) that there is a convergent subsequence (xm′) in K, converging
to x ∈ K say (K is closed). But then also x ∈ Km for each m (why?). Take some open
V ∈ U such that x ∈ V . But then V ⊇ Bε(x) ⊇ Km if m is big enough and ε > 0 small
enough. Thus Km is covered by {V } ⊆ U . This is a contradiction, hence K is compact.

Conversely, any compact K is closed by Theorem 4.31, and to prove that K is bounded
is left as Exercise 4.18. �

Definition 4.34. A metric space (X, d) is said to have the Heine-Borel (HB) property
if every closed and bounded subset of X is compact.

Thus, Rn has the Heine-Borel property for any n ∈ N+. We also saw some similarities
to Bolzano-Weierstrass in the proof above, and in fact an appropriate generalization of the
approach to arbitrary metric spaces goes as follows:

Theorem 4.35. In any metric space (or Hausdorff space), closed subsets of compact sets
are also compact.

Proof. Let K be compact and F ⊆ K closed. If U is an open cover of F , then V = U ∪{F c}
is an open cover of K. Hence it has a finite subcover F ⊆ V. But F \ {F c} ⊆ U is then
also a finite cover of F . �

Theorem 4.36 (Compact enclosure; cf. box enclosure Theorem 4.4). If (Kn) is a sequence
of nonempty compact sets in a metric (or Hausdorff) space such that Kn ⊇ Kn+1 ∀n ≥ 1
then

⋂
n≥1Kn is nonempty.

Proof. {Kn}n≥1 is a collection of compact, hence closed, subsets such that the intersection
of every finite subcollection is nonempty. Note that {Kc

n}n≥1 is a collection of open subsets.
If K1 ∩

⋂
n≥2Kn = ∅ then (again recall (2.2))

K1 ⊆
( ⋂
n≥2

Kn

)c
=
⋃
n≥2

Kc
n (4.25)

Since K1 is compact there is some finite subcover, say

K1 ⊆ Kc
n1
∪ . . . ∪Kc

nN
= (Kn1 ∩ . . . ∩KnN )c , (4.26)
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but then K1 ∩Kn1 ∩ . . . ∩KnN = ∅, which is a contradiction. �

Theorem 4.37 (cf. Rudin Thm 2.37 and Exc 2.26). A subset K ⊆ X of a metric space is
compact iff every infinite subset of K has a limit point in K.

*Remark 4.38. A topological space K with the latter property may be called limit point
compact. Thus limit point compactness is equivalent to compactness in metric spaces.

Proof. Note that we may in fact forget about X and just consider the induced relative
topology on K (cf. [Rud76, Thm 2.33]).

Assume that K is compact and consider an infinite subset E ⊆ K. Assume that E has
no limit point in K. Then at every p ∈ K there is some ball Brp(p) which contains at most
one point of E (possibly p ∈ E). Therefore any finite subcollection of {Brp(p) : p ∈ K}
can only cover finitely many points of E, therefore cannot cover E or K. This contradicts
compactness of K.

Conversely, assume every infinite subset E ⊆ K has a limit point in K. By exercises in
Rudin (proving first that K is separable and thus has a countable base of open sets), every
open cover of K necessarily has a countable subcover {Vn}n∈N+ . If K cannot be covered
by any finite subcollection then for each n, Fn := (V1 ∪ . . . ∪ Vn)c 6= ∅, Fn ⊇ Fn+1 closed,
however

⋂
n≥1 Fn = ∅. Taking xn ∈ Fn we have some subsequence xn′ → y ∈ K, so that by

closedness also y ∈ Fn for all n ≥ 1. This yields a contradiction. �

Corollary 4.39. Every compact metric space is complete.

Proof. Take a Cauchy sequence (xn) in a compact metric space X which is not eventually
constant (converged). Then its set of points {xn} cannot be a finite set since if it was, the
set {d(xn, xm) : n,m ∈ N, xn 6= xm} ⊆ R+, and therefore its diameter, would be bounded
from below by some ε > 0. Hence {xn} is infinite and has a limit point, say y ∈ X, by
Theorem 4.37. Thus, there exists a subsequence (xn′) s.t. xn′ → y. Then, taking n′ ≥ n,
also

d(xn, y) ≤ d(xn, xn′) + d(xn′ , y)→ 0 as n→∞,
showing that xn → y. Hence every Cauchy sequence in X converges. �

Exercise 4.18. Prove that a compact set is necessarily bounded.

Exercise 4.19. Prove that a finite set is compact.

Exercise 4.20. Prove that an infinite set with the discrete metric (see Example 4.12) is
complete and bounded but not compact.

Exercise 4.21. Give an alternative proof of Theorem 4.33 (HB) using limit point compact-
ness and BW.

Exercise 4.22. Prove that a compact metric space is separable.
(Hint: consider coverings by balls B1/n(x).)

4.5. Connectedness. (cf. Rudin 2.45-47)

Definition 4.40. We call a metric space (or topological space) X disconnected if it can
be written as the union X = A ∪B of two nonempty disjoint open subsets A and B. If X
is not disconnected, it is connected (sv: sammanhängande). Given a subset Y ⊆ X we
say it is connected or disconnected (relative to X) depending on whether it is connected or
disconnected in the relative topology TY⊆X .
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Remark 4.41. Note that if X = A ∪ B where A and B are both open and disjoint then
Ac = B = B̄ and Bc = A = Ā, so A ∩ B̄ = ∅ = Ā ∩ B, which corresponds to Rudin’s
definition (where A and B are called separated).

Example 4.42. Recall that in R only the sets ∅ and R are both open and closed (Exer-
cise 4.14), so R is indeed connected. The same is true of an interval (a, b), (a, b], [a, b) or
[a, b] (why? cf. Exercise 4.17), but if e.g. I ⊆ R is such that I ⊆ (a, b)∪ (b, c) with elements
in both intervals, then I = (I ∩ (a, b)) ∪ (I ∩ (b, c)) and hence it is disconnected.

4.6. Continuity. (cf. Rudin Chapter 4 — recall 4.4 & 4.9!)
Recall that for a function f : Ω ⊆ R → R we can, for each inner point x in the domain

Ω, consider its left-hand resp. right-hand limits,

f(x−) = lim
y→x−

f(y), f(x+) = lim
y→x+

f(y), (4.27)

assuming that they exist, that is, if the corresponding upper and lower limits agree (compare
(3.36)):

lim sup
y→x±

f(y) = lim inf
y→x±

f(y) ∈ R. (4.28)

In these we consider the supremum resp. infimum of all possible limits as Ω 3 y → x±:

{L ∈ R∞ : f(xn)→ L for some sequence xn → x, xn >(resp.<)x}. (4.29)

We say that f is continuous at x ∈ Ω iff both these limits exist and agree with the function
value,

f(x−) = f(x+) = f(x), (4.30)

or equivalently, iff

∀ε > 0 ∃δ > 0 s.t. ∀y ∈ Ω
(
|y − x| < δ ⇒ |f(y)− f(x)| < ε

)
. (4.31)

If f is not continuous at x ∈ Ω then it is discontinuous at x and we may then either have a
simple discontinuity, also called a discontinuity of the first kind, if f(x−) and f(x+)
both exist, while otherwise it is a discontinuity of the second kind.

Note that in the case that x ∈ ∂Ω ⊆ R is a boundary point, the definition (4.31) is still
valid but we may in (4.30) only take the limit on the side which is in the domain Ω.

Similarly, if f : Ω ⊆ Rn → Rm and x ∈ Ω, and there is an L ∈ Rm such that

∀ε > 0 ∃δ > 0 s.t. ∀y ∈ Ω
(
0 < |y − x| < δ ⇒ |f(y)− L| < ε

)
, (4.32)

then we call this the limit of f at x and write L = limy→x f(y). We then say that f is
continuous at x ∈ Ω if

lim
y→x

f(y) = f(x), (4.33)

or in other words that (note the differences to (4.32))

∀ε > 0 ∃δ > 0 s.t. ∀y ∈ Ω
(
|y − x| < δ ⇒ |f(y)− f(x)| < ε

)
. (4.34)

Again, these notions generalize straightforwardly to metric spaces:

Definition 4.43 (Continuity). A mapping f : X → Y , where (X, dX) and (Y, dY ) are
metric spaces, is said to be continuous at p ∈ X iff

∀ε > 0 ∃δ > 0 s.t. ∀x ∈ X
(
dX(x, p) < δ ⇒ dY (f(x), f(p)) < ε

)
. (4.35)
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If f is not continuous at p ∈ X it is called discontinuous at p. If f is continuous at every
point of X it is simply called continuous. The set of all continous mappings from X to Y
is denoted C(X;Y ) (or just C(X) in the case that Y = R).

Theorem 4.44 (Continuous maps pull back open sets to open sets). If X and Y are metric
spaces, then a function f : X → Y is continuous precisely if the pulled back set

f−1(V ) = {x ∈ X : f(x) ∈ V }
is open in X whenever V is open in Y .

Proof. Suppose f is continuous and that V is open in Y . Let p ∈ f−1(V ) i.e. f(p) ∈ V
and choose ε > 0 such that Bε(f(p)) ⊆ V . Then ∃δ > 0 such that dX(p, x) < δ implies
dY (f(p), f(x)) < ε. Hence, Bδ(p) ⊆ f−1(Bε(f(p))) ⊆ f−1(V ), showing that f−1(V ) is
open.

Conversely, assume that f−1(V ) is open whenever V is open, and let p ∈ X. Then for
any ε > 0, V = Bε(f(p)) is open and contains f(p). Thus f−1(V ) is open and contains p.
Since p is an inner point we can find Bδ(p) ⊆ f−1(V ). Thus f is continuous at p according
to the definition (4.35). �

This leads naturally to the following very general definition:

Definition 4.45 (Continuity in topological spaces). A mapping f : X → Y between two
topological spaces is called continuous iff f−1(V ) is open for every open V in Y .

Exercise 4.23. Consider for f : Ω ⊆ R→ R the graph graph(f) ⊆ R2. Give a description
of (4.28) and (4.30) in terms of limit points (x, y) of this graph in the metric space R2.

Exercise 4.24. Show that a function f : X → Y between metric (or, if you want, topolog-
ical) spaces is continuous iff f−1(F ) is closed in X for every F closed in Y .

Exercise 4.25. Give examples of functions f : (a, b)→ R with discontinuities of the second
kind. Can these notions be generalized to f : R2 → R? (Discuss!)

Exercise 4.26. Consider the popcorn function f : R→ Q ⊆ R from Exercise 3.7,

f(x) :=

{
1/n, if x = m/n ∈ Q is a fully reduced rational with m odd,

0, otherwise.

Show that f has a simple discontinuity at every odd-numerator rational, and is continuous
everywhere else.

4.6.1. Continuity and compactness.

Theorem 4.46 (Continuous maps preserve compactness). Let f : X → Y be a continuous
mapping between the metric (or topological) spaces X and Y , and let K ⊆ X be a compact
subset. Then f(K) = {f(x) ∈ Y : x ∈ K} is compact in Y .

Proof. Let U ⊆ P(Y ) be an open cover of f(K). Then the set {f−1(V ) : V ∈ U} is an open
cover of K. Since K is compact there is a finite subset F of U such that {f−1(V ) : V ∈ F}
is a finite cover of K. But then f(K) ⊆ ∪F and thus F is a finite cover of f(K). �

Corollary 4.47 (Min/max value theorem). Any continuous map f : [a, b] → R takes
both a maximum and a minimum, i.e. there exists xmax ∈ [a, b] such that f(xmax) ≥
f(x) ∀x ∈ [a, b]. and there exists xmin ∈ [a, b] such that f(xmin) ≤ f(x) ∀x ∈ [a, b].
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Proof. This is immediate from the fact that f([a, b]) is a closed and bounded set in R by
HB, so it contains its supremum and its infimum. �

Exercise 4.27. Find various contradictions to Corollary 4.47 if K = [a, b] is replaced by a
non-compact set.

4.6.2. Continuity and connectedness.

Theorem 4.48 (Continuous maps preserve connectedness). Let f : X → Y be a continuous
mapping between the metric (or topological) spaces X and Y , and let S ⊆ X be a connected
subset. Then f(S) = {f(x) ∈ Y : x ∈ S} is connected.

Proof. Assume to the contrary that f(S) is disconnected, i.e. there exist A and B nonempty,
disjoint and open in the relative topology Tf(S)⊆Y such that f(S) = A∪B, hence there exist

Ã and B̃ open in Y s.t. A = Ã ∩ f(S) and B = B̃ ∩ f(S). Consider f−1(Ã) and f−1(B̃).

These are open in X and V := S ∩ f−1(Ã) resp. W := S ∩ f−1(B̃) are open in S (i.e. the
relative topology TS⊆X). Note that V and W are nonempty. Furthermore, note that they
are disjoint since if p ∈ V ∩W then f(p) ∈ A ∩ B = ∅. Lastly, note that V ∪W = S since
V ⊆ S, W ⊆ S and S ⊆ V ∪W by the definitions. Thus S is disconnected, which is a
contradiction. �

Corollary 4.49 (Intermediate value theorem). Any continuous map f : [a, b]→ R has
the intermediate value property, i.e. if y ∈ R is such that f(a) < y < f(b) then there
exists x ∈ (a, b) such that f(x) = y.

Proof. This is immediate from the fact that f([a, b]) is connected (as well as bounded).
Namely, if y is in the interval (f(a), f(b)) but not in f([a, b]) then we can nontrivially
decompose

f([a, b]) =
(
(−R, y) ∩ f([a, b])

)
∪
(
(y,R) ∩ f([a, b])

)
(4.36)

for sufficiently largeR > 0. The image of f in R is therefore disconnected (cf. Example 4.42),
which is a contradiction. �

4.6.3. Monotonicity. (cf. Rudin 4.28-31)
A function f : (a, b) ⊆ Ω→ R is said to be monotonically increasing (resp. decreas-

ing) on (a, b) if a < x < y < b implies f(x) ≤ f(y) (resp. f(x) ≥ f(y)). A function is
monotonic if it is either monotonically increasing or decreasing. A function is strictly
increasing resp. decreasing (monotonic) if there is strict inequality. (Compare these defini-
tions to the corresponding ones for sequences, Section 3.4.)

Interestingly, monotonic functions can have no discontinuities of the second kind, and
may have at most countably many discontinuities; see Rudin 4.29-30.

Exercise 4.28 (Rudin Exercise 4.15). A map f : X → Y is called open if it maps open sets
to open sets, i.e. V ⊆ X open ⇒ f(V ) ⊆ Y open. Show that if f : R → R is open and
continuous then f is strictly monotonic.

4.7. Baire’s theorem. (cf. Rudin Exc 1.30 and 3.21-22)

Lemma 4.50 (Ball enclosure). Let (X, d) be a complete metric space and consider sequences
of points pn, xn, radii rn > 0, and corresponding balls s.t.

xn ∈ B̄n := B̄rn(pn) ⊇ B̄n+1 6= ∅, rn → 0 as n→∞. (4.37)

Then (xn) is Cauchy and xn → x, where {x} =
⋂
n B̄n.
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The proof of this lemma is left as Exercise 4.29.
The following theorem turns out to be extremely useful in functional analysis:

Theorem 4.51 (Baire’s category theorem). Let (X, d) be a complete metric space and
Vn, n ∈ N, a sequence of open dense subsets of X. Then

⋂∞
n=0 Vn is dense in X (and,

assuming X has no discrete/isolated points, uncountable).
Equivalently, if X =

⋃∞
n=0 Fn where Fn, n ∈ N, are closed subsets, then at least one Fn

has a nonempty interior.

Proof. It is sufficient to show that V :=
⋂∞
n=0 Vn meets every nonempty open subset. Let

W ⊆ X be a nonempty open subset, then for each n ∈ N, Vn ∩W is nonempty and open.
Hence there is p0 ∈ V0 ∩W and some 0 < r0 < 1 such that B̄r0(p0) ⊆ B2r0(p0) ⊆ V0 ∩W .
Consider then the set W1 := Br0(p0) ∩ V0 ∩W . This is nonempty and open and therefore
meets V1 to an open set. Thus we may find p1 ∈ V1 ∩W1 as well as some 0 < r1 < r0 s.t.
B̄r1(p1) ⊆ B2r1(p1) ⊆ V1 ∩W1.

Consider then W2 := Br1(p1)∩ V1 ∩W1. Again this is nonempty and open and therefore
meets V2 to an open set from which we can pick p2 and 0 < r2 < 1/2 s.t. B̄r2(p2) ⊆
B2r2(p2) ⊆ V2 ∩W2.

Iterating this produces a sequence of sets Wn+1 := Brn(pn)∩Vn∩Wn, with 0 < rn < 1/n,
which are nonempty and open, and furthermore Wn+1 ⊆ B̄rn(pn) =: B̄n. By Lemma 4.50,
the sequence (pn) is Cauchy and converges to some {p} =

⋂∞
n=0 B̄n. Since Wn+1 ⊆ Wn,

also p ∈
⋂
n≥0Wn ⊆ V ∩W . Thus V is dense in X.

Finally, we claim that V is uncountable. Namely, assuming that V is countable, say
V = {q1, q2, . . .}, we may define V ′n := Vn \ {q1, . . . , qn} and redo the argument above with
Vn replaced by V ′n. Assuming X has no discrete points, V ′n are still open and dense, and
furthermore p ∈ V ′ :=

⋂
n≥0 V

′
n ⊆

⋂
n≥0 Vn = V . Therefore p = qN for some N ∈ N, and

qN ∈ V ′N = VN \ {q1, . . . , qN}, which is a contradiction.
The equivalent statement of the theorem follows by taking complements. �

Corollary 4.52. The real numbers R (and thus also Rn) are uncountable.

Proof. R is complete by Theorem 3.22 and has no isolated points by Exercise 4.14. Thus
Vn defined by removing n points from R will be open and dense, and their intersection is
necessarily nonempty and even uncountable by Baire’s theorem. �

Remark 4.53. A note concerning the title of Theorem 4.51: A space X such that the
intersection of a countable collection of dense open sets is nonempty is said to be of the
second (Baire) category. Hence a complete metric space (such as R) is of the second
category, while a space which is not of the second category is said to be of the first category.

Exercise 4.29. Prove Lemma 4.50 (Hint: compare previous enclosure theorems).

Exercise 4.30. Show that Q is of the first (Baire) category.

Exercise 4.31. A subset E ⊆ R is called a null set if for any ε > 0 there exists a
countable set of closed intervals I1, I2, . . . such that E ⊆

⋃
n>0 In, and

∑
n>0m(In) < ε,

where m([a, b]) := b − a (thus, being covered by an arbitrarily narrow set, E is of ‘length’
zero). Show that there exists an uncountable and dense null set in R which contains Q.
(Hint: think of covering Q with intervals whose lengths tend to zero sufficiently fast.)
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4.8. Normed and quadratic spaces. While Rn could be considered our favorite example
of a metric space, we frequently come across many other normed or quadratic spaces in
analysis. We give here some of the most essential notions.

4.8.1. Normed spaces.

Definition 4.54. Let V denote a vector space over R. A norm on V is a map V → R+,
v 7→ ‖v‖, such that for all α ∈ R, u, v ∈ V :

(i) ‖αv‖ = |α| ‖v‖ (scaling linearly),
(ii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality),
(iii) ‖v‖ = 0 if and only if v = 0 (positive definite / non-degenerate).

The pair (V, ‖·‖) is called a normed linear space.

Example 4.55. ‖x‖2 := |x| defined in (4.2) is our standard/euclidean norm on Rn.

Example 4.56. It is possible to show that for any real number p ≥ 1,

‖x‖p :=

 n∑
j=1

|xj |p
1/p

(4.38)

defines a norm on Rn (the tricky part being the triangle inequality, unless p = 1 or p = 2):

Theorem 4.57 (Minkowski’s inequality). For any x,y ∈ Rn and p ≥ 1 it holds

‖x + y‖p ≤ ‖x‖p + ‖y‖p .

We postpone the general proof of this theorem until we discuss duality in Section 6.7
(note however that p = 1 is obvious and p = 2 also derived below from Cauchy-Schwarz).

Exercise 4.32. Show that

‖x‖∞ := max(|x1|, |x2|, . . . , |xn|) (4.39)

is also a norm on Rn.

Remark 4.58. Proposition 4.2 states that

1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2 ∀x ∈ Rn, (4.40)

which means that these two norms are equivalent (see also Exercise 4.37).

Any normed space (V, ‖·‖) has an induced metric

d(u, v) := ‖u− v‖ , (4.41)

namely its symmetry follows from (i) with α = −1, while the triangle inequality and non-
degeneracy are directly inherited from the corresponding properties (ii) and (iii) of the
norm:

d(u, v) = ‖u− v‖ = ‖u− w + w − v‖ ≤ ‖u− w‖+ ‖w − v‖ = d(u,w) + d(w, v). (4.42)

That two norms are equivalent, such as in Remark 4.58, implies for the metric that their
families of open balls/neighborhoods are equivalent, i.e. one is always nested in the other,
and thus they define the same topology on V .
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4.8.2. Quadratic spaces.

Definition 4.59. A bilinear form on V is a map V × V → R, (u, v) 7→ 〈u, v〉 such that
for all α, β ∈ R, u, v, w ∈ V :

(i) 〈αu+ βv,w〉 = α 〈u,w〉+ β 〈v, w〉,
(ii) 〈u, αv + βw〉 = α 〈u, v〉+ β 〈u,w〉.

A symmetric bilinear form on V is a bilinear form satisfying, in addition:

(iii) 〈u, v〉 = 〈v, u〉 (symmetry).

An inner product or scalar product on V is a symmetric bilinear form 〈·, ·〉 satisfying,
in addition:

(iv) 〈v, v〉 > 0 for v 6= 0 (positive definite).

A quadratic form on V is a map q : V → R such that for α ∈ R, u, v ∈ V :

(i’) q(αv) = α2q(v) (scaling quadratically),
(ii’) 〈u, v〉q := 1

4

(
q(u+ v)− q(u− v)

)
is bilinear in (u, v).

The quadratic form q is positive definite iff 〈·, ·〉q is positive definite.

The pair (V, q) is called a quadratic space, and the pair (V, 〈·, ·〉) is called an inner
product space (or a (real) pre-Hilbert space).

Example 4.60. Rn with the standard euclidean inner product

〈x,y〉 := x · y =

n∑
j=1

xjyj (4.43)

is our typical (n-dimensional) example of an inner product space. Given a positive-definite
symmetric n× n matrix A we can also consider a “deformed” inner product

〈x,y〉A := x · (Ay) =
n∑
i=1

n∑
j=1

xiAijyj . (4.44)

Recall that by diagonalizing A we can re-write this expression

〈x,y〉A =

n∑
j=1

λjx
′
jy
′
j (4.45)

in the coordinates x′ = Rx of a corresponding basis of eigenvectors, A = RTDR, D =
diag(λ1, . . . , λn), RTR = RRT = 1. Positive-definiteness of 〈·, ·〉A then equivalently means
that all λj > 0, which is how we define positive-definiteness of the matrix A. We also recall
from linear algebra the notion that

q(x) = 〈x,x〉A =
n∑
j=1

λjx
′2
j (4.46)

is the quadratic form associated to the matrix A (useful when studying the Hessian matrix
for instance).

Example 4.61. Another important example is the space of square-summable real sequences

`2 :=

{
u = (un) : N→ R :

∞∑
n=0

u2
n <∞

}
(4.47)
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with the inner product (we will return to this example in Section 4.9.2 after discussing
series)

〈u, v〉 :=

∞∑
n=0

unvn. (4.48)

Proposition 4.62 (Cauchy–Schwarz inequality). Let V be an inner product space.
Then for every u, v ∈ V we have

| 〈u, v〉 | ≤
√
〈u, u〉

√
〈v, v〉 (4.49)

with equality iff u and v are parallel. (See Exercise 4.33 concerning the proof.)

Any inner product space (V, 〈·, ·〉) induces a positive definite quadratic form

q(v) := 〈v, v〉 (4.50)

and a norm, by taking the square root,

‖v‖ :=
√
〈v, v〉. (4.51)

Namely, its linear scaling and positive definiteness follow immediately, and furthermore,
because of the Cauchy-Schwarz inequality (4.49), it also satisfies the triangle inequality
(also known as Minkowski’s inequality; cf. Theorem 4.57)

‖u+ v‖2 = ‖u‖2 + 2 〈u, v〉+ ‖v‖2 ≤ (‖u‖+ ‖v‖)2, (4.52)

and hence becomes a norm on V .
However, it is not the case that every normed space is also an inner product space.

Namely, while
q(v) := ‖v‖2 (4.53)

indeed scales quadratically, and is positive definite, the condition (ii’) above must also hold.
It is a fact however, that the normed spaces which are inner product spaces are precisely
those in which the parallelogram identity holds:

Theorem 4.63 (Jordan–von Neumann’s theorem). Any normed real linear space
(V, ‖·‖) satisfying the parallelogram identity

‖u+ v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2 (4.54)

for all u, v ∈ V is a real, positive-definite, quadratic space (V, q) with quadratic form q(v) :=

‖v‖2, and an inner product space (V, 〈·, ·〉q) with inner product

〈u, v〉q =
1

4

(
‖u+ v‖2 − ‖u− v‖2

)
. (4.55)

Definition 4.64. A normed vector space in which every Cauchy sequence converges is
called a complete normed space or a Banach space. An inner product space which is
also a complete normed space is called a Hilbert space.

Further, two normed vector spaces X and Y are said to be isomorphic, X ∼= Y , iff
there exists a linear bijection f : X → Y and an equivalence between norms, i.e. constants
C ≥ c > 0 so that

c ‖x‖X ≤ ‖f(x)‖Y ≤ C ‖x‖X ∀x ∈ X, (4.56)

and they are called isometric iff the equivalence holds with C = c = 1, i.e.

‖f(x)‖Y = ‖x‖X ∀x ∈ X. (4.57)
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Example 4.65. Since (Rn, ‖·‖2) is complete by Theorem 4.5, it is a Hilbert space. Fur-
thermore, by the equivalence of the norms (see Remark 4.58), also (Rn, ‖·‖∞) is complete,
and thus a Banach space. (And in fact, by Exercise 4.37, the same is true for (Rn, ‖·‖) for
any norm ‖·‖.) Further important examples will be given below.

Exercise 4.33. Prove Proposition 4.62 for example by considering the expression
〈u− αv, u− αv〉 with α = 〈v, u〉/〈v, v〉.

Exercise 4.34. Check that (4.54) and (4.55) hold for the induced norm (4.51) of an inner
product space.

Exercise 4.35. Show that (4.54) does not hold in general for the norm ‖·‖∞ in (4.39), and
therefore it does not define an inner product (despite their topologies being equivalent).

*Exercise 4.36 (Difficult!). Prove Theorem 4.63.
(Hint: consider first linearity over −1, then Z, then Q and finally R.)

Exercise 4.37 (Difficult!). Prove that any two norms ‖·‖A and ‖·‖B in Rn are equivalent,
i.e. that there exist some constants C ≥ c > 0 s.t.

c ‖x‖A ≤ ‖x‖B ≤ C ‖x‖A ∀x ∈ Rn (4.58)

(compare Remark 4.58).

*Exercise 4.38. What is the ratio of the volume of the unit ball in (Rn, ‖·‖2) to that in
(Rn, ‖·‖∞)? (You could interpret it as the probability of a point placed at random in one
“ball” ending up in the other ball.) What happens as n→∞?

4.8.3. *Metric spaces can always be embedded into Banach spaces. ... (interesting fact)

4.9. Series. Recall that, given a sequence (xn)n∈N in R, we define its series

∞∑
n=0

xn (4.59)

in terms of the partial sums

SN :=
N∑
n=0

xn = x0 + x1 + . . .+ xN , N ∈ N, (4.60)

and we say that the series (4.59) converges iff the sequence (SN )N∈N converges, and define
its limit value to be limN→∞ SN .

4.9.1. Majorization of series. The following instructs us how to deal similarly with series
in arbitrary Banach spaces.

Theorem 4.66 (The majorization theorem). Let x0, x1, x2, . . . be a sequence in a Ba-
nach space (X, ‖·‖) and let b0, b1, b2, . . . be a sequence in R+ such that

‖xn‖ ≤ bn ∀n ∈ N. (4.61)

Let Sn := x0 + x1 + . . . + xn and Bn := b0 + b1 + . . . + bn. Then the sequence (Sn) in X,
and hence the series

∑∞
n=0 xn ∈ X, converges as n→∞ if (Bn) converges as n→∞.
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Proof. Let m > n. Then, by the triangle inequality for the norm, and (4.61),

‖Sm − Sn‖ =

∥∥∥∥∥∥
∑

n<k≤m
xk

∥∥∥∥∥∥ ≤
∑

n<k≤m
‖xk‖ ≤

∑
n<k≤m

bk = |Bm −Bn|. (4.62)

If (Bn) converges as n → ∞ it is Cauchy. Hence, if ε > 0 there exists some N ∈ N such
that

‖Sm − Sn‖ ≤ |Bm −Bn| < ε (4.63)

whenever m ≥ n ≥ N . Hence (Sn) is also Cauchy, and since X is assumed to be complete,
the series converges as n→∞. �

Theorem 4.67 (Abel). Let x0, x1, x2, . . . be a sequence in a Banach space (X, ‖·‖) and let
b0, b1, b2, . . . be a sequence in R+ such that

(i) bn ≥ bn+1 → 0 as n→∞,
(ii) ∃B ∈ R+ such that ‖x0 + x1 + . . .+ xn‖ ≤ B ∀n ∈ N.

Then the sequence (Sn) in X defined by Sn := b0x0 + b1x1 + . . .+ bnxn, i.e. the series

∞∑
n=0

bnxn,

is convergent.

Proof. Let yn := x0 + x1 + . . .+ xn and y−1 := 0. Then if m > n ≥ 0 we have

‖Sm − Sn‖ =

∥∥∥∥∥∥
∑

n<k≤m
bkxk

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

n<k≤m
bk(yk − yk−1)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

n<k≤m
bkyk −

∑
n≤k<m

bk+1yk

∥∥∥∥∥∥
≤ ‖bn+1yn‖+ ‖bmym‖+

∑
n<k<m

‖(bk − bk+1)yk‖

≤ bn+1B + bmB +B
∑

n<k<m

(bk − bk+1)

≤ 2bnB +B(bn+1 − bn+2 + bn+2 − bn+3 + . . .+ bm−1 − bm) ≤ 3bnB.

Now let ε > 0. Then there exists some N ∈ N s.t. 3bnB < ε if n ≥ N . Hence (Sn) is
Cauchy and by the completeness of X we can conclude that (Sn) converges. �

4.9.2. Some sequential Banach spaces. We already mentioned the space `2 in Example 4.61.
Using sequences and series we can define important examples of Banach spaces which can
be thought of as limiting spaces Rn→∞, however, we may see that their topology differs
in the limit depending on which norm is chosen (unlike in the finite-dimensional case; cf.
Exercise 4.37).

Example 4.68. Let `∞ denote the vector space of all bounded real sequences,

`∞ := {u = (un) : N→ R : ∃B > 0 s.t. |un| ≤ B ∀n ∈ N} (4.64)

with the norm

‖u‖∞ := sup
n∈N
|un| = sup {|un| : n ∈ N}. (4.65)
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Indeed, addition and scalar multiplication of sequences are defined component-wise, making
`∞ a vector space over R. That (4.65) defines a norm on `∞ may be verified similarly to
Exercise 4.32. Furthermore, (`∞, ‖·‖∞) turns out to be a Banach space. We can prove this
directly from the definitions (Exercise 4.39), but it will also follow from a more general
theorem in Section 6. In fact, this is also an example of a non-separable Banach space:

Theorem 4.69. The space `∞ is not separable.

Proof. Recall that the space is separable iff it contains a countable dense subset. Note that
we may associate to each subset A ⊆ P(N) an element eA ∈ `∞ (a binary sequence) of the
form

eA =
(
(n ∈ A)

)
n∈N =

(
(0 ∈ A), (1 ∈ A), (2 ∈ A), . . .

)
, (4.66)

where we use the notation (P ) = 1 if P is true and (P ) = 0 if P is false. We then obtain,
for any A,B ∈ P(N), A 6= B,

d(eA, eB) =
∥∥eA − eB∥∥∞ = sup

n∈N
|eAn − eBn | = sup

n∈N
|(n ∈ A)− (n ∈ B)| = 1. (4.67)

Thus we can form in `∞ the set

B :=
⋃

A∈P(N)

B1/3(eA) (4.68)

of uncountably many disjoint open balls, which cannot contain a countable dense subset. �

Theorem 4.70. For any real number 1 ≤ p < ∞, let `p ( `∞ denote the vector space of
all bounded and p-summable real sequences,

`p :=

{
u = (un) : N→ R :

∞∑
n=0

|un|p <∞

}
(4.69)

with the norm

‖u‖p :=

( ∞∑
n=0

|un|p
)1/p

. (4.70)

Then (`p, ‖·‖p) is a separable Banach space. Furthermore, its closed unit ball B̄1(0) ⊆ `p is
not compact.

Proof. Given the triangle (Minkowski) inequality of Theorem 4.57 on Rn, any n ∈ N+, by
considering the norm ‖u‖p as the p:th root of the limit

‖u‖pp = lim
n→∞

n∑
k=0

|uk|p = sup
n∈N

n∑
k=0

|uk|p

it also extends to sequences and ensures that (`p, ‖·‖p) is a normed vector space over R.

Let us prove that `p is complete, namely take a Cauchy sequence (u(n))n∈N in `p. Then
for any k, n,m ∈ N ∣∣∣u(n)

k − u
(m)
k

∣∣∣p ≤ ∞∑
j=0

∣∣∣u(n)
j − u

(m)
j

∣∣∣p =
∥∥∥u(n) − u(m)

∥∥∥p
p
, (4.71)
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which is smaller than εp if m,n ≥ N(ε) is chosen large enough. Therefore (u
(n)
k )n∈N is

Cauchy in R and, by completeness of R, converges to some number, say u
(n)
k → xk ∈ R,

as n → ∞. Consider the sequence x = (xk)k∈N of real numbers. We need to prove that

x ∈ `p and that
∥∥u(n) − x

∥∥
p
→ 0. By the boundedness of Cauchy sequences (Exercise 4.11),∥∥u(n)

∥∥
p
≤ B for some B > 0 and all n, and therefore for any M ≥ 0

M∑
k=0

|u(n)
k |

p ≤
∥∥∥u(n)

∥∥∥p
p
≤ Bp. (4.72)

Thus the l.h.s. is bounded uniformly in M and n, and taking first the limit n→∞, we find

M∑
k=0

|xk|p ≤ Bp <∞, (4.73)

so that, after finally taking the limit M → ∞, not only x ∈ `∞ (bounded sequence) but
actually x ∈ `p (p-summable sequence).

We also have for any ε > 0, any M and n,m ≥ N(ε)

M∑
k=0

∣∣∣u(n)
k − u

(m)
k

∣∣∣p ≤ ∥∥∥u(n) − u(m)
∥∥∥p
p
< εp, (4.74)

so that, taking first the limit m→∞ and then M →∞,

M∑
k=0

∣∣∣u(n)
k − xk

∣∣∣p ≤ εp ⇒
∥∥∥u(n) − x

∥∥∥
p
≤ ε, (4.75)

for any n ≥ N(ε). Therefore u(n) → x in `p as n→∞.
It remains to prove that `p is separable. Consider the set

Q :=
{
u = (uk) ∈ `p : uk ∈ Q ∀k and |suppu| <∞

}
,

where suppu := {n ∈ N : un 6= 0}, the support of u. Then

Q =
⋃
N>0

QN , QN := {u ∈ Q : un = 0 ∀n ≥ N}, (4.76)

i.e.

QN 3 u = (u0, u1, . . . , uN−1, 0, 0, . . .), (4.77)

where each such subset QN ∼ QN is countable, and therefore Q is countable by Theorem 2.6.
We claim that Q is dense in `p, namely take any x ∈ `p and ε > 0. Then by finiteness of

‖x‖p there exists N ∈ N s.t. (
∑∞

k=N |xk|p)
1/p < ε/21/p. Let us write

x = (x0, x1, . . . , xN−1, 0, 0, . . .) + (0, . . . , 0, xN , xN+1, . . .), (4.78)

where the first part is identical to RN and the second is bounded in `p-norm by ε/21/p. By

density ofQ in R, there exists yk ∈ Q s.t. |yk−xk| < ε/(2N)1/p for each k ∈ {0, 1, . . . , N−1}.
Therefore, with y = (y0, . . . , yN−1, 0, 0, . . .) ∈ QN ⊆ Q,

‖x− y‖p =
N−1∑
k=0

|xk − yk|p +
∞∑
k=N

|xk|p < εp/2 + εp/2 = εp, (4.79)
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which proves our claim. Thus `p contains the dense countable subset Q.
For the last statement of the theorem, consider the sequence e(n) ∈ Qn+1 ⊆ `p, n ∈ N,

where

e
(n)
k =

{
1, k = n,

0, k 6= n.
(4.80)

Then
∥∥e(n)

∥∥
p

= 1, so e(n) ∈ B̄1(0), but no subsequence is Cauchy (why?) so cannot converge.

Therefore, by Theorem 4.37, the closed bounded subset B̄1(0) is not compact. �

Corollary 4.71. The space (`2, 〈·, ·〉) is a separable Hilbert space, and its closed unit ball
B̄1(0) ⊆ `2 is not compact.

Proof. By the above theorem, `2 is a separable Banach space and it only remains to prove
that (4.48) defines an inner product. Indeed, by 0 ≤ (a± b)2 = a2 + b2 ± 2ab, we have

|ab| ≤ 1

2
(a2 + b2), (4.81)

and therefore, for x = (xn), y = (yn) ∈ `2 and all n ∈ N

|xnyn| ≤
1

2
(x2
n + y2

n). (4.82)

Thus, by the majorization theorem, 〈·, ·〉 is well defined and

| 〈x, y〉 | ≤
∞∑
n=0

|xnyn| ≤
1

2
(‖x‖22 + ‖y‖22). (4.83)

Furthermore 〈x, x〉 = ‖x‖22, while bilinearity and symmetry follow by taking limits. �

Exercise 4.39. Prove that `∞ with the norm (4.65) is complete.

Exercise 4.40. Construct an uncountable discrete metric space (i.e. having the discrete
metric of Example 4.12) as a metric subspace of `∞.

Exercise 4.41. Prove that the closed unit ball B̄1(0) in `∞ is bounded and closed but not
compact.

*Remark 4.72. Side note: if curious about different notions of compactness and their equiv-
alence depending on ZF(C), see [DlCHH+02] (advanced!).

4.10. Normed rings.

Definition 4.73. Let (R,+, ·) be a ring. A function R → R+, x 7→ ‖x‖, is called a norm
on R if for all x, y ∈ R:

(i) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality / sub-additive),
(ii) ‖xy‖ ≤ ‖x‖ ‖y‖ (sub-multiplicative),
(iii) ‖x‖ = 0 if and only if x = 0 (positive definite / non-degenerate).

The pair (R, ‖·‖) is called a normed ring. A normed ring is complete (or Banach) if
every Cauchy sequence in R converges.

Example 4.74. Typical examples of normed rings are of course R and C, but also e.g.
square matrices Rn×n with a suitable norm (will be discussed in Section 5.2.1), as well as
functions with values in a normed ring and a suitable norm.
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Lemma 4.75. If xn → x and yn → y in a normed ring R, then xnyn → xy as n→∞. (In
other words, multiplication is continuous.)

Proof. By the properties of the norm,

‖xnyn − xy‖ = ‖xnyn − xyn + xyn − xy‖ ≤ ‖(xn − x)yn‖+ ‖x(yn − y)‖
≤ ‖xn − x‖ ‖yn‖+ ‖x‖ ‖yn − y‖ → 0,

as n→∞, where we used that ‖yn‖ is bounded (and in fact | ‖yn‖ − ‖y‖ | ≤ ‖yn − y‖ → 0,
so ‖yn‖ → ‖y‖). �

4.10.1. The exponential function on complete normed rings.

Theorem 4.76 (The exponential function). Let R be a complete normed ring with unit
1. Then there exists a function exp: R→ R such that

exp(0) = 1 (4.84)

and

exp(xy) = exp(x) exp(y) (4.85)

for all x, y ∈ R such that xy = yx. Moreover,

exp(x) = lim
N→∞

N∑
n=0

xn

n!
. (4.86)

Proof. Observe first that for x 6= 0, x0 is, by definition, the multiplicative unit 1 in R.
Define for x ∈ R and n ∈ N

en(x) := 1 + x+
x2

2!
+ . . .+

xn

n!
. (4.87)

If n < m

‖em(x)− en(x)‖ =

∥∥∥∥∥∥
∑

n<k≤m

xk

k!

∥∥∥∥∥∥ ≤
∑

n<k≤m

∥∥xk∥∥
k!

, (4.88)

where
∥∥xk∥∥ =

∥∥xxk−1
∥∥ ≤ ‖x‖ ∥∥xk−1

∥∥ ≤ . . . ≤ ‖x‖k. Hence, if r := ‖x‖,

‖em(x)− en(x)‖ ≤
∑

n<k≤m

rk

k!
≤

∞∑
k=n+1

rk

k!
. (4.89)

We have that r ∈ R+ and that the sequence en(r) =
∑n

k=0
rk

k! of non-negative terms
converges for any r (e.g. by the ratio test, cf. Rudin 3.34). Therefore the r.h.s. of (4.89)
tends to zero with n → ∞. This shows that (en(x))n∈N is a Cauchy sequence, which
converges in R. (In fact the argument shows that en(x) converges uniformly on the ball
{x ∈ R : ‖x‖ ≤ r} for all r ∈ R+ as n→∞; we will get back to this concept later.)

Let us define

ex := exp(x) := lim
n→∞

en(x). (4.90)

Obviously en(0) = 1 = e0.
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Let x, y ∈ R s.t. xy = yx and suppose ‖x‖ ≤ r, ‖y‖ ≤ r. Then we have

e2n(x)e2n(y) =
∑

0≤j,k≤2n

xj

j!

yk

k!
=

∑
0≤j,k≤2n
j+k≤2n

xjyk

j!k!
+

∑
0≤j,k≤2n
j+k>2n

xjyk

j!k!
. (4.91)

We call the first sum on the r.h.s. A and the second B. Compute

A =
2n∑
s=0

∑
j+k=s

xjyk

j!k!
=

2n∑
s=0

1

s!

∑
j+k=s

s!

j!k!
xjyk =

2n∑
s=0

(x+ y)s

s!
, (4.92)

hence A = e2n(x+ y).
We claim that B → 0 as n → ∞. Indeed, (making a rough sketch of the indices in N2

helps here)

‖B‖ ≤
∑

n<j≤2n
0≤k≤2n

rjrk

j!k!
+

∑
0≤j<n
n<k≤2n

rjrk

j!k!
= (e2n(r)− en(r))e2n(r) + en(r)(e2n(r)− en(r)), (4.93)

and both these terms tend to zero as n→∞ since (es(r))s∈N is Cauchy in R.
Thus, we have proved that

e2n(x)e2n(y)− e2n(x+ y)→ 0 as n→∞, (4.94)

and hence, by Lemma 4.75,
exey = ex+y, (4.95)

which proves the theorem. �

See [Rud76, Thms. 3.31 & 8.6] for more on the exponential function.
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5. Differentiation and integration [L11-15]

5.1. Reading tip. This Section concerns Rudin’s Chapters 5 (differentiation) and 6 (in-
tegration), as well as some of the important examples in Ch 8. Whenever possible, we
will here try to give general statements (i.e. for normed vector or Banach spaces), which
includes parts of Chapter 9-10 (mainly 9.10-9.21, while 9.1-9.9 recalls some linear algebra,
and 10.1-9) as well.

Recall the basic theorems concerning derivatives, Rudin 5.1-5.5 and 5.13 (L’Hospital),
and study carefully the examples in 5.6! We will spend a little more time on the mean value
theorems, 5.7-5.13, and Taylor’s theorem 5.15.

Recall the definition and basic properties of the Riemann integral, and study the various
examples and definitions in the suggested exercises. Note that the generalization in Rudin
due to Stieltjes is extracurricular to this course. Therefore you may skip Rudin 6.14-19 and
in the exercises and theorems in Rudin (such as Thm 6.12) choose the ‘weight’ function
α(x) = x to reduce to the usual Riemann integral (which should be familiar from calculus).
However, the curious student will benefit from learning and working with the Riemann-
Stieltjes integral as it is not a very deep generalization. (Though note that by taking
a discontinuous weight α one may extract pointwise values of the integrand.) The last
chapter (11) in Rudin concerns the Lebesgue integral which is extremely useful but more
technical and thus will be dealt with in another course. Similarly, integration on curves
and surfaces and using differental forms, Rudin’s 6.26-27 and what comes after 10.9, is the
subject of other courses in vector analysis and differential geometry.

5.1.1. Typos in Rudin.

• in Thm 6.12(b) one also assumes f1, f2 ∈ R
• in Eq. (16), Ch. 9 there is a “|” missing

5.1.2. Exercises. Rudin Ch. 5: 1-9,11-21; Ch. 6: (1),2,(3),4-12,15; Ch. 9: 1-11,13-15,26-31
Exam 2020-08-19: problem 7. Exam 2020-06-15: problem 7. Exam 2020-03-16: problems
4,7. Exam 2019-06-15: problems 7,8. Exam 2019-01-14: problems 4,8. Exam 2014-12-17:
problem 4. Exam 2014-04-23: problem 3. Exam 2013-12-18: problem 2.

Remark 5.1. Rudin Exc 6.15 actually has a useful application in quantum mechanics, namely
the proved inequality ∫ b

a
f ′(x)2 dx ·

∫ b

a
x2f(x)2 dx >

1

4
(5.1)

is a form of Heisenberg’s uncertainty principle, and says that if a particle with position
x and spatial probability distribution f(x)2 is contained in an interval [a, b] 3 0 and has

fixed, finite ‘energy’ E =
∫ b
a f
′(x)2 dx (it turns out that f ′ encodes the momentum of the

particle), then it cannot be localized arbitrarily close to the point x = 0, i.e. it is impossible

to adjust the shape of f to make the variance
∫ b
a x

2f(x)2dx arbitrarily small.

5.1.3. Aims. Concepts discussed in this Section:

• differentiable functions
• mean-value theorem and its consequences
• Taylor series (polynomial)
• Riemann integral
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Learning outcomes: After this Section you should be able to

• explain the theoretical basis of differential and integral calculus including the for-
mulation of central theorems and the main features of their proofs;
• apply the theory to solve mathematical problems including the construction of sim-

ple proofs.

The more abstract parts including peculiarities in infinite dimensions, such as Section 5.2.3,
are recommended for students aiming for the highest grade.

5.2. Differentiation. Recall that differentiability is about the local approximation of a
function by a linear one. In its simplest formulation, say for a function f : (a, b) ⊆ R→ R,
we say that f is differentiable at x ∈ (a, b) iff the limit

L = lim
h→0

f(x+ h)− f(x)

h
(5.2)

exists, and we then denote this limit L by f ′(x) or df
dx(x). Equivalently, we may formulate

this statement that there exists some real number L such that

|f(x+ h)− f(x)− Lh|/|h| → 0 as 0 6= h→ 0, (5.3)

or, also equivalently, that for any h ∈ R such that x+ h ∈ (a, b) we may write

f(x+ h) = f(x) + Lh+ ε(h)h, (5.4)

where the quantity ε(h), simply defined by

ε(h) :=

{
(f(x+ h)− f(x)− Lh)/h, h 6= 0,

0, h = 0,
(5.5)

is required to vanish as h → 0. In other words, in the first step we approximate f(x + h)
as a function of h by the constant f(x) and we then see that the error we are making
vanishes at worst linearly in h, with the factor of linearity being L. After accounting for
this behavior by subtracting the constant plus linear function f(x) + Lh, the remaining
error |ε(h)h| vanishes strictly faster than linearly as h → 0 since we may even divide this
quantity by h before taking the limit.

Similarly, if f : Ω ⊆ Rn → Rm, we call f differentiable at x ∈ Ω iff there exists L ∈ Rm×n,
i.e. a linear map Rn → Rm, such that(2)

f(x + h) = f(x) + L[h] + ε(h)|h|, (5.6)

where ε(h) → 0 as |h| → 0. We call the map L =: f ′(x) the derivative of f at x and may
identify it with the Jacobian matrix

df

dx
(x) =

[
∂f
∂x1

(x) ∂f
∂x2

(x) . . . ∂f
∂xn

(x)
]
,

∂f

∂xj
(x) = L[ej ], (5.7)

where e1, e2, . . . , en denotes the standard basis in Rn.
Note that in order to discuss linear approximation of functions in general we need at a

minimum the notion of linear maps between vector spaces, since the derivative is such a
map. And furthermore, in order to be able to estimate the smallness of the error in the
approximation we need a metric, or a norm on these spaces. Thus, we may generalize the
concept of derivatives to arbitrary normed vector spaces:

(2)We use the notation [h] to stress that there is linearity in this argument.
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Definition 5.2 (Derivative). Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed linear spaces, and
Hom(V,W ) the space of bounded/continuous (clarified below) linear maps from V to W .
A function f : Ω ⊆ V → W is called differentiable at x ∈ Ω iff there exists a linear map
L ∈ Hom(V,W ) such that

f(x+ h) = f(x) + L[h] + ε(h) ‖h‖V (5.8)

where ‖ε(h)‖W → 0 as ‖h‖V → 0. We denote this map L by f ′(x) and call it the derivative
of f at the point x.

Remark 5.3. We note that f ′(x) is unique, namely if there exist L,M ∈ Hom(V,W ) such
that

f(x) + L[h] + εL(h) ‖h‖V = f(x+ h) = f(x) +M [h] + εM (h) ‖h‖V (5.9)

then (L −M)[h] = ε(h) ‖h‖V with error ε(h) := εL(h) − εM (h) → 0 as h → 0. Fix h 6= 0,
then for any t > 0

(L−M)[th] = ε(th) ‖th‖V = ε(th)t ‖h‖V ⇒ (L−M)[h] = ε(th) ‖h‖V → 0, (5.10)

as t→ 0. Since h was arbitrary this implies L−M = 0 as linear maps, i.e. L = M .

For dealing with error terms of different order it will be tremendously convenient to
introduce the following notation:

Definition 5.4 (Ordo). Let f, g : X → Y be defined in a neighborhood of 0 ∈ X.
We write f(h) = O

(
g(h)

)
as h → 0 iff there exists δ > 0 and K < ∞ such that

‖f(h)‖Y ≤ K ‖g(h)‖Y for all h ∈ Bδ(0), or equivalently if

lim sup
h→0

‖f(h)‖Y
‖g(h)‖Y

<∞. (5.11)

We then say that f is big-O of g as h→ 0.
We write f(h) = o

(
g(h)

)
as h→ 0 iff f(h) = O

(
g(h)

)
and

lim sup
h→0

‖f(h)‖Y
‖g(h)‖Y

= 0, (5.12)

or equivalently, for any ε > 0 there exists δ > 0 s.t. ‖f(h)‖ ≤ ε ‖g(h)‖ for all h ∈ Bδ(0).
We then say that f is small-o of g as h→ 0.

Note that f(h) = g(h) + O
(
k(h)

)
iff f(h) − g(h) = O

(
k(h)

)
, and similarly for o. Also

note that f(h) = O(1) simply means that f is bounded in a neighborhood of h = 0, while
f(h) = o(1) simply means that f(h) → 0 as h → 0. In general we may also replace the
notation ‖g(h)‖Y = g̃(‖h‖X) where g̃ : R+ → R+.

Thus f : V →W is differentiable at x iff there exists L linear (and bounded/continuous)
s.t.

f(x+ h) = f(x) + L[h] + o(h), (5.13)

where o(h) = ε(h) ‖h‖V in our earlier notation (namely lim suph→0 |ε(h)h|/|h| = 0). Fur-
thermore, we also have f(x+ h) = f(x) +O(h), where the error O(h) is bounded by

‖f(x+ h)− f(x)‖W = ‖L[h] + ε(h) ‖h‖V ‖W ≤ ‖L[h]‖W + ‖ε(h)‖W ‖h‖V → 0, (5.14)

as h→ 0, which imples that f is continuous at x (note that also continuity of L was used).
Thus we have proved:
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Theorem 5.5. If f is differentiable at the point x then f is continuous at x.

Example 5.6. Let f : R → R (with usual norm | · |) be defined by f(x) = x2. Then for
any x, h ∈ R

f(x+ h) = (x+ h)2 = x2 + 2xh+ h2 = f(x) + 2xh+ o(h), (5.15)

and therefore f is differentiable on R with derivative f ′(x) = 2x.

Example 5.7. Let f : R2×2 → R2×2 be defined by f(A) = A2 for 2×2-matrices A with the
norm which is induced by the linear isomorphism R2×2 ∼= R4 (bijection) of vector spaces:

‖A‖ =

∥∥∥∥[a11 a12

a21 a22

]∥∥∥∥ := |(a11, a12, a21, a22)| =
√
a2

11 + a2
12 + a2

21 + a2
22 (5.16)

(why is this a norm?).
Let us determine if f is differentiable and, if so, compute f ′(A). We note that

f(A+H) = (A+H)2 = A2 +AH +HA+H2, (5.17)

and claim that the last term satisfies H2 = o(H), i.e.
∥∥H2

∥∥ / ‖H‖ → 0 as ‖H‖ → 0. This
may be seen by either explicitly computing

H =

[
h11 h12

h21 h22

]
⇒
∥∥H2

∥∥2
= (h2

11+h12h21)2+h2
12(h11+h22)2+h2

21(h11+h22)2+(h21h12+h2
22)2

(5.18)

and estimating each term of this polynomial by the polynomial ‖H‖4, or for example by
first using the triangle inequality∥∥∥∥[a11 a12

a21 a22

]∥∥∥∥ ≤ ∥∥∥∥[a11 0
0 0

]∥∥∥∥+

∥∥∥∥[0 a12

0 0

]∥∥∥∥+

∥∥∥∥[ 0 0
a21 0

]∥∥∥∥+

∥∥∥∥[0 0
0 a22

]∥∥∥∥
= |a11|+ |a12|+ |a21|+ |a22|,

and noting that each component of the matrix H2 is a two-term quadratic polynomial in hij
so that

∥∥H2
∥∥ ≤ 8 ‖H‖2. Another, much more powerful method (though quite far-fetched

if one has never seen it before) is to note that (let us now use the conventional notation
Ajk = ajk)

‖A‖2 =
∑
j,k

A2
jk = Tr(ATA), (5.19)

and that for another matrix B, by Cauchy-Schwarz,

‖AB‖2 =
∑
j,k

(∑
l

AjlBlk

)2

≤
∑
j,k

(∑
l

A2
jl

)(∑
l

B2
lk

)
= ‖A‖2 ‖B‖2 , (5.20)

i.e. ‖AB‖ ≤ ‖A‖ ‖B‖. In particular we obtain
∥∥H2

∥∥ ≤ ‖H‖2, and thus

H2 = O(‖H‖2) = o(‖H‖). (5.21)

In conclusion, we may write

f(A+H) = f(A) + LA[H] + o(H), (5.22)

with the linear (check!) map LA : R2×2 → R2×2,

H 7→ LA[H] := AH +HA. (5.23)
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We infer from our definitions that f is differentiable at any point A ∈ R2×2 and that the
derivative f ′(A) at that point is given by the linear map LA in (5.23).

Definition 5.8. The above norm (5.19) on matrices, which we may denote by ‖·‖F, is called
the Frobenius norm and makes Rn×n a normed ring with unit 1. By defining

〈A,B〉F := Tr(ATB) =
∑
j,k

AjkBjk (5.24)

for any A,B ∈ Rm×n (!) we have an inner product associated to this norm: ‖A‖2F = 〈A,A〉F.

Exercise 5.1. Let f : R2×2 → R2×2 be defined by f(A) = A3. Show that f is differentiable
at all matrices A ∈ R2×2 and compute the derivative f ′(A).

Exercise 5.2. Verify that (5.24) defines an inner product on Rm×n.

Exercise 5.3. Use the ordo concept to derive a simple proof of l’Hospital’s rule (cf. Rudin 5.13)

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, (5.25)

if f, g are real-valued and differentiable in a neighborhood of a, f(x) → 0 and g(x) → 0 as
x→ a, and the latter limit exists (and is finite).

5.2.1. Operator norm. Note that when we generalize the derivative to arbitrary normed
vector spaces, we must speak of bounded/continuous linear operators.

Definition 5.9. Given normed linear spaces (V, ‖·‖V ) and (W, ‖·‖W ) over R, we call T : V →
W an operator (or linear transformation) if it is a linear map, i.e. for all α, β ∈ R and
u, v ∈ V ,

T (αu+ βv) = αT (u) + βT (v). (5.26)

We call an operator T bounded if the image T (B̄1(0)) of the unit ball is bounded (note
that because of the linearity, the full range T (V ) is always unbounded in W unless T = 0,
and therefore one uses a slightly different notion of boundedness for operators).

We denote by L(V ;W ) the space of all operators V → W , and by Hom(V ;W ) the
space of all bounded operators (these are also called homomorphisms of normed vector
spaces, i.e. structure-respecting maps, here w.r.t. both linearity and norm). If S ∈ L(U ;V )
and T ∈ L(V ;W ) then we may compose the operators, TS ∈ L(U ;W ), with (TS)v :=
(T ◦ S)(v) = T (Sv) (it is common to abbreviate Tx = T (x) = T [x] for linear maps).

Define for any T ∈ Hom(V ;W ) the operator norm

‖T‖op = ‖T‖ := sup
x∈V :‖x‖V ≤1

‖Tx‖W . (5.27)

Indeed this is a norm because:

1. 0 ≤ ‖T‖ <∞ for any T ∈ Hom(V,W ) due to the boundedness condition.
2. ‖λT‖ = |λ| ‖T‖ for any λ ∈ R:

‖λT (x)‖W = |λ| ‖Tx‖W . (5.28)

3. ‖T + S‖ ≤ ‖T‖+ ‖S‖:
sup ‖(T + S)(x)‖W ≤ sup (‖Tx‖W + ‖Sx‖W ) ≤ sup ‖Tx‖W + sup ‖Sx‖W . (5.29)

4. If ‖T‖ = 0 then sup‖x‖V ≤1 ‖Tx‖W = 0 so Tx = 0 for all x ∈ B̄1(0), and thus T = 0.
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And, furthermore, if S ∈ Hom(U, V ) and T ∈ Hom(V,W ) then

5. ‖TS‖ ≤ ‖T‖ ‖S‖: For any x ∈ U ,

‖TSx‖W ≤ ‖T‖ ‖Sx‖V ≤ ‖T‖ ‖S‖ ‖x‖U . (5.30)

We note that this in fact makes (Hom(V, V ), ‖·‖op) a normed ring with unit 1 = idV .

Furthermore, bounded linear operators are continuous, since for T ∈ Hom(V,W ) one has
T (x+ h)− T (x) = T (h), and if h 6= 0

‖T (h)‖W =
∥∥∥T (‖h‖V ‖h‖−1

V h
)∥∥∥
W

= ‖h‖V
∥∥∥T (‖h‖−1

V h
)∥∥∥
W
≤ ‖h‖V ‖T‖op = O(h). (5.31)

Example 5.10. On the vector space Rm×n = Hom(Rn,Rm) of matrices we now have two

norms: the operator norm ‖A‖op and the Frobenius norm ‖A‖F =
√

Tr(ATA). While they

are the same for m = 1 or n = 1 (reducing to |·|), they are not for m,n ≥ 2. Consider for
example

1 =

[
1 0
0 1

]
⇒ ‖1‖op = sup

(x,y)∈B̄1(0)

|(x, y)| = 1, and ‖1‖F =
√

2, (5.32)

but also

A =

[
0 1
0 0

]
⇒ ‖A‖op = sup

(x,y)∈B̄1(0)

|y| = 1, and ‖A‖F = 1. (5.33)

However, recalling Exercise 4.37 (we may think of Rm×n as Rmn) these norms will anyway be
necessarily equivalent. Explicitly, we have for any A ∈ Rm×n, x ∈ Rn, by Cauchy-Schwarz,

|Ax|2 =
m∑
j=1

(
n∑
k=1

Ajkxk

)2

≤
m∑
j=1

(
n∑
k=1

A2
jk

)(
n∑
k=1

x2
k

)
=
∑
j,k

A2
jk|x|2, (5.34)

also

|Ajk| = |ej ·Aek| ≤ |Aek| ≤ ‖A‖op , (5.35)

and thus

‖A‖op ≤ ‖A‖F ≤
√
mn ‖A‖op . (5.36)

Example 5.11. Let us consider an example of a noncontinuous linear map. By Exercise 5.5
it is necessary to have infinite dimensions (unless we use a different topology). Let `∞c denote
the subspace in (`∞, ‖·‖∞) of bounded sequences with finite (compact) support, i.e.

`∞c =
{
x ∈ `∞ : supp(x) finite

}
, (5.37)

where supp(x) = {n ∈ N : xn 6= 0} ⊆ N, and let T : `∞c → R,

T (x) =

∞∑
n=0

xn. (5.38)

Then, taking for m ∈ N+ the sequence x(m) = (xmn )∞n=0 ∈ `∞c ,

x(m)
n =

{
1/m, 0 ≤ n ≤ m− 1

0, n ≥ m,
(5.39)
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we have x(m) → 0 in `∞c as m→∞ while Tx(m) = 1 9 0, and indeed

‖T‖op ≥
∥∥∥T (mx(m))

∥∥∥
∞
→∞ as m→∞. (5.40)

Now, using the induced metric and topology of the normed vector space (Hom(V,W ), ‖·‖op)
we can also talk in general terms about continuous differentiability:

Definition 5.12. Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed vector spaces, and ∅ 6= Ω ⊆ V . A
function f : Ω→W is called continuously differentiable at p ∈ Ω if f ′(x) ∈ Hom(V,W )
exists in a neighborhood of p and the function V 3 x 7→ f ′(x) ∈ Hom(V,W ) is continuous
at x = p.

Example 5.13. For V = W = R we have Hom(R,R) = R and all the norms reduce to |·|.
The function f : R→ R,

f(x) :=

{
x2 sin(1/x), x 6= 0,

0, x = 0,
(5.41)

is differentiable for all x ∈ R, but not continuously differentiable at x = 0:

f ′(x) =

{
2x sin(1/x)− cos(1/x), x 6= 0,

limh→0 h sin(1/h) = 0, x = 0.
(5.42)

(We have used the product and chain rules and continuous differentiability of sin and x 7→
1/x on their respective domains; see below.) Note that f ′ has a discontinuity of the second
kind (see 5.3.4).

Exercise 5.4. Show that, if V,W are normed vector spaces, then L(V ;W ) and Hom(V ;W )
are vector spaces over R.

Exercise 5.5. Show that if V = Rn and W is any normed vector space, then every operator
V →W is bounded, i.e. L(V ;W ) = Hom(V,W ).

Exercise 5.6. Let V ( `1 be the subspace of all absolute summable sequences with finite
support (cf. Theorem 4.70), and define

T : V → V
(xn)n∈N 7→

(
(Tx)n

)
n∈N := (nxn)n∈N

(5.43)

Show that T ∈ L(V, V ) but T is unbounded, i.e. Hom(V, V ) ( L(V, V ) in this case.

Exercise 5.7. Show that the function

f(x) :=

{
0 x ≤ 0,

e−1/x, x > 0,
(5.44)

is continuously differentiable on R. (You may use the chain rule and continuous differen-
tiability of exp and x 7→ 1/x; see below.) What is the error in the linear approximation at
x = 0?
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5.2.2. Directional derivatives. Taking h > 0 resp. h < 0 we may also speak of right resp.
left derivatives of f : [a, b]→ R,

f ′+(x) := lim
h→0+

f(x+ h)− f(x)

h
, f ′−(x) := lim

h→0−

f(x+ h)− f(x)

h
, (5.45)

whenever these are defined (which includes the endpoints f ′+(a) and f ′−(b)). For f : Rn → Rm
or generally f : Ω ⊆ V → W we may consider directional derivatives along the vector
v ∈ V :

D+
v f(x) := lim

h→0+

f(x+ hv)− f(x)

h
, Dvf(x) := lim

h→0

f(x+ hv)− f(x)

h
. (5.46)

Note that, if f is differentiable at x, then

D+
v f(x) = Dvf(x) = f ′(x)[v] = −D+

−vf(x), (5.47)

however, it is not necessarily the case that if Dvf(x) exists for all v ∈ V then the derivative
exists, since linearity is not guaranteed. Indeed, in the one-variable case, linearity holds iff

lim
h→0

f(x+ h)− f(x)

h
exists ⇔ f ′+(x) = f ′−(x) exist. (5.48)

For f : Ω ⊆ Rn → Rm, f = (fi)
m
i=1, we have the partial derivatives

∂f

∂xj
(x) := Dej f(x), i.e.

∂fi
∂xj

(x) := Dejfi(x), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (5.49)

and the existence of f ′(x) requires continuity in v 7→ Dvf(x) = f ′(x)[v].

Example 5.14. The function f : R2 → R,

f(x, y) :=

{
xy

x2+y2
, (x, y) 6= 0,

0, (x, y) = 0,
(5.50)

is not differentiable at (x, y) = 0, and not even continuous there:

(x, y) = (r cosϕ, r sinϕ) ⇒ f(x, y) = sinϕ cosϕ9 0, as r → 0, (5.51)

however both partial derivatives ∂f
∂x and ∂f

∂y exist everywhere and equal zero at x = 0

(check!). Also Dvf(x, y) exists for all v ∈ R2 at x 6= 0, but at x = 0 only for v aligned
with the axes.

Example 5.15. If we consider instead the function f : R2 → R,

f(x, y) :=

{√
x2 + y2 sign(x), x 6= 0,

0, x = 0,
(5.52)

we have continuity at (x, y) = 0, and even that the directional derivatives

D(cosϕ,sinϕ)f(0, 0) = lim
h→0

|h|
h

sign(h cos(ϕ)) =


1, ϕ ∈ (−π/2, π/2),

0, ϕ = ±π/2,
−1, ϕ ∈ (π/2, 3π/2),

(5.53)

exist for all angles ϕ, but these are not continuous in ϕ, and therefore f ′(0, 0) cannot exist.
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In the case of real-valued differentiable maps f : Rn → R, we define the gradient at x,

∇f(x) :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
(x) = [f ′(x)]T (5.54)

by the transpose of the Jacobian, Rn ∼= Rn×1 ∼= R1×n. The function ∇f : Rn → Rn
defines a vector field on Rn. Note that ∇f(x) is either zero or yields both the value
max|h|=1 f

′(x)[h] and direction h = ∇f(x)/|∇f(x)| of steepest increase according to the
linear approximation of f , i.e. the maximal directional derivative.

5.2.3. Example: the inverse map. We consider here a typical and interesting example of
a differentiable map, namely that of the inverse map x 7→ x−1. However in order to
illustrate how we may work with all these notions of operator norms and Banach spaces
we take as our domain for x the invertible elements in an arbitrary complete normed ring
(possibly non-commutative). In conjunction with this investigation we would also like to
point out a generally useful connection between the spaces Hom and `∞, and generalize the
latter from our previous definition with sequences with values in R to sequences or arbitrary
functions with values in an arbitrary Banach space.

Theorem 5.16 (The inverse map). Let (R, ‖·‖) be a complete normed ring with unit 1,
R 6= {0}, and let

Ω = {T ∈ R : ∃S ∈ R s.t. ST = TS = 1} = {T ∈ R : ∃T−1 ∈ R} (5.55)

be the set of all invertible elements in R. Define the map

F : Ω → Ω
T 7→ T−1.

(5.56)

Then Ω is a nonempty open subset of R and F is continuously differentiable in Ω, with
derivative Ω 3 T 7→ F ′(T ) ∈ Hom(R,R) given by

F ′(T )[H] = −T−1HT−1 ∀H ∈ R. (5.57)

Proof. Note first that 1 ∈ Ω, 1−1 = 1, with norm ‖1‖ ∈ R+ (if ‖1‖ = 0 then ‖T‖ =
‖T1‖ ≤ ‖T‖ ‖1‖ = 0 ∀T ∈ R, so R = {0}). Assume then that T ∈ Ω, i.e. T−1 exists
and

∥∥T−1
∥∥ ∈ R+. We note that by ‖1‖ =

∥∥TT−1
∥∥ ≤ ‖T‖∥∥T−1

∥∥ we must also have∥∥T−1
∥∥ ≥ ‖T‖−1 ‖1‖ > 0. Given H ∈ R we can write

T +H = T + TT−1H = T (1 + T−1H), (5.58)

which we seek to invert. If we require ‖H‖ <
∥∥T−1

∥∥−1
then∥∥T−1H

∥∥ ≤ ∥∥T−1
∥∥ ‖H‖ < 1. (5.59)

We may thus form the inverse of (1 + T−1H). Namely, let X = −T−1H ∈ R, ‖X‖ < 1,
and note that since the real power series

‖X‖+ ‖X‖2 + ‖X‖3 + . . . =
∞∑
n=1

‖X‖n = (1− ‖X‖)−1 − 1 (5.60)

converges, by the majorization Theorem 4.66, also

X +X2 +X3 + . . . =

∞∑
n=1

Xn (5.61)
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converges. Furthermore, (by the same trick as in the real case)

(1−X)
N∑
n=0

Xn = 1−XN+1 (5.62)

so that, taking N →∞,∥∥∥∥∥(1−X)
N∑
n=0

Xn − 1

∥∥∥∥∥ =
∥∥XN+1

∥∥ ≤ ‖X‖N+1 → 0, (5.63)

and we obtain (1−X)−1 =
∑∞

n=0X
n.

Therefore, inverting (5.58), we have an explicit expansion of F (T +H) in terms of H:

(T +H)−1 = (1−X)−1T−1 =
∞∑
n=0

(−T−1H)nT−1 (5.64)

= T−1 − T−1HT−1 +

∞∑
n=2

(−T−1H)nT−1 (5.65)

= F (T )− T−1HT−1 + o(H), (5.66)

where the last term is actually O(‖H‖2):∥∥∥∥∥
∞∑
n=2

(−T−1H)nT−1

∥∥∥∥∥ ≤
∞∑
n=2

∥∥T−1
∥∥n ‖H‖n ∥∥T−1

∥∥ = ‖H‖2
∥∥T−1

∥∥3
(1−

∥∥T−1
∥∥ ‖H‖)−1.

(5.67)
This shows that F is differentiable in all of Ω with derivative F ′(T )[H] = −T−1HT−1

(here any H ∈ R), ‖F ′(T )‖op ≤
∥∥T−1

∥∥2
< ∞, and also that Ω is open (if T−1 exists then

(T +H)−1 exists as long as ‖H‖ <
∥∥T−1

∥∥−1
). Furthermore, it shows that F is continuous

in Ω by Theorem 5.5. Also, since for any H ∈ R

(F ′(S)− F ′(T ))[H] = −S−1HS−1 + T−1HT−1 = (T−1 − S−1)HS−1 + T−1H(T−1 − S−1),
(5.68)

we have that F ′ is continuous in Ω (in the operator norm of Hom(R,R)). �

Example 5.17. For R = R with norm |·| we have Ω = R\{0} and F : Ω→ Ω, F (x) = x−1.
Thus we obtain F ′(x)[h] = −x−2h, i.e. the well-known result F ′(x) = −x−2 = −F (x)2.

Example 5.18. For R = Rn×n with norm ‖·‖F or ‖·‖op (finite-dimensional and therefore

complete) we have

Ω = {A ∈ Rn×n : detA 6= 0} (5.69)

the set of all invertible matrices and F : Ω→ Ω, F (A) = A−1. Thus we obtain

F ′(A)[H] = −A−1HA−1, A ∈ Ω, H ∈ Rn×n, (5.70)

where F ′ : Ω→ Hom(Rn×n,Rn×n), A 7→ F ′(A) is continuous on Ω.

As mentioned we now aim to generalize to arbitrary Banach spaces.
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Theorem 5.19. Let X be a set and (W, |·|) a Banach space. Let `∞(X;W ) denote the set
of all bounded maps f : X →W with the norm

‖f‖∞ := sup
x∈X
|f(x)|, (5.71)

then (`∞(X;W ), ‖·‖∞) is a Banach space.

Remark 5.20. For X = N and W = R this is exactly the space `∞ from Example 4.68.

Proof. First, note that `∞(X;W ) is naturally a vector space over R, with

(f + g)(x) := f(x) + g(x), (λf)(x) := λf(x). (5.72)

Furthermore, ‖f‖∞ <∞ by boundedness of f , and

‖f‖∞ = 0 ⇔ f(x) = 0 ∀x ∈ X ⇔ f = 0, (5.73)

and the triangle inequality holds exactly as before (by the triangle inequality of |·|). Assum-
ing that (fn) ⊂ `∞(X;W ) is Cauchy, we have that for any ε > 0 ∃N(ε) s.t. m,n ≥ N(ε)
implies

sup
x∈X
|fn(x)− fm(x)| < ε, (5.74)

i.e. for any fixed x ∈ X, the sequence (fn(x)) in W is Cauchy and therefore converges,

f(x) := lim
n→∞

fn(x). (5.75)

Further, by boundedness of a Cauchy sequence, supn,x |fn(x)| ≤ B, implying |f(x)| ≤ B
and therefore f ∈ `∞(X;W ). Now consider

‖fn − f‖∞ = sup
x∈X
|fn(x)− f(x)|. (5.76)

By (5.74) there exists N(ε) s.t. for all x ∈ X and all n ≥ N(ε)

sup
m≥N(ε)

|fn(x)− fm(x)| < ε ⇒ |fn(x)− f(x)| ≤ ε, (5.77)

after taking the limit m → ∞. Hence ‖fn − f‖∞ ≤ ε for n ≥ N(ε), which proves the
theorem. �

The following application then clarifies the topology of the space Hom(V,W ) for Banach
spaces W (note that V does not have to be complete), and essentially states that linear
maps are determined by their value on the unit sphere.

Corollary 5.21. Let (V, |·|) be a normed vector space and (W, |·|) a Banach space. Let
Hom(V,W ) be the set of all bounded linear maps T : V →W with the norm

‖T‖ := sup
x∈SV

|T (x)|, (5.78)

where

SV := {v ∈ V : |v| = 1} (5.79)

denotes the unit ‘sphere’ in V . Then ‖T‖ = ‖T‖op and Hom(V,W ) is a Banach space.
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Proof. We first note that

sup{|Tx| : x ∈ B̄1(0)} = sup{|Tx| : x ∈ SV }, (5.80)

namely the l.h.s. is greater than the r.h.s. because the supremum is over a larger set, but
also the l.h.s. is smaller than the r.h.s. because every value |Tx| = |x||T (x/|x|)| ≤ |T (x/|x|)|
with x ∈ B̄1(0) is bounded by at least one value |Ty| with y = x/|x| ∈ SV .

We then note that we may associate to any map T ∈ Hom(V,W ) a corresponding map
fT : SV →W , simply by restriction, fT := T |SV . We then have

‖fT ‖∞ = sup
x∈SV

|T (x)| = sup
x∈B̄1(0)

|T (x)| = ‖T‖op <∞ (5.81)

and therefore fT ∈ `∞(SV ;W ). Also, we have that

fαT+βS = (αT + βS)|SV = αT |SV + βS|SV = αfT + βfS , (5.82)

and for a Cauchy sequence (Tn) in Hom(V,W )

‖fTn − fTm‖∞ = ‖fTn−Tm‖op = ‖Tn − Tm‖op < ε (5.83)

if m,n ≥ N(ε). By Theorem 5.19, the Cauchy sequence (fTn) converges in `∞(SV ,W ), say
‖fTn − f∗‖∞ → 0 for some f∗ ∈ `∞. Let T∗ : V →W be defined by

T∗(x) :=

{
|x|f∗(x/|x|), x 6= 0,

0, x = 0.
(5.84)

Then ‖T∗‖op = ‖f∗‖∞ < ∞, and furthermore we claim that T∗ is linear, because if z =
αx+ βy, x, y, z 6= 0, then

T∗(z) = |z|f∗(z/|z|) = |z| lim
n→∞

fTn(z/|z|) = lim
n→∞

(
|z|fTn(z/|z|)

)
, (5.85)

where for each n

|z|fTn(z/|z|) = |z|Tn(z/|z|) = Tn(z) = αTn(x) + βTn(y) = α|x|fTn(x/|x|) + β|y|fTn(y/|y|).
(5.86)

Taking the limit of the r.h.s. we obtain

T∗(z) = α|x| lim
n→∞

fTn(x/|x|) + β|y| lim
n→∞

fTn(y/|y|) = α|x|f∗(x/|x|) + β|y|f∗(y/|y|)

= αT∗(x) + βT∗(y)

(and analogously if any of x, y, z is zero). We conclude then that actually T ∈ Hom(V,W ),
fT = f , and

‖Tn − T‖op = ‖fTn − f‖op → 0 (5.87)

as n→∞. �

Corollary 5.22. If V is a Banach space then the space (Hom(V, V ), ‖·‖op) of operators on
V is a complete normed ring.

Example 5.23. For V a Banach space we have the invertible operators on this space
Ω ⊆ Hom(V, V ) = R and F : Ω→ Ω, F (T ) = T−1. Thus we obtain by Theorem 5.16

F ′(T )[H] = −T−1HT−1, T ∈ Ω, H ∈ Hom(V, V ), (5.88)

where F ′ : Ω 3 T 7→ F ′(T ) ∈ Hom(Hom(V, V ),Hom(V, V )) is continuous on Ω.
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Example 5.24. The bounded operator T : `∞ → `∞, (Tx)n := (n+ 1)−1xn, has no inverse
in the ring Hom(`∞, `∞) because it would have to be (T−1x)n = (n + 1)xn which is not a
bounded operator on `∞:

∥∥T−1
∥∥

op
=∞. Thus T /∈ Ω.

Exercise 5.8. Show that F : Ω → R2×2, F (A) = A−2 = (A2)−1 = (A−1)2 is differentiable
on Ω = {A ∈ R2×2 : detA 6= 0} and compute the derivative F ′(A) for A ∈ Ω.

5.3. Some properties of derivatives.

5.3.1. Generalized chain rule. Let us consider a slightly generalized but geometrically in-
tuitive formulation of the chain rule for derivatives (cf. Rudin 5.5 resp. 9.15 for the usual
one). Note again that if f : X → Y is differentiable at p ∈ X then, in a neighborhood of p,

f(x) = f(p) + f ′(p)[x− p] + o(x− p), (5.89)

so that if we consider the constant plus linear(3) function F : X → Y ,

F (x) := f(p) + f ′(p)[x− p], (5.90)

then

|f(x)− F (x)| = o(x− p). (5.91)

Definition 5.25. Let X and Y be metric spaces and f, F : X → Y . Then f and F are
said to be tangent at p ∈ X iff

dY (f(x), F (x)) = o(dX(x, p)) (5.92)

for x ∈ X in some neighborhood of p.
A function f : X → Y is called Lipschitz at p ∈ X iff dY (f(x), f(p)) = O(dX(x, p)),

that is

∃C ∈ R+ s.t. dY (f(x), f(p)) ≤ CdX(x, p), (5.93)

for all x ∈ X in a neighborhood of p.

Thus a function f is differentiable at a point p iff there exists a constant plus linear
(i.e. affine) map F which is tangent to f at p. Furthermore, f and F are then necessarily
Lipschitz at p with a finite constant∥∥f ′(p)∥∥

op
≤ C ≤

∥∥f ′(p)∥∥
op

+ ε, (5.94)

where ε > 0 can be taken arbitrarily small (depending on how large a neighborhood of p is
considered). Note that for F we may take ε = 0 since there are no higher-order terms.

Theorem 5.26 (Chain rule). Let X,Y, Z be metric spaces, f, F : X → Y and g,G : Y →
Z. Assume that f and F are tangent at p ∈ X, that g and G are tangent at q = f(p) ∈ Y ,
and that f and G are Lipschitz at p resp. q. Then g ◦ f and G ◦ F are tangent at p.

In particular, if X,Y, Z are normed vector spaces, and if f is differentiable at p with
tangent

F (x) = f(p) + f ′(p)[x− p], (5.95)

and if g is differentiable at q with tangent

G(y) = g(q) + g′(q)[y − q], (5.96)

(3)Constant plus linear functions are also called affine functions.
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then g ◦ f is differentiable at p with tangent

G◦F (x) = g(q)+g′(q)
[
f(p)+f ′(p)[x−p]−q

]
= g
(
f(p)

)
+
(
g′
(
f(p)

)
◦f ′(p)

)
[x−p]. (5.97)

Proof. We simply estimate (let us denote all metrics by d for simplicity)

d
(
g(f(x)), G(F (x))

)
≤ d
(
g(f(x)), G(f(x))

)
+ d
(
G(f(x)), G(F (x))

)
≤ o
(
d(f(x), f(p)

)
+ CGd

(
f(x), F (x)

)
≤ o
(
Cfd(x, p)

)
+ CGo

(
d(x, p)

)
= o
(
d(x, p)

)
,

where we first used the triangle inequality and then tangency and Lipschitz with corre-
sponding constants Cf and CG. Therefore d(g ◦ f(x), G◦F (x)) = o(d(x, p)) as claimed. �

Exercise 5.9. Let f(x) =
√
x2 + x4 and F (x) = |x| for x ∈ R.

a) Show that f and F are Lipschitz at every point of R and determine bounds for their
respective constants.

b) Show that f and F are tangent in the generalized sense at x = 0.
c) Apply the generalized chain rule to f composed with g(x) = ex at x = 0.

5.3.2. Mean value inequality. cf. Rudin 9.19

Theorem 5.27 (Mean value inequality). Let X,Y be normed vector spaces with norms
|·|. Assume f : X → Y is differentiable on the line segment

[p, q] := {tp+ (1− t)q : 0 ≤ t ≤ 1}, p, q ∈ X,
with the bound on the derivative ‖f ′(x)‖op ≤ K ∀x ∈ [p, q]. Then

|f(p)− f(q)| ≤ K |p− q| . (5.98)

In particular, if f ′(x) = 0 on [p, q] then f is constant on [p, q].

Remark 5.28. The last statement is also known as the Fundamental theorem of differ-
ential calculus.

Proof. Let us first simplify the setup a bit by considering g : [0, 1]→ Y with

g(t) := f(tp+ (1− t)q)− f(q). (5.99)

We then have g(1) = f(p) − f(q) and g(0) = 0. Furthermore, by the chain rule g is
differentiable with

g′(t)h = f ′(tp+ (1− t)q)[p− q]h, t ∈ [0, 1], h ∈ R, (5.100)

so that ∣∣g′(t)∣∣ =
∥∥g′(t)∥∥

op
≤ L := K |p− q| , ∀0 ≤ t ≤ 1. (5.101)

Hence it suffices to prove that |g(1)| ≤ L.
Fix an arbitrary M > L and introduce the set

E =
{
t ∈ [0, 1] : |g(s)| ≤Ms ∀s ∈ [0, t]

}
. (5.102)

It is then evident that E = [0, t] for some t ∈ [0, 1] (that it is a closed interval follows from
the closed set of conditions). Assume that t < 1, then we claim that also t+k ∈ E for some
k > 0. Namely, because of differentiability of g at t,

g(t+ h) = g(t) + g′(t)h+ o(h), (5.103)
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so there exists some k > 0 s.t.

|g(t+ h)− g(t)− g′(t)h| ≤ (M − L)h ∀ 0 ≤ h ≤ k. (5.104)

Then we obtain for such h

|g(t+ h)| ≤ |g(t)|+ |g′(t)|h+ (M − L)h ≤Mt+ Lh+Mh− Lh = M(t+ h), (5.105)

that is t+ k ∈ E.
It follows that actually E = [0, 1] and thus that |g(1)| ≤ M . But M > L was arbitrary,

and hence also |g(1)| ≤ L. �

5.3.3. Mean value theorems. First we recall one of the most important applications of deriva-
tives, as a means for finding extreme values [Rud76, Thm. 5.8]:

Theorem 5.29 (Extreme value theorem). If f : (a, b) → R has a local maximum or
minimum at x ∈ (a, b), and if f ′(x) exists, then f ′(x) = 0. Similarly, if f : Rn ⊇ Ω→ R has
a local maximum or minimum at x ∈ Ω, and if f ′(x) exists, then f ′(x) = [∂f/∂xj ]j=1..n = 0.

The usual mean value theorem in one variable is given in [Rud76, Thm. 5.9], and follows
simply by studying extreme values of the differentiable function

h(t) := (f(b)− f(a))g(t)− (g(b)− g(a))f(t), t ∈ [a, b], (5.106)

for which h(a) = h(b).

Theorem 5.30 (Mean value theorem). Assume f, g : [a, b] → R are continuous on the
interval [a, b] and differentiable on the interval (a, b). Then there exists an x ∈ (a, b) s.t.

(f(b)− f(a))g′(x) = (g(b)− g(a))f ′(x). (5.107)

In particular (taking g(x) = x), there exists x ∈ (a, b) s.t.

f(b)− f(a) = f ′(x)(b− a). (5.108)

Remark 5.31. The simpler special case that f(a) = f(b) implies f ′(x) = 0 at some x ∈ (a, b)
is also known as Rolle’s theorem.

This important theorem has many applications, such as concerning the growth of func-
tions [Rud76, Thm. 5.11], l’Hospital’s rule [Rud76, Thm. 5.13], and Taylor’s theorem re-
called below. Another important application in Rn is to connect full derivatives to partial
derivatives:

Theorem 5.32 ([Rud76, Thm. 9.21]). Let f : Ω ⊆ Rn → Rm where Ω is nonempty and
open. Then f is continuously differentiable on Ω iff all partial derivatives ∂fi/∂xj exist and
are continuous on Ω, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Proof idea. ⇒ immediate by existence/cont. of f ′ and the definition of partial derivatives.
⇐ use the mean value theorem to estimate the difference

f(x1 + h1, x2 + h2, . . . , xj−1 + hj−1, xj + hj , xj+1, . . . , xn)

− f(x1 + h1, x2 + h2, . . . , xj−1 + hj−1, xj , xj+1, . . . , xn)

= hj
∂f

∂xj
(x1 + h1, . . . , xj−1 + hj−1, xj + thj , xj+1, . . . , xn), some t ∈ (0, 1),

and use continuity to estimate f(x + h)− f(x)−
∑

j hj∂f/∂xj(x) as o(h). �
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We also consider the following generalization for curves in normed vector spaces (Rudin
5.16-19 discusses further examples of complications arising in the higher-dimensional case).

Definition 5.33. A subset K of a vector space X is called convex if ∀p, q ∈ K, [p, q] ⊆ K.
(Note: intersections of convex sets are also convex.)
To any set A ⊆ X we can define the convex hull of A, ConvA, as the smallest convex

set in X that contains A:

ConvA :=
⋂
K⊇A

Kconvex

K. (5.109)

Remark 5.34. One can show that

ConvA =


n∑
j=1

tjxj :
n∑
j=1

tj = 1, tj ≥ 0, xj ∈ A

 . (5.110)

Theorem 5.35 (Mean value theorem for curves). Let f : X → Y where X and Y are
normed vector spaces, and assume that p, q ∈ X and that f is differentiable on [p, q] ⊆ X.
Let

C[p, q] := Conv{f ′(x) : x ∈ [p, q]} ⊆ Hom(X,Y ) (5.111)

be the convex hull of the derivatives of f on [p, q]. Then we can for every ε > 0 find
F ∈ C[p, q] and R ∈ Y with |R| ≤ ε, such that

f(p)− f(q) = F (p− q) + |p− q|R. (5.112)

Example 5.36. In the case that X = R, Y is a Banach space, and f is continuously
differentiable on the interval [a, b] ⊆ R, we have that f([a, b]) is a (reasonably smooth)
parameterized curve in Y . Note that

Hom(R, Y ) = {R 3 t 7→ ty ∈ Y : y ∈ Y } (5.113)

is isomorphic to Y . By the continuity of the map f ′ and the compactness of [a, b], the set
f ′([a, b]) ⊆ Y is compact. Furthermore, it turns out that the closure of the convex hull of
a compact set in a complete metric space is also compact (see e.g. [AB06, Theorem 5.35]).
Therefore, by taking in (5.112) a sequence (Fn, Rn) in C[a, b]×Y ⊆ Y 2 s.t. Rn → 0, we may

conclude by the compactness of C[a, b] and Theorem 4.37 that there exists a subsequential

limit y ∈ C[a, b] s.t. f(a)− f(b) = y(b− a), that is

y =
f(b)− f(a)

b− a
∈ C[a, b]. (5.114)

In words: The average velocity over the curve is contained in the closure of the convex
hull of all instantaneous velocities attained along the curve.

Proof. For ε > 0, let’s say that the interval [p, q] has the ε-property if the conclusion of the
theorem holds. Let r ∈ [p, q] and assume that [p, r] and [r, q] has the ε-property. Thus there
are F1 ∈ C[p, r], F2 ∈ C[r, q] and R1, R2 ∈ Y s.t.

f(p)− f(r) = F1[p− r] + |p− r|R1, |R1| ≤ ε,
f(r)− f(q) = F2[r − q] + |r − q|R2, |R2| ≤ ε.
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Write r = tp + (1 − t)q for some 0 ≤ t ≤ 1, then we have p − r = (1 − t)(p − q) and
r − q = t(p− q), and thus

f(p)−f(q) = f(p)−f(r)+f(r)−f(q) = F1(1−t)(p−q)+(1−t)|p−r|R1+F2t(p−q)+t|p−q|R2.
(5.115)

If we let

F := (1− t)F1 + tF2 ∈ C[p, q] (5.116)

and

R := (1− t)R′ + tR′′ ∈ Y, |R| ≤ ε, (5.117)

then we obtain

f(p)− f(q) = F [p− q] + |p− q|R, (5.118)

which shows that also [p, q] has the ε-property.
Now take an arbitrary r ∈ [p, q]. Since f is differentiable at r we have

f(r + h) = f(r) + f ′(r)h+ E(h)|h|, E(h)→ 0, h→ 0, (5.119)

hence

f(r + h)− f(r) = f ′(r)h+ |h|E(h), (5.120)

which shows that [r, r + h] has the ε-property if h is taken so small that |E(h)| ≤ ε.
Let rt := p+ t(q − p) for 0 ≤ t ≤ 1, and define

E = {t ∈ [0, 1] : [p, rs] has the ε-property ∀s ∈ [0, t]} . (5.121)

One may realize that either E = [0, t) or E = [0, t] for some 0 ≤ t ≤ 1. But if t < 1 then
we know that [rt−δ, rt+δ] has the ε-property if δ is small enough. We may thus deduce that
E = [0, 1]. �

Exercise 5.10. Prove Theorems 5.29 and 5.30.

5.3.4. Intermediate value property (Darboux’ theorem). See [Rud76, Thm. 5.12]: Deriva-
tives, although they are not guaranteed to be continuous, do have the intermediate value
property (compare Theorem 4.49 for continuous functions). This is also known as Dar-
boux’ theorem. A particularly noteworthy consequence of this property is that derivatives
cannot have simple discontinuities, i.e. any point of discontinuity is of the second kind. Re-
call Example 5.13 whose erratic behavior around x = 0 solves the necessity of intermediate
values.

5.3.5. Taylor’s theorem. cf. Rudin 5.15, 8.4
By the mean value theorem (5.108), we have for f : (a, b)→ R differentiable that

f(x+ h) = f(x) + f ′(xh)h (5.122)

for some xh ∈ [x, x + h]. Taylor’s theorem re-iterates this argument in a clever way to
extract higher orders in h from higher orders of derivatives:

Theorem 5.37 (Taylor’s theorem). Let f : (a, b)→ R be n+ 1 times differentiable, then

f(x+ h) =

n∑
k=0

f (k)(x)

k!
hk +

f (n+1)(xh)

(n+ 1)!
hn+1 (5.123)

for some xh ∈ [x, x+ h].
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Proof. Consider the differentiable function for t ∈ [x, x+ h]

F (t) := f(t) + f ′(t)(x+ h− t) +
f ′′(t)

2!
(x+ h− t)2 + . . .+

f (n)(t)

n!
(x+ h− t)n. (5.124)

We compute

F ′(t) = f ′(t) + f ′′(t)(x+ h− t)− f ′(t) +
f (3)(t)

2!
(x+ h− t)2 − f ′′(t)(x+ h− t)

+ . . .+
f (n+1)(t)

n!
(x+ h− t)n − f (n)(t)

(n− 1)!
(x+ h− t)n−1

=
f (n+1)(t)

n!
(x+ h− t)n.

Now, let G : [x, x + h] → R be any continuous function, differentiable with nonvanishing
derivative on (x, x+ h). By the mean value theorem there exists xh ∈ (x, x+ h) s.t.

F (x+ h)− F (x)

G(x+ h)−G(x)
=
F ′(xh)

G′(xh)
=
f (n+1)(xh)(x+ h− xh)n

n!G′(xh)
. (5.125)

Thus, we see that by taking G(t) := (x+ h− t)n+1 we obtain in (5.125)

f(x+ h)−
∑n

k=0
f (k)(x)
k! hk

−hn+1
=
f (n+1)(xh)

−(n+ 1)!
, (5.126)

which proves the theorem. �

The multi-dimensional case is naturally more complicated:

Theorem 5.38 (Taylor’s theorem in Rn). Let f : Ω ⊆ Rn → R have continuous partial
derivatives

f (k1,k2,...,kn)(x) :=

(
∂

∂x1

)k1 ( ∂

∂x2

)k2
. . .

(
∂

∂xn

)kn
f(x) (5.127)

of all orders kj ≥ 0, j ∈ {1, . . . , n}, up to the total order k1 + k2 + . . .+ kn = N + 1. Then

f(x + h) =

N∑
k=0

∑
kj≥0∑n
j=1 kj=k

f (k1,...,kn)(x)

k1! . . . kn!
hk11 . . . hknn +

∑
kj≥0∑n

j=1 kj=N+1

Rk1,...,kn(h)hk11 . . . hknn

(5.128)
for some functions Rk : Ω→ R s.t. Rk(h)→ 0 as h→ 0.

See Rudin Exc. 9.29-30 for further discussion. The polynomials in h in (5.123) and (5.127)
are the Taylor polynomials to f at x of order n resp. N .

5.4. Riemann integration.
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5.4.1. Box partitions. If a = (a1, . . . , an) and b = (b1, . . . , bn) are points in Rn then we
define the corresponding rectangle/box R = R(a,b) by

R = {x ∈ Rn : ∀i = 1, . . . , n, ai < xi < bi} , (5.129)

and its volume

volR = (R 6= ∅)(b1 − a1) . . . (bn − an). (5.130)

Note that R is open and vol ∅ = 0.

Definition 5.39 (Partition). Let R be a box in Rn and assume that P = {R1, R2, . . . , RN}
is a finite set of boxes in Rn such that

• R̄ = R̄1 ∪ R̄2 ∪ . . . ∪ R̄N (their closures cover R),
• Ri ∩Rj = ∅ if i 6= j (disjoint).

Then P is called a (rectangle/box) partition of R.

If P and Q are partitions of R and if each box in P is a subset of some box in Q, then we
say that P is a finer partition than Q (or a refinement) and write P ≤ Q. This defines
a partial order on the set of partitions of R. We leave that and the following as an exercise:

Lemma 5.40. If P and Q are two arbitrary partitions of the box R ⊆ Rn, then there exists
a unique partition S of R such that

S ≤ P and S ≤ Q, (5.131)

and s.t. if S′ is another partition which also satisfies S′ ≤ P and S′ ≤ Q, then necessarily
S′ ≤ S. This partition S is denoted P ∧Q, their common refinement.

The fineness of a partition P is defined to be the maximal diameter among the boxes
in P and is denoted d(P ):

d(P ) := max{diamRi : Ri ∈ P}, (5.132)

where we recall

diamRi = sup{|x− y| : x,y ∈ Ri}. (5.133)

Exercise 5.11. Prove Lemma 5.40 and that ≤ is a partial order on partitions (take n = 1
if this seems easier).

5.4.2. Upper, lower and Riemann sums. Let f : Rn → R and assume that

supp(f) ⊆ R(a,b). (5.134)

Let P = {R1, R2, . . . , RN} be a partition of R = R(a,b) and define

mi := inf{f(x) : x ∈ R̄i},
Mi := sup{f(x) : x ∈ R̄i},

L(f, P ) :=
N∑
i=1

mi volRi (lower sum / sv: undersumma),

U(f, P ) :=

N∑
i=1

Mi volRi (upper sum / sv: översumma).
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Also, let T = {t1, t2, . . . , tN} be such that ti ∈ Ri for all i = 1, . . . , N (we say that “T
belongs to P”), and define

I(f, P, T ) :=
N∑
i=1

f(ti) volRi (Riemann sum / sv: Riemannsumma).

We note immediately that

L(f, P ) ≤ I(f, P, T ) ≤ U(f, P ). (5.135)

Furthermore, if P and Q are partitions of R then

L(f, P ) ≤ L(f, P ∧Q) ≤ U(f, P ∧Q) ≤ U(f,Q), (5.136)

in other words, given R and f , every lower sum is smaller than every upper sum.

5.4.3. Darboux vs. Riemann vs. Stieltjes. Again, let R be a box in Rn.

Definition 5.41 (Darboux integral). A function f : R→ R is called Darboux integrable
iff ∀ε > 0 ∃δ > 0 s.t.

U(f, P )− L(f, P ) < ε (5.137)

for every partition P of R with d(P ) < δ.

We find immediately from (5.136) that if f is Darboux integrable then

sup
P
L(f, P ) = inf

P
U(f, P ) (5.138)

(taken over all partitions P of R) both exist, are finite, and equal. This real number is
denoted ∫

f =

∫
R
f =

∫ b1

a1

. . .

∫ bn

an

f(x) dx, (5.139)

the integral of f (over R). Also for arbitrary f we may conventionally denote the l.h.s.

resp. r.h.s. of (5.138) as the lower integral
∫
f resp. upper integral

∫
f , with

∫
f ≤

∫
f .

Definition 5.42 (Riemann integral). A function f : R→ R is called Riemann integrable
iff there exists a number I(f) ∈ R so that ∀ε > 0 ∃δ > 0 s.t. if T belongs to a partition P
of R with d(P ) < δ, then

|I(f, P, T )− I(f)| < ε. (5.140)

We note that actually the Darboux and Riemann integral concepts are equivalent. The
Riemann-Stieltjes integral is extracurricular but defined in Rudin 6.2 in the one-variable
setting. It uses the notion of a ‘weight function’ α to associate different weights to the
points along the interval. Choosing α(x) = x reduces it to the Riemann-Darboux integral.

Exercise 5.12. Show that the Darboux and Riemann integral concepts coincide and that
I(f) =

∫
f .

Hint: see [Rud76, Thm. 6.7].

Exercise 5.13 (Rudin Exc 6.4). Let f : R→ R be the ‘comb function’

f(x) =

{
1, x ∈ Q
0, x /∈ Q

. (5.141)
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Show that f is not Riemann integrable on any interval [a, b], a < b, by computing the
corresponding upper and lower integrals.

Exercise 5.14. Compute upper and lower integrals on the interval [0, 1] for the popcorn

function f from Exercise 4.26. Is it Riemann integrable and, if so, what is
∫ 1

0 f?

5.4.4. Riemann-Lebesgue’s theorem. Note that the comb function (5.141) is everywhere
discontinuous. We will now show that an arbtrary function f supported in some box is
Riemann (Darboux) integrable, denoted f ∈ R, if and only if f is bounded, and continuous
at all points except on a null set.

Recall (cf. Exercise 4.31) that a subset A ⊆ Rn is called a null set if for every ε > 0
there exists a countable set of boxes {R1, R2, R3, . . .} such that

• A ⊆
⋃∞
j=1Rj (covering)

•
∑∞

j=1 volRj < ε (arbitrarily small).

Lemma 5.43. Countable unions of null sets are null sets.

Proof. Let A =
⋃∞
k=1Ak, where Ak is a null set in Rn for each k = 1, 2, . . .. Take ε > 0.

For each k we may find boxes Rk,1, Rk,2, Rk,3, . . . such that

Ak ⊆
∞⋃
j=1

Rk,j and
n∑
j=1

volRk,j < ε/2k.

Hence,

A ⊆
⋃
k,j

Rk,j and
∑
k,j

volRk,j <

∞∑
k=1

ε2−k = ε.

�

Lemma 5.44 (Lebesgue covering number). Let K be a compact subset of a metric
space X and assume that K ⊆

⋃
i∈I Vi is an open covering with an arbitrary index set I.

Then there exists a λ > 0 such that for all x ∈ K there exists i ∈ I s.t. Bλ(x) ⊆ Vi.

Proof. Assume on the contrary that for every n ≥ 1 there exists xn ∈ K such that
B1/n(xn) ( Vi for every i ∈ I. In other words, no Vi contains B1/n(xn) as a subset. Since
K is compact we can find a convergent subsequence (xn′)

∞
n=1, say ∃x∗ ∈ K s.t. xn′ → x∗

as n → ∞. But then, since {Vi} is an open covering, there is a j ∈ I s.t. x∗ ∈ Vj , and we
may even find r > 0 with B2r(x

∗) ⊆ Vj . Now choose N large enough that 1/N < r and
such that d(xn′ , x

∗) < r for all n ≥ N . Then we have that

B1/n′(xn′) ⊆ B2r(x
∗) ⊆ Vj , if n ≥ N,

because if x ∈ B1/n′(xn′) then

d(x, x∗) ≤ d(x, xn′) + d(xn′ , x
∗) < 1/n′ + r < 2r.

This contradiction to our assumption proves the lemma. �

Theorem 5.45 (Riemann-Lebesgue’s theorem). Let R ⊆ Rn be a box and f : R→ R.
Then f ∈ R iff f is bounded on R and continuous except on a null set.
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Proof. We assume first that f ∈ R and need to show that f is bounded and continuous
except for a null set.

We start with boundedness. Assume supp(f) ⊆ R(a,b), and take ε > 0. Then there
exists δ > 0 s.t. |I(f, P, T ) −

∫
f | < ε whenever δ(P ) < δ and T belongs to P . If f is

not bounded then there exists some box Ri ∈ P such that Mi =∞ or mi = −∞. Assume
WLOG the former. But then there exists a sequence (ti,k)

∞
k=1 ⊂ Ri such that f(ti,k)→∞

if k →∞. Taking

Tk = {t1, t2, . . . , ti−1, ti,k, ti+1, . . . , tN}
we find that I(f, P, Tk)→∞ as k →∞. This contradiction proves that f is bounded.

We shall now prove that f is continuous except on a null set. Let the set of discontinuities
be denoted

D = {x ∈ Rn : f is not continuous at x}.
We define for any x ∈ R the oscillation of f around x by

osc(f, x) := lim
r→0

diam f
(
Br(x)

)
.

Note that f is continuous at x iff osc(f, x) = 0. Let us also denote for ρ > 0

Dρ := {x ∈ Rn : osc(f, x) > ρ},

then D =
⋃∞
k=1D1/k. This means that D is a null set if and only if Dρ is a null set for

every ρ > 0.
Resuming our proof, let ε > 0 and ρ > 0. Fix a partition P = {R1, . . . , RN} so fine that

U(f, P )− L(f, P ) =
N∑
i=1

(Mi −mi) volRi < ερ, (5.142)

i.e. ∑
i:Ri∩Dρ 6=∅

(Mi −mi) volRi +
∑

i:Ri∩Dρ=∅

(Mi −mi) volRi < ερ, (5.143)

But if Ri ∩Dρ 6= ∅ then Mi −mi > ρ. This implies∑
i:Ri∩Dρ 6=∅

ρ volRi < ερ ⇒
∑

i:Ri∩Dρ 6=∅

volRi < ε, (5.144)

and further

Dρ ⊆

 ⋃
i:Ri∩Dρ 6=∅

Ri

 ∪
 N⋃
j=1

∂Rj

 . (5.145)

Each ∂Rj is clearly a null set, and therefore by (5.144)-(5.145), also Dρ is a null set. Since
we may choose any ρ = 1, 1/2, 1/3, . . ., necessarily D is a null set.

It remains to prove the converse. Assume then that |f(x)| ≤ M ∀x ∈ R and that f is
continuous except on a null set D ⊆ R, and we need to prove that f ∈ R. Take ε > 0 and
choose a sequence of open boxes J1, J2, . . . such that D ⊆

⋃∞
m=1 Jm and

∑∞
m=1 vol Jm < ε. If

x ∈ R\D then osc(f, x) = 0, and we may find some open set Ix 3 x such that diam f(Ix) < ε
(we could e.g. find a ball Ix = Brx(x)).
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Now we have an open cover of the compact set R̄

R̄ ⊆

( ∞⋃
m=1

Jm

)
∪

 ⋃
x∈R\D

Ix

 . (5.146)

By Lemma 5.44 there exists a Lebesgue covering number λ > 0 such that for every x ∈ R,
either there exists m ∈ N+ s.t. Bλ(x) ⊆ Jm, or y ∈ R \D s.t. Bλ(x) ⊆ Iy. Now choose a
partition P = {R1, . . . , RN} such that diamRk < λ ∀k = 1, 2, . . . , N . We then obtain

U(f, P )− L(f, P ) =

N∑
i=1

(Mi −mi) volRi

=
∑

i:Ri⊆ some Jm

(Mi −mi) volRi +
∑

i:Ri⊆ some Ix

(Mi −mi) volRi

≤
∞∑
m=1

2M vol Jm +

N∑
i=1

ε volRi < 2Mε+ ε volR.

Since ε > 0 was arbitrary, f ∈ R. �

5.4.5. Generalized integrability. To define Riemann integrability for more general functions,
one takes appropriate limits of boxes (improper integrals); see exercises 6.7-8 in Rudin:∫ 1

0
f(x) dx := lim

a→0

∫ 1

a
f(x) dx, (5.147)

∫ ∞
1

f(x) dx := lim
b→∞

∫ b

1
f(x) dx. (5.148)

These may be absolutely convergent, i.e. with absolute values on f . However note that
when they are not, there may arise some peculiarities depending on the way which the limit
is taken:

Exercise 5.15.

a) Give examples of unbounded f : [0, 1]→ R+ such that (5.147) converges/diverges.
b) Give examples of bounded f : [1,∞)→ R+ such that (5.148) converges/diverges.
c) Give an example of f : [0, 1]→ R such that∫ 1

0
f(x) dx := lim

ε→0

(∫ 1/2−ε

0
f(x) dx+

∫ 1

1/2+ε
f(x) dx

)
(5.149)

converges but each of the two separate integrals in the r.h.s. diverge as ε→ 0.
(To stress that this is one particular way of making sense of such an integral it is
called the Cauchy principal value and is also written p.v.

∫
f .)

5.4.6. Properties and methods of computation. Recall the basic properties of integrals,
[Rud76, Thm. 6.12-13].

Recall also our foundation for integral calculus, [Rud76, Thm. 6.20,21,24]:



78 D. LUNDHOLM

Theorem 5.46 (Fundamental theorem of integral calculus). Let f ∈ R on [a, b].
If there exists a differentiable function F on [a, b] such that F ′ = f , then∫ b

a
f(x) dx = F (b)− F (a). (5.150)

If, for a ≤ x ≤ b,
F (x) :=

∫ x

a
f(t) dt (5.151)

then F is continuous on [a, b], and if f is continuous at x ∈ [a, b] then F is differentiable
at x with F ′(x) = f(x).

The proofs use the mean value Theorem 5.30 on sufficiently fine partitions, respectively
the box estimate for integrals. For explicit computation of integrals the following is ex-
tremely useful (as well as partial integration, [Rud76, Thm. 6.22]):

Theorem 5.47 (Change of variable). If f ∈ R on [a, b] and if ϕ : [A,B] → [a, b] is
differentiable, strictly increasing, and ϕ′ ∈ R, then the function (f ◦ ϕ)ϕ′ ∈ R on [A,B]
and ∫ b

a
f(x) dx =

∫ B

A
f(ϕ(y))ϕ′(y)dy. (5.152)

Exercise 5.16.

a) Prove (5.152) under the assumptions of Theorem 5.47. (Hint: Rudin 6.19)
b) Prove (5.152) under the stronger assumptions that f and ϕ′ > 0 are continuous, by

applying the chain rule to

G(x) :=

∫ ψ(x)

A
f(ϕ(y))ϕ′(y) dy, (5.153)

where ψ : [a, b]→ [A,B] is the inverse to ϕ.

Exercise 5.17. Continuing Exercise 5.15, show that

lim
a→∞

∫ a

−a

2x

x2 + 1
dx = 0 while lim

a→∞

∫ a

−2a

2x

x2 + 1
dx = − ln 4. (5.154)

(The former, symmetric limit, is defined as p.v.
∫∞
−∞

2x
x2+1

dx).

Rudin’s Exc. 9.28 deals with the possible non-commutativity of differentiation and inte-
gration. Later we will also discuss the following ‘monsters’:

• The existence of an everywhere continuous but nowhere differentiable function (e.g.
Weierstrass’ function; see Theorem 6.16).
• The existence of an everywhere differentiable function whose derivative is bounded

but not Riemann integrable (e.g. Volterra’s function).
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6. Sequences and series of functions [L16-20]

6.1. Reading tip. This Section concerns Chapter 7 in Rudin (function spaces), the re-
maining parts of Chapter 4 (uniform continuity), and parts of Chapter 8 (power series).

Study carefully the examples of Rudin 7.2-6 and 7.21!
Stone-Weierstrass approximation theorem (Rudin 7.26-33) is considered extracurricular

to this course, however we hope that we will find some time to discuss it anyway as a useful
application of the theory.

We will discuss Taylor series, cf. Rudin 3.38-39 and 8.1, briefly 8.2-5, while some general
aspects of the exponential function (cf. Rudin 8.6 and that section) have been covered in
Section 4.10.1. Most of the subsequent material about the exponential, logarithmic and
trigonometric functions (Rudin 8.6-7) are assumed to be known from calculus (however it
may be nice to see how their properties are here proved in a rigorous way) and these parts
are left for your own study. The remaining parts of Chapter 8 are extracurricular.

6.1.1. Exercises. Rudin Ch. 4: 8-13; Ch. 7: 1-13,(14),15-19,(20,22-26); Ch. 8: 1-7
Exam 2020-08-19: problems 3,4,8. Exam 2020-06-15: problems 3,5,8. Exam 2020-03-16:
problems 3,5,8. Exam 2019-06-15: problem 3. Exam 2019-01-14: problems 3,(5). Exam
2015-12-09: problem 6. Exam 2015-03-21: problems 4,6. Exam 2014-12-17: problems 3,6.
Exam 2014-04-23: problems 4,(5). Exam 2013-12-18: problems 3,5.

6.1.2. Aims. Concepts discussed in this Section:

• sequences and series of functions
• uniform convergence
• equicontinuous families
• Arzelà-Ascoli theorem

Learning outcomes: After this Section you should be able to

• explain the basic theory of metric spaces and its application to function spaces;
• apply the theory to solve mathematical problems including the construction of sim-

ple proofs

6.2. Uniform continuity. Let X and Y be metric spaces. Recall (Definition 4.43) that a
map f : X → Y is called continuous (or perhaps pointwise continuous) if

∀x ∈ X ∀ε > 0 ∃δ > 0 s.t. ∀y ∈ X
(
d(x, y) < δ ⇒ d(f(x), f(y)) < ε

)
(6.1)

or equivalently, and slightly more compactly,

∀x ∈ X ∀ε > 0 ∃δ > 0 s.t. Bδ(x) ⊆ f−1(Bε(f(x))). (6.2)

Note here the explicit dependence of the quantifiers: the number δ = δ(x, ε) could in
principle need to depend not only on ε but also on each point x ∈ X.

We call f : X → Y uniformly continuous (sv: likformigt kontinuerlig) if

∀ε > 0 ∃δ > 0 s.t. ∀x, y ∈ X
(
d(x, y) < δ ⇒ d(f(x), f(y)) < ε

)
(6.3)

or equivalently

∀ε > 0 ∃δ > 0 s.t. ∀x ∈ X Bδ(x) ⊆ f−1(Bε(f(x))), (6.4)

so in this case δ = δ(ε) may be chosen independently from x.
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Example 6.1. The map f(x) = 1/x on the interval (0, 1) is continuous but not uniformly
continuous. Namely, given any ε > 0 and δ > 0 we may find 0 < x < min{δ, ε, ε−1, 1} and
y = x/2 ∈ (0, 1) such that

|x− y| = x/2 < δ, but |f(y)− f(x)| = 1/y − 1/x = 1/x > ε,

which violates (6.3)-(6.4).

Theorem 6.2. If f : X → Y is a continous map between metric spaces, and if X is compact,
then f is uniformly continuous.

See Rudin Thm 4.19 and Exc 4.10 for two different proofs. We repeat the first one for
illustration:

Proof. Let ε > 0. For each x ∈ X we may use (pointwise) continuity of f to find δx > 0
such that

∀y ∈ X d(x, y) < 2δx ⇒ d(f(x), f(y)) < ε (6.5)

(note the factor 2 which will be used below). We have then a covering X ⊆
⋃
x∈X Bδx(x)

by open sets, and thus by compactness there are finitely many points {x1, x2, . . . , xN} in X
such that

X = Bδx1 (x1) ∪Bδx2 (x2) ∪ . . . ∪BδxN (xN ). (6.6)

We define

δ := min{δx1 , δx2 , . . . , δxN } > 0. (6.7)

Now take any x, y ∈ X such that d(x, y) < δ. Then by (6.6) there is some xk such that

d(x, xk) < δxk < 2δxk , (6.8)

and furthermore

d(xk, y) ≤ d(xk, x) + d(x, y) < δxk + δ < 2δxk . (6.9)

Thus, by another application of the triangle inequality, and (6.5),

d(f(x), f(y)) ≤ d(f(x), f(xk)) + d(f(xk), f(y)) < ε+ ε, (6.10)

which proves the theorem. �

Exercise 6.1. Show that f : R+ → R, f(x) = sin(1/x) is not uniformly continuous.

Exercise 6.2. Prove that uniform continuity always implies (pointwise) continuity.

Exercise 6.3 (Rudin Exc 4.11). Let f : X → Y be a uniformly continuous map between
metric spaces. Show that if (xn)n∈N is Cauchy in X then (f(xn))n∈N is Cauchy in Y .

6.3. Uniform convergence and equicontinuity.

6.3.1. Pointwise and uniform convergence. Consider an arbitrary set X and a metric space
(Y, dY ), and a sequence of functions fn : X → Y , n = 0, 1, 2, . . .. For each x ∈ X we then
have a sequence (fn(x))n∈N in Y , which may or may not converge. In the case that it
converges we say that (fn) converges pointwise at x. If (fn) converges pointwise at every
point x ∈ X of its domain then we may define the pointwise limit of the sequence as the
function f : X → Y ,

f(x) := lim
n→∞

fn(x), ∀x ∈ X. (6.11)
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In other words, fn converges pointwise to f as n→∞ iff

∀x ∈ X ∀ε > 0 ∃N = N(x, ε) s.t. n ≥ N ⇒ dY (fn(x), f(x)) < ε. (6.12)

We note that pointwise convergence might happen at different speeds on the domain X:

Example 6.3. Let fn : R+ → R for n ∈ N+ be defined

fn(x) =
1

nx
. (6.13)

Clearly, the sequence (fn) converges pointwise to the zero function f = 0, however, given
any error margin ε > 0 we need to choose N(x, ε) larger the smaller x > 0 is:

N = N(x, ε) <
1

εx
⇒ fN (x) =

1

Nx
> ε. (6.14)

We say that fn converges uniformly to f on X if N in (6.12) may be chosen indepen-
dently of x, in other words, iff

∀ε > 0 ∃N = N(ε) s.t. ∀x ∈ X n ≥ N ⇒ dY (fn(x), f(x)) < ε. (6.15)

Another way to phrase this property is by measuring the distance of fn to f uniformly on
X by means of the following induced (from Y ) metric(4) on the set of all functions X → Y :

d(f, g) := sup
x∈X

dY (f(x), g(x)). (6.16)

Then indeed fn → f uniformly on X iff d(fn, f)→ 0:

∀ε > 0 ∃N = N(ε) s.t. n ≥ N ⇒ d(fn, f) ≤ ε. (6.17)

In the case that Y is a real vector space then also naturally the set of functions X → Y
is a real vector space with the linear operations

(αf + βg)(x) := αf(x) + βg(x) ∀α, β ∈ R, f, g : X → Y. (6.18)

In the case that (Y, |·|Y ) is a normed vector space then we may use the corresponding
supremum norm:

‖f‖∞ := sup
x∈X
|f(x)|Y , d(f, g) = ‖f − g‖∞ . (6.19)

The corresponding space of all bounded functions X → Y with the metric (6.16) is precisely
the space `∞(X;Y ) introduced in Theorem 5.19, and uniform convergence on X is the same
as convergence in (`∞(X;Y ), ‖·‖∞):

‖fn − f‖∞ ≤ ε ⇔ |fn(x)− f(x)|Y ≤ ε ∀x ∈ X. (6.20)

Furthermore, we say that (fn : X → Y )n∈N is uniformly Cauchy on X iff

∀ε > 0 ∃N = N(ε) s.t. ∀x ∈ X n,m ≥ N ⇒ dY (fn(x), fm(x)) < ε. (6.21)

i.e. iff it is Cauchy w.r.t. the metric (6.16); d(fn, fm)→ 0 as m,n→∞. Equivalently, this
is iff (fn) is Cauchy in `∞(X;Y ) in the case Y is a normed vector space. By Theorem 5.19,
we recall that if Y is a Banach space then also `∞(X;Y ) with the norm ‖·‖∞ is a Banach
space:

(4)Or ‘pseudo-metric’ as it is not necessarily finite unless we e.g. restrict to bounded functions.
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Theorem 6.4. If X is a set and Y is a Banach space (or in fact any complete metric
space), and if fn : X → Y , n ∈ N, is uniformly Cauchy, then there exists f : X → Y such
that fn → f uniformly as n→∞.

We ask what properties are preserved under pointwise respectively uniform limits. Typ-
ical questions that we will address are:

• If fn are continuous for all n, is the limit f continuous? Note that this may be
equivalently phrased

lim
y→x

lim
n→∞

fn(y)
?
= lim

n→∞
lim
y→x

fn(y) (6.22)

• If fn and f are differentiable, do we have that f ′n → f ′?
• If fn and f are Riemann integrable, do we have that

∫
fn →

∫
f?

We shall also consider corresponding questions for series of functions, i.e. sequences
of the form (Sn)n∈N with Sn =

∑n
k=0 fk as n → ∞. The series

∑∞
k=0 fk converges point-

wise/uniformly iff the sequence (Sn) converges pointwise/uniformly. By the majorization
Theorem 4.66 for series (also known as the Weierstrass M-test; cf. Rudin 7.10), we may
be able to easily deduce such pointwise/uniform convergence by bounding the functions fn.

Exercise 6.4. Prove that uniform convergence always implies pointwise convergence.

Exercise 6.5 (Rudin Exc 7.1). Let X be a set and Y a normed vector space. A sequence
(fn : X → Y )n∈N is called pointwise bounded on E ⊆ X iff there exists a function
g : E → R+ such that

|fn(x)| ≤ g(x) ∀x ∈ E,n ∈ N, (6.23)

and uniformly bounded on E iff there exists a number M ∈ R+ such that

|fn(x)| ≤M ∀x ∈ E,n ∈ N. (6.24)

In the case that Y is an arbitrary metric space we may replace these conditions by the
existence of balls in Y containing the function values for all n either pointwise or uniformly
on X. Prove that every uniformly convergent sequence of bounded functions is uniformly
bounded, and that the limit is a bounded function.

Exercise 6.6. Prove that Theorem 6.4 holds for any complete metric space (Y, dY ) (not
necessarily vector spaces).

6.3.2. Uniform convergence and continuity.

Example 6.5. Consider the sequence of functions fn : [−1, 1]→ R, n ∈ N+,

fn(x) =


−1, −1 ≤ x ≤ −1/n,

nx, −1/n < x < 1/n,

1, 1/n ≤ x ≤ 1.

Then the pointwise limit is

f(x) =


−1, x < 0,

0, x = 0,

1, x > 0.
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Thus, clearly continuity of fn for all n is insufficient to guarantee continuity of f . We also
note that

‖fn − f‖∞ = lim
x→0
|nx± 1| = 1 ∀n ∈ N+, (6.25)

so fn does not tend to f uniformly. In fact, (fn) is not uniformly Cauchy (exercise).

Example 6.6. Another example is Rudin 7.3 with the pointwise convergent series

f(x) =
∞∑
n=0

x2

(1 + x2)n
=

{
0, x = 0,

1 + x2, x 6= 0,
(6.26)

which is not continuous despite all its terms being continuous functions. We note that the
supremum norm of each term of the series is greater than

sup
x∈R

x2

(1 + x2)n
≥ (n−1/2)2

(1 + (n−1/2)2)n
≥ 1

ne
(6.27)

(see Rudin 3.31) and a sum of such terms is divergent. Therefore we cannot apply the usual
majorization theorem for series (Theorem 4.66).

Definition 6.7. Given metric spaces X and Y , we denote by C(X;Y ) the set of all contin-

uous functions X → Y , and by Cb(X;Y ) the bounded (5) continuous functions endowed with
the supremum metric (6.16). For brevity we write C(b)(X) = C(b)(X;R) for the real-valued
(bounded) continuous functions on X. (Note! Rudin uses the notation: C = Cb)

In the case that X is compact then the boundedness is automatic by Theorem 4.46, i.e.
C = Cb, and furthermore by the continuity of the metric dY : Y × Y → R+, implying the
continuity of the map x 7→ dY (f(x), g(x)), we may replace the supremum by the maximum,

d(f, g) := sup
x∈X

dY (f(x), g(x)) = max
x∈X

dY (f(x), g(x)). (6.28)

We also note by Theorem 6.2 that f ∈ C(X;Y ) is uniformly continuous if X is compact.
In the case that Y is a Banach space then by Theorem 6.4, any Cauchy sequence in

Cb(X;Y ) ⊆ `∞(X;Y ) converges uniformly to some bounded function f ∈ `∞. In other
words, uniform Cauchy implies uniform convergence. Note that by Examples 6.5-6.6 it
is not necessarily the case that C(X;Y ) remains closed under pointwise limits, however
the following shows that with the stronger assumptions on X and Y , Cb(X;Y ) is indeed
closed under uniform limits (note that in the example, X = [−1, 1] is compact and Y = R
complete, but f is not a uniform limit of fn).

Theorem 6.8. If X and Y are metric spaces and Y is complete, then (Cb(X;Y ), d) as
defined above is a complete metric space. In particular, Cb(X) is a Banach space.

Proof. First let’s check that we actually have a metric:

d(f, g) = sup
x∈X

d(f(x), g(x)) ≤ sup
x∈X

(
d(f(x), h(x)) + d(h(x), g(x))

)
≤ sup

x∈X
d(f(x), h(x)) + sup

x∈X
d(h(x), g(x)) = d(f, h) + d(h, g).

Furthermore, obviously d(f, g) = d(g, f) and d(f, g) = 0 iff f = g.

(5)Boundedness ensures the finiteness of the supremum metric.
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Now assume that a sequence (fn) in Cb(X;Y ) is Cauchy, that is

∀ε > 0 ∃N s.t. n,m ≥ N ⇒ sup
x∈X

d(fn(x), fm(x)) < ε. (6.29)

In other words (fn) is uniformly Cauchy, and by Theorem 6.4 there exists f : X → Y such
that fn → f uniformly. We note that f is a bounded function by Exercise 6.5. It thus
remains to prove that f is also continuous, f ∈ Cb(X;Y ). We note that by the triangle
inequality

d(f(x), f(y)) ≤ d(f(x), fn(x)) + d(fn(x), fn(y)) + d(fn(y), f(y)), (6.30)

for any n. Thus, take ε > 0. Then there exists N = N(ε) s.t. d(f, fn) < ε if n ≥ N . Hence,

d(f(x), f(y)) < 2ε+ d(fN (x), fN (y)). (6.31)

Furthermore, by the uniform continuity of fN , there exists δ = δ(ε) > 0 such that
d(fN (x), fN (y)) < ε if d(x, y) < δ. Therefore

d(f(x), f(y)) < 3ε if d(x, y) < δ, (6.32)

and f is (uniformly) continuous. �

A slight generalization of the above result clarifies the possibility to make an exchange
of limits (6.22):

Theorem 6.9 (Rudin Thm 7.11). Suppose fn : X → Y , n ∈ N, is uniformly Cauchy on a
subset E ⊆ X of a metric space X, and Y a complete metric space. Let x ∈ X be a limit
point of E and

An := lim
E3t→x

fn(t), n ∈ N. (6.33)

Then the sequence (An) converges and

lim
E3t→x

f(t) = lim
n→∞

An, (6.34)

where f denotes the pointwise (and uniform) limit of (fn) on E. In other words,

lim
E3t→x

lim
n→∞

fn(t) = lim
n→∞

lim
E3t→x

fn(t). (6.35)

Proof. Let ε > 0. By the assumption of uniform Cauchy, we have for m,n ≥ N that

d(fn(t), fm(t)) ≤ ε ∀t ∈ E. (6.36)

Thus, taking t→ x we obtain

d(An, Am) ≤ ε. (6.37)

It follows that (An)n in Y is Cauchy and therefore converges to A := limn→∞An ∈ Y . For
any t ∈ E and n ∈ N,

d(f(t), A) ≤ d(f(t), fn(t)) + d(fn(t), An) + d(An, A), (6.38)

and we can make the first and the last term smaller than ε/3 by just taking n large enough.
After fixing such n we may also find δ > 0 such that for all t ∈ E ∩ Bδ(x) we have
d(fn(t), An) < ε/3. This proves the equality (6.34). �

Exercise 6.7. Show that the sequence in Example 6.5 is not uniformly Cauchy.
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6.3.3. Dini’s theorem. Dini says that we may replace pointwise limits with uniform limits
if we also have a monotonicity assumption.

Theorem 6.10 (Dini’s theorem). Let X be a compact metric space and fn : X → R
continuous for n = 1, 2, 3, . . ., and pointwise monotone decreasing,

fn ≥ fn+1 ≥ . . . . (6.39)

Assume that for all p ∈ X, limn→∞ fn(p) = 0, i.e. the sequence (fn) converges pointwise to
zero, then it also converges uniformly to zero, fn → 0 as n→∞.

Corollary 6.11. With the same assumptions as above but where fn converges pointwise to
a continuous function f , then fn → f uniformly on X.

Proof of the corollary. Put gn = fn − f , then (gn) is a sequence of continuous functions
with gn ≥ gn+1. Hence by Dini’s theorem gn → 0 uniformly. �

The following counterexamples illustrate the necessity of the assumptions:

Example 6.12. Let fn : R→ R, n ∈ N+, be the sequence of functions

fn(x) =


2nx, 0 ≤ x ≤ 1/(2n),

2− 2nx, 1/(2n) < x ≤ 1/n,

0, otherwise.

Then pointwise fn(x) → 0 for all x ∈ R, however fn 9 0 because ‖fn‖∞ = 1 ∀n. We may
restrict to the compact interval [0, 1] however the sequence is not monotonously decreasing.

Example 6.13. Let fn : R→ R, n ∈ N+, be the sequence of functions

fn(x) =


0, x < n− 1,

x− n+ 1, n− 1 < x < n,

1, x ≥ n.
Then pointwise fn(x) → 0 for all x ∈ R, however fn 9 0 because ‖fn‖∞ = 1 ∀n. The
sequence decreases monotonously and indeed if we restrict to any compact interval then we
would eventually (say, for n ≥ N + 1 on [−N,N ]) get the zero function.

Proof of Dini’s theorem. Let ε > 0. Since for each p ∈ X, fn(p) ≥ fn+1(p) → 0, and
moreover fn is continuous for each n, there exists Up ⊆ X open and Np ∈ N such that

fn(x) ≤ fNp(x) ≤ ε for all x ∈ Up, n ≥ Np. (6.40)

Note that {Up : p ∈ X} is an open covering of X. By compactness, there are finitely many
p1, p2 . . . , pm ∈ X such that X ⊆ Up1 ∪ Up2 ∪ . . . ∪ Upm . Let

N := max{Np1 , Np2 , . . . , Npm}, (6.41)

then for any x ∈ X and n ≥ N , we have x ∈ Upk for some k, N ≥ Npk , and hence
fn(x) ≤ fNpk (x) ≤ ε. �

Exercise 6.8. Give an example of a bounded sequence in C([0, 1]) (with its standard metric)
which does not have a convergent subsequence. Note that this implies that the closed unit
ball B̄1(0) in C([0, 1]) is not compact.

Exercise 6.9. Give an example of a sequence in Cb([0, 1)) (half-open interval) which tends
to zero pointwise and monotonously but not uniformly.
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6.3.4. Uniform limits of derivatives. See Rudin’s Example 7.5 for a case where fn → f
pointwise and all functions are differentiable, but f ′n 9 f ′. Making a stronger assumption,
of uniform convergence of the derivatives, saves the situation however:

Theorem 6.14 (Rudin Thm 7.17). Suppose (fn : [a, b]→ R) is a sequence of differentiable
functions such that (fn(x0)) converges at some point x0 ∈ [a, b]. If (f ′n) converges uniformly
on [a, b] then also (fn) converges uniformly on [a, b], fn → f , to some differentiable function
f , and furthermore

f ′(x) = lim
n→∞

f ′n(x), a ≤ x ≤ b. (6.42)

In other words, we may then commute the limits

lim
h→0

lim
n→∞

1

h

(
fn(x+ h)− fn(x)

)
= lim

n→∞
lim
h→0

1

h

(
fn(x+ h)− fn(x)

)
. (6.43)

Proof. The first step is to prove that (fn) converges uniformly. Given ε > 0 we may choose
N such that for all n,m ≥ N

|fn(x0)− fm(x0)| < ε

2
(6.44)

and for all t ∈ [a, b]

|f ′n(t)− f ′m(t)| < ε

2(b− a)
. (6.45)

Then, by the triangle inequality and the mean value Theorem 5.30,

|(fn − fm)(x)| ≤ |(fn − fm)(x)− (fn − fm)(x0)|+ |(fn − fm)(x0)|
≤ |(fn − fm)′(t)(x− x0)|+ |(fn − fm)(x0)|

<
ε|x− x0|
2(b− a)

+
ε

2
≤ ε,

for any x ∈ [a, b] and some t between x0 and x. Thus fn → f uniformly by Theorem 6.4.
It remains to prove that f is differentiable and that (6.42) holds. We will apply Theo-

rem 6.9 to the difference quotients

φn(t) :=
fn(t)− fn(x)

t− x
and φ(t) :=

f(t)− f(x)

t− x
, t 6= x, (6.46)

where x ∈ [a, b] is fixed. Note that

lim
t→x

φn(t) = f ′n(x) and lim
t→x

φ(t) = f ′(x). (6.47)

We have again by the mean value theorem, for some t̃ between t and x,

|(φn−φm)(t)| =
∣∣∣∣(fn − fm)(t)− (fn − fm)(x)

t− x

∣∣∣∣ ≤ |(fn − fm)′(t̃)||t− x|
|t− x|

<
ε

2(b− a)
, (6.48)

so that (φn) is uniformly Cauchy on [a, b] \ {x}, and furthermore pointwise limn→∞ φn(t) =
φ(t), t 6= x, by the pointwise convergence of fn to f . It follows that φn → φ also uniformly
on [a, b] \ {x}, and by (6.35)

lim
t→x

φ(t) = lim
n→∞

lim
t→x

φn(t), (6.49)

which proves the theorem. �
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Remark 6.15. Note that if we would not assume that the sequence (fn) converges at some
point x0 then we could add to it an arbitrary sequence of constants without changing the
sequence (f ′n), but then possibly destroying convergence of (fn).

As an interesting counterexample we may consider Weierstrass’ monster, Rudin 7.18:

Theorem 6.16 (Weierstrass’ monster). There exists a bounded, uniformly continuous
function R→ R which is nowhere differentiable.

Proof. Weierstrass originally considered a function on the form

f(x) :=
∞∑
n=0

an cos(bnπx), (6.50)

with suitable a, b ∈ R. However we simplify things slightly by replacing cos by the uniformly
continuous and periodic (‘saw-tooth’) function

f0(x) = |x|, −1 ≤ x ≤ 1, f0(x+ 2) = f0(x) ∀x ∈ R, (6.51)

and let

fN (x) :=
N∑
n=0

(
3

4

)n
f0(4nx). (6.52)

By the boundedness of f0 and the majorization theorem, the series converges uniformly and
furthermore f = limN→∞ fN is continuous by Theorem 6.8. Explicitly, by the bound

|f0(x)− f0(y)| ≤ |x− y| ∀x, y ∈ R, (6.53)

we may estimate

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|

≤ 2
∞∑

n=N+1

(
3

4

)n
+

N∑
n=0

(
3

4

)n
4n|x− y|. (6.54)

For any ε > 0, taking first N = N(ε) large and then 0 ≤ |x− y| < δ = δ(ε) small, we have
uniform continuity.

Now consider differentiability of f at x ∈ R. For any m ∈ N, let

δm := ±1

2
4−m, (6.55)

and note that 4m|δm| = 1/2 and that 4nδm ∈ 2Z if n > m. The sign of δm is chosen so that
there is no integer between 4mx and 4m(x+ δm). Let

γn :=
f0(4n(x+ δm))− f0(4nx)

δm
, (6.56)

then γn = 0 if n > m, by periodicity, while if 0 ≤ n ≤ m then |γn| ≤ 4n by (6.53).
Furthermore, |γm| = 4m, and it follows that∣∣∣∣f(x+ δm)− f(x)

δm

∣∣∣∣ =

∣∣∣∣∣
m∑
n=0

(
3

4

)n
γn

∣∣∣∣∣ ≥ 3m −
m−1∑
n=0

3n =
3m + 1

2
.

Taking m→∞ shows that f is not differentiable at x. �
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Exercise 6.10 (Difficult!). Let f : R→ R,

f(x) =
∞∑
n=0

min
m∈Z

∣∣∣x− m

2k

∣∣∣ . (6.57)

Show that f is uniformly continuous but nowhere differentiable.

6.3.5. Uniform limits of integrals. Proving uniform convergence for integrals is easier. See
Rudin’s Examples 7.4 and 7.6 for cases where the pointwise limit either loses integrability
or has a different value of the integral.

Theorem 6.17 (Rudin Thm 7.16). Suppose R is a finite box in Rm and (fn : R → R) a
sequence of Riemann-integrable functions, fn ∈ R on R. If fn → f uniformly on R then
f ∈ R on R, and ∫

R
f = lim

n→∞

∫
R
fn. (6.58)

In other words, we may commute the limits of Riemann sums

lim
P,T :d(P )→0

lim
n→∞

I(fn, P, T ) = lim
n→∞

lim
P,T :d(P )→0

I(fn, P, T ). (6.59)

Proof. Note that fn and f are bounded by Theorem 5.45 and Exercise 6.5. Let εn :=
‖f − fn‖∞. We may then estimate pointwise

fn − εn ≤ f ≤ fn + εn, (6.60)

for any n, and therefore the oscillation of f on any box Rj by that of fn:

Mj(f)−mj(f) ≤ sup
R̄j

(fn + εn)− inf
R̄j

(fn − εn) ≤Mj(fn)−mj(fn) + 2εn. (6.61)

It follows then that, for any partition P of R,

0 ≤
∫
R
f −

∫
R

f ≤ U(f, P )− L(f, P ) ≤ U(fn, P )− L(fn, P ) + 2εn volR. (6.62)

Since fn ∈ R, the r.h.s. can be made arbitrarily small by first taking n sufficiently large
and then P sufficiently fine. Hence, f ∈ R on R.

We may then estimate using linearity and the box estimate for integrals

0 ≤
∣∣∣∣∫
R
f −

∫
R
fn

∣∣∣∣ =

∣∣∣∣∫
R

(f − fn)

∣∣∣∣ ≤ εn volR→ 0, (6.63)

as n→∞. �

6.3.6. Equicontinuity. We will need an even stronger notion of continuity, namely continuity
that is both uniform over the choice of a function f ∈ F ⊆ C(X) in some set or sequence,
and uniform over the domain X:

Definition 6.18. A subset F ⊆ C(X;Y ) is called equicontinuous iff

∀ε > 0 ∃δ = δ(ε) s.t. ∀f ∈ F ∀x, y ∈ X
(
dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε

)
. (6.64)
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Note that if this condition fails, then there exists some ε > 0 such that for any δ > 0
there exist f ∈ F and x, y ∈ X with d(x, y) < δ such that d(f(x), f(y)) ≥ ε. In the case
that X is compact we have by Theorem 6.2 uniform continuity of any f ∈ F , and therefore
as we take δ → 0 the necessary oscillation in the function values must come from choosing
different f .

Example 6.19 (Rudin 7.21). Consider the sequence of continuous functions

fn(x) =
x2

x2 + (1− nx)2
, 0 ≤ x ≤ 1, n ∈ N+. (6.65)

Then (fn) is uniformly bounded, ‖f‖∞ ≤ 1, and fn → 0 pointwise for all x ∈ [0, 1], however
fn(1/n) = 1 so that ‖fn‖∞ = 1 ∀n and therefore no subsequence can converge uniformly
on [0, 1]. In fact F = {fn}n∈N+ is not equicontinuous.

Exercise 6.11. Show that if F ⊆ C(X;Y ) is equicontinuous then f ∈ F is uniformly
continuous.

Exercise 6.12. Show that if X is compact and F ⊆ C(X;Y ) a finite set then F is equicon-
tinuous.

6.4. Arzelà-Ascoli. Cf. Rudin 7.23-25
The following important theorem clarifies some of the topology of the space C(X) of

continuous functions:

Theorem 6.20 (Arzelà-Ascoli). If X is a compact metric space then a subset F ⊆ C(X)
of the real-valued functions on X (with the supremum/max norm) is compact if and only if
it is closed, bounded and equicontinuous.

In fact we can be slightly more general and consider functions in C(X;Y ) where Y is
any complete metric space with the Bolzano-Weierstrass (BW) property: that every
bounded sequence has a convergent subsequence. Recall also that an equivalent definition of
compactness in metric spaces is that every sequence (or infinite subset) contains a convergent
subsequence (or limit point), by Theorem 4.37. Thus for bounded sets the BW property
is equivalent to compactness. Also recall that any compact subset is necessarily closed and
bounded (Theorem 4.31 resp. Exercise 4.18), and in fact it will be shown to be sufficient
for the theorem that F is pointwise bounded, i.e. {f(x) ∈ Y : f ∈ F} is bounded ∀x ∈ X.

The following lemma generalizes the procedure used to prove BW from Rn (Theorem 4.3)
to countable dimensions:

Lemma 6.21. Let (fn) be a pointwise bounded sequence of functions X → Y , where X is a
countable set and Y a metric space with the BW property. Then (fn) contains a pointwise
convergent subsequence.

Proof. Denote X = {x1, x2, . . .}. The sequence (fn(x1)) is bounded and therefore contains
a convergent subsequence (f1,n(x1)). Also (f1,n(x2)) is bounded and contains a convergent
subsequence (f2,n(x2)). In this way we obtain ∀k ∈ N+ successive subsequences (fk,n)∞n=1

such that (fk,n(xj))
∞
n=1 converges for all 1 ≤ j ≤ k and such that (fk,n) is a subsequence of

(fk−1,n).
Now form the ‘diagonal sequence’

fn′ := fn,n, n = 1, 2, . . . . (6.66)
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Then we see that (fn′(xj))n∈N+ converges for every j ∈ N+. �

Theorem 6.22 (AA: necessity). If (fn) is a sequence of continuous functions between
metric spaces X → Y , where X is compact, and which is uniformly convergent, then {fn}
is equicontinuous. Moreover, if F ⊆ C(X;Y ) is compact then it is equicontinuous.

Remark 6.23. We may equally well assume that the sequence is uniformly Cauchy instead
of convergent. If Y is complete then these assumptions are equivalent.

Proof. Let ε > 0 and choose N = N(ε) such that

∀x ∈ X d(fn(x), fm(x)) < ε if n,m ≥ N. (6.67)

Since X is compact we know by Theorem 6.2 that every fn is uniformly continuous, i.e.
there exists δ = δ(ε) > 0 s.t.

d(fn(x), fn(y)) < ε if 1 ≤ n ≤ N and d(x, y) < δ. (6.68)

Thus, for n > N and d(x, y) < δ we have

d(fn(x), fn(y)) ≤ d(fn(x), fN (x)) + d(fN (x), fN (y)) + d(fN (y), fn(y)) ≤ ε+ ε+ ε. (6.69)

These bounds (6.68)-(6.69) prove the first part of the theorem.
Assume now that F is compact but not equicontinuous. Then there exists ε > 0 such that

for any n ∈ N there exist points xn, yn ∈ X and a function fn ∈ F such that d(xn, yn) < 1/n
but d(fn(xn), fn(yn)) ≥ ε. By the limit point compactness of F this sequence (fn) has a
convergent subsequence (fn′), fn′ → f ∈ F uniformly on X. But by the first part of the
theorem this subsequence is then necessarily equicontinuous, which yields a contradiction.

�

Remark 6.24. Recall that a compact space X is separable (Exercise 4.22). Further, a
metric space X is called pre-compact if ∀ε > 0 there exists a finite subset A ⊆ X such
that X = ∪a∈ABε(a). By the same proof one may conclude that any pre-compact space is
separable.

Theorem 6.25 (AA: sufficiency). Let f1, f2, f3, . . . be a pointwise bounded and equicontin-
uous sequence of functions between metric spaces X → Y , where X is compact and Y is
complete and has the BW property. Then the sequence is uniformly bounded and contains
a uniformly convergent subsequence.

Proof. Take ε > 0 and choose δ > 0 such that d(fn(x), fn(y)) < ε for all n ∈ N+ if
d(x, y) < δ. Since X is compact there exists a finite set A ⊆ X such that X =

⋃
a∈ABδ(a).

This means that
∀x ∈ X ∃a ∈ A s.t. d(x, a) < δ. (6.70)

Since (fn) is pointwise bounded and A finite, the sequence is uniformly bounded on A, i.e.

∃q ∈ Y and R <∞ s.t. d(fn(a), q) < R ∀n ∈ N+ ∀a ∈ A (6.71)

(we may take R = maxa∈ARa where d(fn(a), q) < Ra ∀n). Hence, if d(x, a) < δ we obtain
that

d(fn(x), q) ≤ d(fn(x), fn(a)) + d(fn(a), q) < ε+R ∀n ∈ N+. (6.72)

This shows that our sequence is uniformly bounded.
It remains to prove the existence of a subsequence which converges uniformly. Let T

be a countable and dense subset of X and take a subsequence (fn′) such that for every
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t ∈ T , fn′(t) → f(t), n → ∞, where f : T → Y , as shown possible by Lemma 6.21.
Since

⋃
t∈T Bδ(t) = X and X is compact, there exists a finite subset A ⊆ T such that⋃

a∈ABδ(a) = X. But then (fn′) is uniformly Cauchy on the finite set A, i.e. there exists
an N ∈ N+ such that

d(fn′(a), fm′(a)) < ε if n,m ≥ N, a ∈ A (6.73)

(we may take N = maxa∈ANa where n,m ≥ Na ⇒ d(fn′(a), fm′(a)) < ε).
Now, we have that if n,m ≥ N and d(x, a) < δ then

d(fn′(x), fm′(x)) ≤ d(fn′(x), fn′(a))+d(fn′(a), fm′(a))+d(fm′(a), fm′(x)) ≤ ε+ε+ε, (6.74)

which proves that (fn′) is uniformly Cauchy on X. Since Y is complete it follows by
Theorem 6.8 that it converges uniformly on X to a (uniformly) continuous function X →
Y . �

Remark 6.26. Even if we relax the condition on completeness of Y the above proof still
yields the existence of a subsequence which is uniformly Cauchy. Furthermore, we only
need to assume that X is pre-compact.

Remark 6.27. In Rudin it is assumed that Y = R or Y = C. By BW (Theorem 4.3) the AA
theorem holds for Y = Rn and Y = Cn as well, or Y any compact space by Corollary 4.39.

6.4.1. Example application of AA: integral compactness.

Proposition 6.28. Let (fn) be a uniformly bounded sequence of Riemann integrable func-
tions on [a, b] and let

Fn(x) :=

∫ x

a
fn(t) dt, a ≤ x ≤ b, n = 1, 2, . . . . (6.75)

Then there exists a subsequence (Fn′) that converges uniformly on [a, b].

Proof. We aim to try to apply Arzelà-Ascoli to the set F = {Fn}. However to ensure F ⊆
C([a, b]) we must first check that these functions are bounded and F pointwise bounded.
By the uniform bound on (fn),

∃M <∞ : |fn(t)| ≤M ∀n ∈ N+, t ∈ [a, b]. (6.76)

Then, by the box estimate for integrals,

|Fn(x)| ≤ (b− a)M ∀n ∈ N+, x ∈ [a, b]. (6.77)

Therefore actually F is uniformly bounded, and by Theorem 5.46, F ⊆ C([a, b]).
Is F equicontinuous? WLOG, a ≤ x ≤ y ≤ b, and for any n ∈ N+

|Fn(x)− Fn(y)| =
∣∣∣∣∫ y

x
fn

∣∣∣∣ ≤ ∫ y

x
|fn| ≤ (y − x)M < ε, (6.78)

if |x − y| < δ := ε/M . Thus F is equicontinuous and by AA there exists a uniformly
convergent subsequence (Fn′) in F . �
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6.5. *Stone-Weierstrass. Cf. Rudin 7.26
The following theorem shows that continuous functions are well approximated by poly-

nomials even though they might lack a Taylor expansion (they may be non-differentiable):

Theorem 6.29 (Weierstrass approximation theorem). If f : [a, b] → R is continous
and ε > 0 then there exists a polynomial p such that |f(x)− p(x)| < ε for all x ∈ [a, b].

Corollary 6.30. The space C([a, b];R) is separable.

Stone’s generalization...

6.6. Power series. cf. Rudin 8.1-5
Many important functions (exp, sin, cos, . . .) may be defined by means of a power series,

f(x) :=
∞∑
n=0

cn(x− a)n (6.79)

for some sequence of coefficients (cn)∞n=0 in R. Each term in the series is a monomial
fn(x) := cn(x−a)n, fn ∈ C(R), and the series will have a radius of convergence R ∈ [0,+∞],

1

R
:= lim sup

n→∞
(|cn|)1/n, (6.80)

such that it converges pointwise and absolutely for |x− a| < R and diverges for |x− a| > R
(by the root test; see Rudin Thm 3.39; for |x − a| = R it may or may not converge, while
f(a) = c0 also if R = 0). We note then that, on any closed interval Iε = [a−R+ε, a+R−ε],
ε > 0 small enough (or R− ε finite in the case R = +∞), we have the uniform bound

‖fn‖C(Iε)
= sup

x∈Iε
|fn(x)| ≤ |cn||R− ε|n ⇒

∞∑
n=0

‖fn‖C(Iε)
≤
∞∑
n=0

|cn||R− ε|n <∞. (6.81)

Therefore, by the completeness of C(Iε) and the majorization theorem for series, it converges
uniformly on Iε to its pointwise limit f =

∑∞
n=0 fn ∈ C(Iε). Furthermore, the term-wise

derivative

f ′(x) =
∞∑
n=1

ncn(x− a)n−1 (6.82)

actually has the same radius of pointwise convergence,

lim sup
n→∞

(n|cn|)1/n = lim sup
n→∞

(|cn|)1/n, (6.83)

so it too converges uniformly on Iε to the r.h.s. of (6.82), and thus by Theorem 6.14, f is
differentiable and the limits of difference quotients agree, justifying (6.82). Since ε > 0 was
arbitrary, f is differentiable (and not only continuous) on the open interval (a−R, a+R).

The above conclusions are summarized in Rudin Thm 8.1. By an iteration of the ar-
gument we have actually f ′ ∈ C1((a − R, a + R)) (continuously differentiable), and so on.
Functions with arbitrarily many derivatives are called smooth, f ∈ C∞, while functions of
the form (6.79) which admit a power series expression are called (real) analytic, f ∈ Cω.
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Some typical examples are the Taylor/Maclaurin series (recall Section 4.10.1)

ex = exp(x) = 1 + x+ x2

2! + x3

3! + x4

4! + . . . , R = +∞,

sinx =
eix − e−ix

2i
= x− x3

3! + x5

5! −
x7

7! + . . . , R = +∞,

cosx =
eix + e−ix

2
= 1− x2

2! + x4

4! −
x6

6! + . . . , R = +∞,

(1− x)−1 = 1 + x+ x2 + x3 + x4 + . . . , R = 1,

ln(1 + x) = x− x2

2 + x3

3 −
x4

4 + . . . , R = 1.

6.7. Duality. Given a normed vector space (X, |·|) over R, we may define the dual normed
vector space by

X∗ := Hom(X,R) = {f : X → R linear : ‖f‖ <∞}, (6.84)

with its canonical linear structure and its usual, operator, norm

‖f‖ = ‖f‖op = sup
x∈X:|x|=1

|f(x)|. (6.85)

These functions are also known as bounded linear functionals on X.
By Corollary 5.21 we have the following useful corollary:

Theorem 6.31. If X is a normed vector space then its dual space X∗ is a Banach space.
(Again we get Banach for free!)

Sometimes the dual space may be identified with some other well-known Banach space.
For example, we have the canonical isomorphism (isometry) (Rn)∗ ∼= R1×n ∼= Rn by means
of the transpose

R1×n 3
[
x1 x2 . . . xn

]
↔ (x1, x2, . . . , xn) ∈ Rn. (6.86)

Consider sequences x = (xn) ∈ `p and y = (yn) ∈ `q, with 1 ≤ p, q ≤ +∞ and the
relationship

1

p
+

1

q
= 1, (6.87)

then we have Hölder’s inequality (exercise; for p =∞ or q =∞ replace by the sup norm)

∞∑
n=0

|xnyn| ≤

( ∞∑
n=0

|xn|p
)1/p( ∞∑

n=0

|yn|q
)1/q

. (6.88)

For any such y ∈ `q then the map fy : `p → R,

fy(x) :=

∞∑
n=0

xnyn, (6.89)

defines a bounded linear functional on `p, i.e. fy ∈ (`p)∗. For X = `p, 1 ≤ p <∞, we have
in fact that X∗ ∼= `q, via the following theorem. In particular (`2)∗ ∼= `2 and (`1)∗ ∼= `∞.
However, it is only the case that `1 ( (`∞)∗ (i.e. it turns out that arbitrary bounded
functionals on `∞ are slightly more general than `1).
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Theorem 6.32. For any x ∈ `p, 1 ≤ p <∞, and q satisfying (6.87), we have

‖x‖p = max
y∈`q :‖y‖q=1

∞∑
n=0

xnyn. (6.90)

Proof. By Hölder, it is clear that fy(x) ≤ ‖x‖p if ‖y‖q = 1. By rescaling x it is sufficient

to assume that ‖x‖p = 1 and prove that fy(x) = 1 for some y ∈ `q with ‖y‖q = 1. Let

yn = (signxn)|xn|p/q, then

‖y‖q =

( ∞∑
n=0

|xn|p
)1/q

= 1 and
∞∑
n=0

xnyn =
∞∑
n=0

|xn|p = 1. (6.91)

Hence fy(x) = 1, i.e. the maximum maxy∈`q :‖y‖q=1

∑∞
n=0 xnyn is assumed and equals 1. �

Theorem 6.33 (Minkowski’s inequality). For any x, y ∈ `p, p ∈ [1,+∞],

‖x+ y‖p ≤ ‖x‖p + ‖y‖p . (6.92)

Proof. The cases p = 1 and p = +∞ are more or less obvious; see e.g. Example 4.68. For
finite p > 1, by the previous theorem,

‖x+ y‖p = max
z∈`q :‖z‖q=1

∞∑
n=0

(xn + yn)zn ≤ max
z∈`q :‖z‖q=1

∞∑
n=0

xnzn + max
z∈`q :‖z‖q=1

∞∑
n=0

ynzn, (6.93)

which completes the proof. �

Compare Rudin Exc 6.10-11, Young and Hölder:

Exercise 6.13 (Young’s inequality). Prove that if p, q > 1 are such that

1

p
+

1

q
= 1, (6.94)

and if a, b ≥ 0, then

ab ≤ ap

p
+
bq

q
(6.95)

with equality iff ap = bp.

Exercise 6.14. Use Young’s inequality to prove Hölder’s inequality (6.88).

Exercise 6.15. Prove the generalized Hölder’s inequality( ∞∑
n=0

|xnyn|r
)1/r

≤

( ∞∑
n=0

|xn|p
)1/p( ∞∑

n=0

|yn|q
)1/q

(6.96)

for any 1 ≤ p, q, r ≤ ∞ such that
1

p
+

1

q
=

1

r
. (6.97)

In the case that any of these are ∞ we replace (
∑
|xn|p)1/p = ‖x‖p by ‖x‖∞.
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Exercise 6.16. Let R ⊆ Rn be a finite box and denote by Rp, 1 ≤ p < ∞, the real vector
space of all functions f : R→ R such that |f |p ∈ R on R (we may also consider R = Rn by
taking limits of bigger boxes). Define for f ∈ Rp

‖f‖p :=

(∫
R
|f |p

)1/p

. (6.98)

Repeat the above analysis for `p to prove Hölder’s inequality for integrals∫
R
|fg| ≤ ‖f‖p ‖g‖q (6.99)

for f ∈ Rp, g ∈ Rq, 1 < p, q <∞ satisfying (6.87), the pairing

‖f‖p = max
g∈Rq :‖g‖q=1

∫
R
fg, (6.100)

and Minkowski’s inequality for integrals

‖f + g‖p ≤ ‖f‖p + ‖g‖p , (6.101)

for any f, g ∈ Rp, 1 ≤ p <∞. Hence (6.98) defines a norm on Rp.
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7. Fixpoint, inverse and implicit function theorems [L21-24]

7.1. Reading tip. This final Section concerns Chapter 9 in Rudin, mainly 9.22-32. In
these lecture notes we generalize some of the main theorems from Rn to Banach spaces.
Note that, except some useful remarks on integration in many variables in Rudin 10.1-9,
remaining chapters 10-11 in Rudin are extracurricular; cf. reading tips in Section 5.1.

7.1.1. Exercises. Rudin Ch. 9: 16-25
Exam 2020-08-19: problems 5,6. Exam 2020-06-15: problems 4,6. Exam 2020-03-16: prob-
lem 6. Exam 2019-06-15: problems 5,6. Exam 2019-01-14: problems 6,7. Exam 2015-12-09:
problems 5,7. Exam 2015-03-21: problems 5,7. Exam 2014-12-17: problems 7,8. Exam
2014-04-23: problems 7,8. Exam 2013-12-18: problems 6-8.

7.1.2. Aims. Concepts discussed in this Section:

• Banach’s fixed point theorem and applications
• Inverse and implicit function theorems

Learning outcomes: After this Section you should be able to

• apply the theory to solve mathematical problems including the construction of sim-
ple proofs

7.2. Banach fixpoint theorem. Cf. Rudin 9.22-23
A map f : X → Y between two metric spaces is called a contraction if

dY (f(x), f(y)) ≤ dX(x, y) ∀x, y ∈ X. (7.1)

and a strict contraction if there exists some c < 1 such that

dY (f(x), f(y)) ≤ cdX(x, y) ∀x, y ∈ X. (7.2)

Note that a contraction is continuous (and Lipschitz according to Definition 5.25).
We call p ∈ X a fixed point (or fixpoint) for a map f : X → X if f(p) = p.

Theorem 7.1 (Banach’s fixed point theorem). If X is a complete metric space and
f : X → X is a strict contraction, then f has a unique fixed point.

Proof. Let us divide the proof into the following parts:
Uniqueness: Assume that f(p) = p and f(q) = q. Then d(p, q) = d(f(p), f(q)) ≤

cd(p, q). Since c < 1, necessarily d(p, q) = 0, and thus p = q.
Existence: Let x0 ∈ X be an arbitrary point, and define the sequence

x1 := f(x0), x2 := f(x1), . . . , xn+1 := f(xn), n ≥ 0. (7.3)

We shall verify that (xn)n∈N is Cauchy and therefore converges to some p ∈ X. Then, by
continuity of f ,

xn+1 = f(xn)
↓ ↓
p = f(p)

(7.4)

as n→∞, thus proving the existence of the fixpoint p.
Cauchy: Let n > 0, then

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ cd(xn, xn−1). (7.5)
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Iterating this argument, we find for all n ≥ 0 that

d(xn+1, xn) ≤ cnd(x1, x0). (7.6)

Now take m < n, then by iterating the triangle inequality and estimating by the geometric
series,

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + . . .+ d(xn−1, xn)

≤ (cm + cm+1 + . . .+ cn−1)d(x1, x0)

≤ cm 1

1− c
d(x1, x0)→ 0, m→∞.

In other words, take ε > 0 and choose N such that cN

1−cd(x1, x0) < ε. Then d(xm, xn) < ε
if m,n ≥ N , which was to be proven. �

The following extends this result to functions or parameter families of strict contractions:

Theorem 7.2 (Stability theorem). Let f : X×Y → X where X is a complete metric space
and Y a metric space. Assume also that there exists c < 1 such that

d(f(x, y), f(x′, y)) ≤ cd(x, x′) ∀x, x′ ∈ X, y ∈ Y. (7.7)

and moreover that ∀x ∈ X the function Y 3 y 7→ f(x, y) ∈ X is continuous. Then there
exists a continuous function Y 3 y 7→ p(y) ∈ X such that

f(p(y), y) = p(y). (7.8)

Moreover, the function p is unique.

Proof. From Banach’s fixed point theorem it follows that for any y ∈ Y there exists a unique
p(y) ∈ X such that f(p(y), y) = p(y). It thus remains to prove continuity of p : Y → X.
But if y, y′ ∈ Y then we have

d(p(y), p(y′)) = d(f(p(y), y), f(p(y′), y′))

≤ d(f(p(y), y), f(p(y), y′)) + d(f(p(y), y′), f(p(y′), y′))

≤ d(f(p(y), y), f(p(y), y′)) + cd(p(y), p(y′)),

and thus we obtain

(1− c)d(p(y), p(y′)) ≤ d(f(p(y), y), f(p(y), y′)). (7.9)

The r.h.s. tends to zero when y′ → y, proving continuity of p. �

7.3. Application: Ordinary differential equations. Let F : X × [−a, a] → X be a
continuous map, where a > 0 and (X, |·|) is a Banach space. Also assume that F is
Lipschitz in the first variable and uniformly in both variables, i.e. there exists A ∈ R s.t.

|F (x, t)− F (y, t)| ≤ A |x− y| ∀t ∈ [−a, a] ∀x, y ∈ X (7.10)

Then we have the following:

Theorem 7.3 (Existence and uniqueness for regular ODE). If a < 1/A then there
exists for every c ∈ X a unique differentiable function u : [−a, a] → X that solves the
ordinary differential equation (ODE){

u′(t) = F (u(t), t), |t| ≤ a,
u(0) = c.

(7.11)
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Proof. As conventional, we let C([−a, a];X) denote the Banach space of continuous maps
[−a, a]→ X with the norm ‖u‖ = max|t|≤a |u(t)|.

Existence: Using the fundamental theorem of integral calculus we may write the ODE
(7.11) on an integral form. Namely, if a solution u to (7.11) exists it is continuous, and thus
the map [−a, a] 3 s 7→ F (u(s), s) is continuous as well and therefore Riemann integrable.
Integrating both sides we obtain by Theorem 5.46

u(t)− u(0) =

∫ t

0
u′(s) ds =

∫ t

0
F (u(s), s) ds. (7.12)

Thus, we proceed to try to solve the integral equation (7.12) by defining the map

C([−a, a];X)
ϕ−→ C([−a, a];X)

u 7→ ϕ(u)
(7.13)

by

ϕ(u)(t) := c+

∫ t

0
F (u(s), s) ds. (7.14)

Then ϕ is a strict contraction: for any t ∈ [−a, a]

|ϕ(u)(t)− ϕ(v)(t)| =
∣∣∣∣∫ t

0
(F (u(s), s)− F (v(s), s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t

0
A |u(s)− v(s)| ds

∣∣∣∣ ≤ aA ‖u− v‖ ,
implying

‖ϕ(u)− ϕ(v)‖ ≤ aA ‖u− v‖ . (7.15)

Thus with our assumption aA < 1 this is a strict contraction, and by Banach’s fixpoint
theorem it has a unique fixpoint, u = ϕ(u). In other words, u : [−a, a] → X is continuous
and

u(t) = c+

∫ t

0
F (u(s), s) ds, u(0) = c. (7.16)

Again, by Theorem 5.46, u is then differentiable and satisfies

u′(t) = F (u(t), t), u(0) = c. (7.17)

Uniqueness: If u1 and u2 are two solutions and g := u1 − u2,

g′(t) = u′1(t)− u′2(t) = F (u1(t), t)− F (u2(t), t), (7.18)

then by the mean value inequality (Theorem 5.27) and (7.10), for 0 < x ≤ δ ≤ a
|g(x)| = |g(x)− g(0)| ≤ |x| sup

t∈[0,x]
|g′(t)| ≤ |x|A sup

t∈[0,x]
|g(t)| (7.19)

that is ‖g‖C([0,δ]) ≤ δA ‖g‖C([0,δ]), so g = 0 on [0, δ] if δ < 1/A, and similarly for [−δ, 0]. By

iterating the argument further and further away from x = 0 we conclude that g = 0. �

Example 7.4. If we relax the Lipschitz condition on F then there is not necessarily unique-
ness. Namely, consider the ODE

u′(t) =
√
|u(t)|, t ∈ [−a, a],

u(0) = 0.
(7.20)
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Here F (u, t) = |u|1/2 is certainly continuous, but not Lipschitz. The ODE admits both the

differentiable solution u(t) = (sign t)t2/4, u′(t) = (sign t)t/2 = |t|/2 =
√
|u|, and the trivial

solution u = 0.

If we relax the conditions on F a bit but instead strengthen those on X we may anyway
obtain the following existence result:

Theorem 7.5 (Cauchy-Peano’s existence theorem for ODE). Assume that F : Rd×
[0, 1] → Rd is bounded and continuous. There exists for every c ∈ Rd a differentiable
function u : [0, 1]→ Rd that solves the ordinary differential equation

u′(t) = F (u(t), t), t ∈ [0, 1],
u(0) = c.

(7.21)

Proof. We cannot use the same approach as above since potentially A = ∞. Instead the
idea is to split the interval in smaller parts and construct approximate solutions of the
corresponding integral equation (7.16) with locally constant derivatives, that is, locally
affine (constant plus linear) functions.

Fix n ∈ N+. We will construct fn : [0, 1] → Rd that is continuous and piecewise affine
with fn(0) := c. Partition the interval [0, 1] into

0 =
0

n
,

1

n
,

2

n
, . . . ,

k

n
, . . . ,

n

n
= 1. (7.22)

For 0 < t ≤ 1/n we let

fn(t) := fn(0) + (t− 0/n)F (fn(0/n), 0/n). (7.23)

We then have for 0 < t < 1/n

f ′n(t) = F (fn(0/n), 0/n). (7.24)

Now assume that fn has been defined for 0 ≤ t ≤ k
n . If k

n < 1 we define for k
n < t ≤ k+1

n

fn(t) := fn(k/n) + (t− k/n)F (fn(k/n), k/n). (7.25)

We then have also for these t (except at the endpoint) that

f ′n(t) = F (fn(k/n), k/n). (7.26)

Let now M ∈ R be such that

|F (x, t)| ≤M ∀x ∈ Rd ∀t ∈ [0, 1]. (7.27)

Then we have for all t ∈ [0, 1], t 6= k/n, k ∈ {0, 1, . . . , n} that |f ′n(t)| ≤ M . Since fn is
continuous at every point we find that (fn)∞n=1 is a pointwise bounded (actually uniformly
bounded) and equicontinuous sequence in C([0, 1];Rd). For example, if only k/n ∈ [t, s],

|fn(s)−fn(t)| ≤ |fn(s)−fn(k/n)|+ |fn(k/n)−fn(t)| ≤M |s−k/n|+M |k/n− t| = M |s− t|,
(7.28)

etc., and in general |fn(s)− fn(t)| ≤M |s− t|.
By Arzelà-Ascoli’s theorem it follows then that there exists a subsequence (fn′) which

converges uniformly to some continuous f : [0, 1] → Rd, which also satisfies f(0) = c. Let
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us for convenience re-denote n′ by n. Since every fn is continuous and differentiable except
in a finite set of points we have that fn ∈ R on [0, 1], and

fn(t) = c+

∫ t

0
f ′n(s) ds, t ∈ [0, 1]. (7.29)

Let kt,n be the largest integer s.t.
kt,n
n ≤ t. Then we furthermore have∫ t

0
f ′n =

∫ 1/n

0
+

∫ 2/n

1/n
+ . . .+

∫ kt,n/n

kt,n−1/n
+ . . .+

∫ t

kt,n/n
f ′n =

kt,n∑
k=0

1

n
F (fn(k/n), k/n)+

∫ t

kt,n/n
f ′n.

(7.30)
The last term is in absolute value smaller than M/n and thus tends to zero as n→∞. The
sum however we would like to compare to

kt,n∑
k=0

1

n
F (f(k/n), k/n)→

∫ t

0
F (f(s), s) ds, as n→∞, (7.31)

by definition of the Riemann integral.
We estimate the difference between (7.30) and (7.31) using that |fn(t)| ≤M , |f(t)| ≤M ,

and F is uniformly continuous on the compact set [−M,M ]d× [0, 1]. Namely, for any ε > 0
∃δ > 0 s.t.

∀t ∈ [0, 1],x,y ∈ Rd, |x|, |y| ≤M & |x− y| < δ ⇒ |F (x, t)− F (y, t)| < ε, (7.32)

and by choosing N large enough,

|fn(t)− f(t)| < δ ∀t ∈ [0, 1]. (7.33)

We therefore obtain if n ≥ N∣∣∣∣∣∣
kt,n∑
k=0

1

n

[
F (fn(k/n), k/n)− F (f(k/n), k/n)

]∣∣∣∣∣∣ ≤
kt,n∑
k=0

1

n
ε ≤ ε. (7.34)

In conclusion, we obtain

f(t) = c+

∫ t

0
F (f(s), s) ds, (7.35)

and u(t) = f(t) solves our ODE. �

7.4. Inverse function theorem. Let X and Y be Banach spaces. The inverse function
theorem says that, if f : X → Y is continuously differentiable close to a ∈ X, f(a) = b,
then:

1. If f ′(a) has a linear bounded left inverse A : X → Y (A ◦ f ′(a) = idX) then f has
locally near b a left inverse g : Ω → f−1(Ω) (g ◦ f = idf−1(Ω)) that is continuously
differentiable.

2. If f ′(a) has a linear bounded right inverse B : Y → X (f ′(a) ◦ B = idY ) then f
has locally near b a right inverse g : Ω→ f−1(Ω) (f ◦ g = idΩ) that is continuously
differentiable.

3. If both 1. and 2. then f has locally near b a continuously differentiable inverse g.

We first prove the following simplified lemma:



REAL ANALYSIS 101

Lemma 7.6. Let (X, |·|) be a Banach space and f : X → X a continuously differentiable
mapping in some neighborhood of 0, such that f(0) = 0 and f ′(0) = 1. Then there exists
an open neighborhood W of 0 and a map g : W → X such that f ◦ g = 1W and g′(0) = 1.

Proof. By the continuity of f ′ at 0, there exists some r > 0 such that ‖f ′(x)− 1‖op < 1/2

if |x| ≤ r. Let W = Br/2(0), and fix any y ∈ B̄r/2(0) ⊇W . Define a map ϕ : K → K, where

K = B̄2|y|(0), by

ϕ(x) := x+ y − f(x). (7.36)

We then see that ϕ(x) = x iff y = f(x), so it is sufficient to show that ϕ has a unique
fixpoint, which will follow from the Banach fixpoint Theorem 7.1 if we can show that
indeed imϕ ⊆ K and that ϕ is a strict contraction. Indeed, we have K ⊆ B̄r(0) and thus∥∥ϕ′(x)

∥∥
op

=
∥∥1− f ′(x)

∥∥
op
< 1/2 ∀x ∈ K. (7.37)

First, note that if x ∈ K then

|ϕ(x)| = |ϕ(x)− ϕ(0) + ϕ(0)| ≤ 1

2
|x|+ |y| ≤ 2 |y| (7.38)

by the triangle and mean value inequalities. Hence, Imϕ ⊆ K.
Next, if x1, x2 ∈ K we have similarly that

|ϕ(x1)− ϕ(x2)| ≤ 1

2
|x1 − x2|, (7.39)

by (7.37), showing that ϕ is a strict contraction from the complete metric space K into
itself. Hence there exists a unique x ∈ K, denoted g(y), such that f(g(y)) = y.

Having this construction for every y ∈ W , we conclude that there exists g : W → X,
where 0 ∈ W open, and f ◦ g = 1 on W . To show that g′(0) exists we note that, by
differentiability of f at 0,

f(x) = f(0) + f ′(0)x+ o(x) = x+ o(x), (7.40)

so

y = f(g(y)) = g(y) + o(x) ⇒ g(y) = y − o(x), (7.41)

but also |g(y)| ≤ 2 |y|, so necessarily o(x) = o(y), and thus

g(y) = y + o(y) ⇒ g′(0) = 1. (7.42)

�

Next we do a little bit better:

Theorem 7.7. Let f : X → X be continuously differentiable in some neighborhood of a ∈ X
such that f ′(x) is invertible in that neighborhood. Then there is a neighborhood V of f(a)
and a continuously differentiable function g : V → X such that f ◦ g = 1V . Moreover,
g ◦ f = 1U in some neighborhood U of a.

Proof. Let A := f ′(a)−1 ∈ Hom(X,X), and put Tx := a+ x and Sx := x− Af(a), as well
as F := S ◦A ◦ f ◦ T , i.e.

F : X
T−→ X

f−→ X
A−→ X

S−→ X
x 7→ x+ a 7→ f(x+ a) 7→ Af(x+ a) 7→ Af(x+ a)−Af(a).

(7.43)
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Now, T , A and S are all (affine) invertible mappings. By the chain rule, F ′(x) exists and
depends continuously on x in a neighborhood of 0, and moreover it is invertible. We also
have

F (0) = 0 and F ′(0) = 1. (7.44)

Thus, by the previous lemma, there is an open neighborhood W of 0 and a function G : W →
X such that F ◦G = 1W and G′(0) = 1.

Now let V := A−1S−1(W ) be an open set containing b := f(a), and define on V the
function g := T ◦G ◦ S ◦A. This proves the existence of our map g since

f ◦ g = A−1 ◦ S−1 ◦ S ◦A ◦ f ◦ T ◦G ◦ S ◦A = 1V , (7.45)

and g′(b) = f ′(a)−1, by the chain rule applied to the identity (7.45).
Observe that a could have been chosen as any point in the neighborhood in which f is

continuously differentiable with invertible derivative. Moreover, the maps a 7→ f ′(a) and
f ′(a) 7→ (f ′(a))−1 are both continuous there; recall Theorem 5.16 and Example 5.23. Hence,
since b = f(a) is taken freely in V we have that g′ is continuous on V . This proves the first
statement of the theorem.

We may now apply the theorem again with f and g interchanged (i.e. starting from g on
V and using the uniqueness of inverses (2.6)), to conclude the second statement. �

Remark 7.8. In the above theorem we say that g is a local inverse of f . Similarly we may
talk about local left/right inverses.

We can now prove the most general version:

Theorem 7.9 (Inverse function theorem). Let f ∈ C1(Ω, Y ), where Ω is an open subset
of a Banach space X, and Y is also a Banach space. Then

a) If f ′(x) has a continuous left inverse for some x ∈ Ω then f has a local left inverse
which is C1.

b) If f ′(x) has a continuous right inverse for some x ∈ Ω then f has a local right
inverse which is C1.

c) If f ′(x) has a continuous inverse for some x ∈ Ω then f has a local inverse which
is C1.

Proof.

a) Assume for a ∈ Ω that A = f ′(a) : X → Y is continuous linear and that ∃B : Y →
X continuous linear s.t. BA = 1X . Form g(x) := B ◦ f(x), then g : Ω → X
with g′(x) = B ◦ g′(x) continuous and g′(a) = B ◦ A = 1X . We may then apply
Theorem 7.7 to g and obtain a continuously differentiable local inverse h : U → V .
Then define k := h ◦B, and obtain

k ◦ f = h ◦B ◦ f = h ◦ g = 1V , (7.46)

locally on V ⊆ Ω.
b) Let for a ∈ Ω, A ∈ Hom(Y,X) be the right inverse of f ′(a), i.e. f ′(a) ◦ A = 1Y .

Now apply the previous theorem on g = f ◦A (exercise).
c) Combine a) and b).

�

Remark 7.10. In finite dimensions we may have for example X = Rn and Y = Rm, with
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a) n ≤ m and the matrix f ′(x) ∈ Rm×n having full (column) rank n for x ∈ Ω,
b) n ≥ m and the matrix f ′(x) ∈ Rm×n having full (row) rank m for x ∈ Ω,
c) n = m and det f ′(x) 6= 0 for x ∈ Ω.

Note also that by continuity of the determinant, if det f ′(a) is nonzero at a point a ∈ Ω
then this also holds in some neighborhood of a, in which the inverse function theorem then
may be applied.

Exercise 7.1. Show that the map

F : R2 → R2, F (x, y) = (xey, sin(x+ y))

has locally an inverse F−1 in a neighborhood of (x, y) = (π, 0) and compute its derivative
at that point.

Exercise 7.2. Show that the function

F (x, y) =

{(
8x+ x3 cos(x2 + y2)−1, 8y + y3 sin(x2 + y2)−1

)
, (x, y) 6= 0,

(0, 0), (x, y) = 0
(7.47)

is differentiable on R2 but not continuously differentiable at 0. Further, show that the
principal minors of the Jacobian matrix DF = dF/d(x, y) do not vanish in B1(0).

7.5. Implicit function theorem.

7.5.1. Model problem in one variable. Compare explicit and implicit approach to defining
functions. The first is the assignment of function values, say in the one-variable case

f : R ⊇ Df → R, x 7→ f(x) = y, (7.48)

where we also may think of f as defined by the graph(6) (x, y) ∈ graph(f) ⊆ R × R. The
other approach would be to specify the graph (at least locally) as the solution to an equation:

F : R× R→ R, F (x, y) = 0, (7.49)

i.e. a constraint or relationship between x and y.

Example 7.11. Consider the set H in R2 defined by the relationship xy = 1. Here
F (x, y) := xy − 1 = 0 exactly on H. We may indeed explicitly solve y as a function of x:
y(x) = 1/x, x 6= 0, or x as a function of y: x(y) = 1/y, y 6= 0.

Example 7.12. Consider the set C in R2 defined by the relationship x2 + y2 = 1, i.e. the
unit circle. Here F (x, y) := x2 + y2− 1 = 0 exactly on C, but it is not a graph globally. We
may only locally solve y as a function of x, with a choice of sign:{

y1(x) := +
√

1− x2, −1 < x < 1,

y2(x) := −
√

1− x2, −1 < x < 1,
(7.50)

however there are problems at (x, y) = (±1, 0) where y cannot be a function of x.
Alternatively we solve x as a function of y:{

x1(y) := +
√

1− y2, −1 < y < 1,

x2(y) := −
√

1− y2, −1 < y < 1,
(7.51)

with problems at (x, y) = (0,±1) where x cannot be a function of y.

(6)Recall that a graph relation xRy associates a unique y to each possible x.
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There is a geometric correspondence between the tangent to the graph of the function
y = f(x), which lies on the level curve F = 0, and the normal to the curve, which indeed

is given by the gradient ∇F =
(
∂F
∂x ,

∂F
∂y

)
= [F ′]T , the direction of steepest increase of F .

The places where there are potentially problems are where the tangent is vertical, or the
normal horizontal, i.e. where ∂F

∂y = 0.

Note that in the first example above we have

∇F (x, y) =

(
∂F

∂x
(x, y),

∂F

∂y
(x, y)

)
= (y, x), (7.52)

so that ∂F
∂y = x 6= 0 on H, while in the second example we have

∇F (x, y) = (2x, 2y) = 2(x, y), (7.53)

so that ∂F
∂y = 0 exactly at (x, y) = (±1, 0) on C.

Next, consider the following model problem that we would like to be able to solve:

Example 7.13. Problem: Show that the equation

exy + x2y − x = 0 (7.54)

implicitly defines y as a function of x near the point (x, y) = (1, 0), and give the linear
approximation to y = y(x) at x = 1.

Approach: Let us define the constraint function F : R× R→ R,

F (x, y) := exy + x2y − x. (7.55)

First note that indeed F (1, 0) = 0 so we may study a possible function graph defined by
the constraint F (x, y) = 0 locally around this point. Also note that F is smooth and that

∇F (x, y) = (yexy + 2xy − 1, xexy + x2), (7.56)

so ∇F (1, 0) = (−1, 2), which tells us that the normal to the curve F = 0 at that point is
along the vector (−1, 2) while the tangent to F = 0 is along (1, 1/2). Furthermore, since
the gradient varies smoothly, we may expect to be able to follow the curve locally along
this tangent, and this indicates that we may have y′(1) = 1/2,

Indeed, assuming that y = y(x) is a continuously differentiable function satisfying
F (x, y(x)) = 0 around x = 1, we may differentiate this condition w.r.t. x:

0 =
d

dx
(F (x, y(x))) =

∂F

∂x
+
∂F

∂y
y′(x), (7.57)

and since ∂yF 6= 0 close to x = 1 (by continuity and ∂yF (1, 0) = 2 6= 0), we have

y′(x) = −
(
∂F

∂y
(x, y(x))

)−1 ∂F

∂x
(x, y(x)), (7.58)

that is, indeed y′(1) = 1/2. The following theorem validates this procedure.

Theorem 7.14 (Implicit function theorem in one variable). Let Ω ⊆ R2 be a
nonempty open subset, let F : Ω→ R be differentiable, and assume that ∂F/∂y is nowhere
vanishing on Ω and that (a, b) ∈ Ω is a point such that F (a, b) = 0. Then there exists an
open rectangle X × Y ⊆ Ω containing (a, b), and a unique function g : X → Y that satisfies

• g(a) = b,
• F (x, g(x)) = 0 for all x ∈ X,
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• g is differentiable on X and satisfies

g′(x) = −
∂F
∂x (x, g(x))
∂F
∂y (x, g(x))

∀x ∈ X. (7.59)

Moreover, if ∇F (x, y) = (∂xF, ∂yF ) is continuous at (a, b) then g′ is continuous at x = a.

Remark 7.15. If F ∈ C1(Ω) and ∂yF 6= 0 at a point (a, b) then there is also some neighbor-
hood Ω′ ⊆ Ω of (a, b) on which the above theorem applies.

Proof. The main ideas are to use Darboux’ theorem and the mean value theorem to ensure a
strictly increasing (or decreasing) function in the y-direction, first at x = 0 and then extend
by continuity, and the intermediate value theorem to find a unique zero of y 7→ F (x, y) for
fixed x close to 0. We break down the proof as follows:

1. WLOG we may make a transformation on the form F (x+ a, y/c+ b), c = ∂F
∂y (a, b),

to normalize the problem to (a, b) = (0, 0) and ∂F
∂y (0, 0) = 1.

2. (Existence and uniqueness.)
• Consider, for r > 0 small enough to fit in Ω, the function f0(y) := F (0, y),
y ∈ [−r, r]. Then f ′0(y) = ∂F

∂y (0, y) 6= 0 and f ′0(0) = 1. By Darboux’ theorem

(the derivative takes intermediate values), f ′0(y) > 0 ∀y ∈ (−r, r), i.e. f0 is
strictly increasing and hence f0(−r) < 0 < f0(r).
• By continuity of F , there exists an open intervalX around 0 s.t. X×[−r, r] ⊆ Ω,

and F |X×{−r} < 0 and F |X×{r} > 0.
• Consider for fixed x ∈ X the function fx(y) := F (x, y), y ∈ [−r, r], then also
fx(−r) < 0 < fx(r).
• By the mean value theorem, ∃c ∈ Y := (−r, r) s.t. f ′x(c) = ∂F

∂y (x, c) > 0.

• By Darboux again, f ′x(y) > 0 for all y ∈ Y , i.e. fx is strictly increasing.
• By the intermediate value theorem ∃!y ∈ Y s.t. fx(y) = 0. Thus, for this x ∈ X

we have found our g(x) := y.
3. (Continuity.) Let 0 < ε < r. Repeating the construction above, by uniqueness we

find X ′ ⊆ X s.t. g(x) ∈ (−ε, ε) for all x ∈ X ′.
4. (Differentiability.) Using differentiability of F we have for small enough (h, k)

F (h, k) = vh+ k + ε(h, k), v =
∂F

∂x
(0, 0), (7.60)

so that with k = g(h)

0 = F (h, g(h)) = vh+ g(h) + ε(h, g(h)), (7.61)

⇒ g(h) = −vh− ε(h, g(h)) = −vh+ o(h). (7.62)

Therefore g is differentiable at 0 with g′(0) = −v.
5. Finally, given a′ ∈ X put b′ = g(a′). Then g : X → Y solves the h for which
F (x, h(x)) = 0 ∀x ∈ X and h(a′) = b′. Thus by the initial WLOG, g is also
differentiable at a′ which was arbitrarily chosen.

�
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7.5.2. Generalization to Rn. In the multi-variable case we consider solving a system of
constraints 

F1(x1, . . . , xn, y1, . . . , ym) = 0,
F2(x1, . . . , xn, y1, . . . , ym) = 0,

...
Fm(x1, . . . , xn, y1, . . . , ym) = 0.

(7.63)

Note that we expect to need as many constraints as dependent variables yk we want to
solve, while the number n ≥ 1 of independent variables xj is arbitrary. More compactly we
write for the constraint function F : Rn × Rm → Rm,

F (x,y) =

F1(x,y)
...

Fm(x,y)

 (7.64)

and look for y = y(x) such that F (x,y(x)) = 0, at least locally around some point (x,y).

Example 7.16. In the linear case
A11x1 + . . .+A1nxn +B11y1 + . . .+B1mym = 0,
A21x1 + . . .+A2nxn +B21y1 + . . .+B2mym = 0,

...
Am1x1 + . . .+Amnxn +Bm1y1 + . . .+Bmmym = 0,

(7.65)

i.e. F (x,y) = Ax +By, with matrices A ∈ Rm×n, B ∈ Rm×m. The equation

Ax +By = 0 (7.66)

may, if B is invertible, be solved uniquely

y = −B−1Ax. (7.67)

Recall that B−1 = (detB)−1Badj where the cofactor matrix Badj consists of all the minors
(sub-determinants) of B. The principal minors are the elements on the diagonal of Badj.

In the general case, again assuming F ∈ C1 locally and that a suitable differentiable
solution y(x) exists, we may differentiate the constraint F = 0 to obtain the condition

0 =
d

dx

(
F (x,y(x))

)
=
∂F

∂x
+
∂F

∂y

dy

dx
, (7.68)

so that if the matrix ∂F
∂y (x,y) is invertible at y = y(x), then

dy

dx
= −

(
∂F

∂y
(x,y)

)−1 ∂F

∂x
(x,y). (7.69)

In fact we may prove the following:

Theorem 7.17 (Implicit function theorem in Rn). Let F : Ω → Rm be continuously
differentiable on a nonempty open Ω ⊆ Rn × Rm containing the point (a,b). Suppose that
F (a,b) = 0 and that det [∂yF (a,b)] 6= 0. Then:

• There exists an open set X ×Y ⊆ Ω containing (a,b), and a differentiable function
g : X → Y that satisfies

F (x, g(x)) = 0 ∀x ∈ X and g(a) = b. (7.70)
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• We have

g′(x) = −
[
∂F

∂y
(x, g(x))

]−1

m×m

[
∂F

∂x
(x, g(x))

]
m×n

∀x ∈ X. (7.71)

• If h : X → Y satisfies F (x, h(x)) = 0 for all x ∈ X then h = g.

Remark 7.18. Note that by continuity of the determinant, if F ∈ C1 and ∂yF (x,y) invertible
at some point (x,y) = (a,b) then it is also invertible in a neighborhood of that point.

Again one may relax some assumptions on continuous differentiability if one can ensure
the existence of a well behaved local inverse by other means. For details on this more
general approach we refer to e.g. [dO12, dO17]. The simpler case that F ∈ C1 can also be
obtained as a consequence of the Inverse Function Theorem as follows, cf. also Rudin 9.28.

7.5.3. Equivalence between inverse and implicit function theorems. Note the following useful
correspondence, showing that the Inverse Function Theorem implies the Implicit Function
Theorem, and vice versa:

Given F : Rn × Rm → Rm, F (a,b) = 0, we may form

G : Rn × Rm → Rn × Rm

(x,y) 7→ G(x,y) := (x, F (x,y)) =

[
x

F (x,y)

]
,

(a,b) 7→ (a, F (a,b)) = (a,0).

(7.72)

Hence, if F ∈ C1 then G ∈ C1 and the derivative (Jacobian matrix) is

G′(x,y) =
dG

d(x,y)
=

[
∂x
∂x

∂x
∂y

∂F
∂x

∂F
∂y

]
=

[
In×n 0
∂F
∂x

∂F
∂y

]
. (7.73)

Since

detG′(x,y) =

∣∣∣∣In×n 0
∂F
∂x

∂F
∂y

∣∣∣∣ = det
∂F

∂y
(x,y) (7.74)

we have that G′(x,y) is invertible iff the matrix ∂F
∂y (x,y) is. Therefore, if ∂F

∂y (a,b) is

invertible then G′(a,b) is invertible and by the Inverse Function Therorem for G there
exists locally an inverse (x,y) = G−1(x,0), x ∈ U a neighborhood s.t. a ∈ U ⊆ Rn. Thus

g(x) := y(x) = Py ◦G−1(x,0) (7.75)

(Py denotes projection on second set of variables in (x,y)) and g ∈ C1(U). This proves the
Implicit Function Theorem for F (x,y(x)) = 0.

Conversely, assuming that we already have the Implicit Function Theorem, given a map
G : Rm → Rm, G(a) = b, we may form the map

F : Rm × Rm → Rm
(y,x) 7→ F (y,x) := G(x)− y,
(b,a) 7→ G(a)− b = 0.

(7.76)

If G ∈ C1 then F ∈ C1 and
∂F

∂x
(y,x) = G′(x), (7.77)
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so that the matrix G′(x) is invertible iff ∂F
∂x (x,y) is. Therefore, if ∂F

∂x (b,a) is invertible
then G′(a) is invertible and by the Implicit Function Therorem for F there exists locally
an inverse

G−1(y) := x(y), 0 = F (y,x(y)) = G(x(y))− y, (7.78)

for y ∈ V a neighborhood s.t. (a,b) ∈ U ×V ⊆ Rm×Rm. This proves the Inverse Function
Theorem for the map G|U : U = G−1(V )→ V .

7.5.4. Generalization to Banach spaces. Note that, given two normed vector spaces (X, ‖·‖X)
and (Y, ‖·‖Y ), we may form the vector space (also denoted X ⊕ Y )

X × Y = {(x, y) : x ∈ X, y ∈ Y } (7.79)

with addition

(x, y) + (x′, y′) = (x+ x′, y + y′) (7.80)

and scalar multiplication

λ(x, y) = (λx, λy), (7.81)

and with a norm ‖·‖ : X × Y → R+, such as

‖(x, y)‖ := ‖x‖X + ‖y‖Y . (7.82)

We may verify that if X and Y are Banach spaces then so is X × Y .

Theorem 7.19 (Implicit function theorem). Let X,Y, Z be Banach spaces,

F : X × Y → Z
(x, y) 7→ F (x, y),
(a, b) 7→ c,

(7.83)

and assume F is continuously differentiable near the point (a, b) and that ∂yF (a, b) : Y → Z
is invertible. Then there exist Ua, Vb open and

ϕ : Ua → Vb, a ∈ Ua ⊆ X, b ∈ Vb ⊆ Y, (7.84)

and such that

1. ϕ continuously differentiable,
2. ϕ(a) = b,
3. F (x, ϕ(x)) = F (a, b) for all x ∈ Ua.

Exercise 7.3. Generalize our above correspondence with the Inverse Function Theorem to
Banach spaces to prove Theorem 7.19.

7.6. Application: Constrained optimization.

Definition 7.20. We say that a function f : X → Y between metric or topological spaces
is open at a point p ∈ X iff f(p) is an inner point of im(f |V ) = f(V ) for every open
neighborhood V of p. A mapping f is open if it takes all open sets to open sets, i.e. if it
is open at every point.

By the Inverse Function Theorem we now know that if f ∈ C1, X and Y are Banach
spaces and f ′(p) has a continuous right inverse then f has locally a right inverse at p. That
implies in particular that f is open at p.
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Now let f : X → R and g : X → Y be continuously differentiable maps where X and Y
are Banach spaces, and consider the following general optimization problem:

Optimize the value of f(x) subject to the constraint g(x) = 0. (7.85)

We introduce the help map h : X → R × Y via h(x) := (f(x), g(x)), and observe the
following condition:

Theorem 7.21 (Optimization in Banach spaces). If f has a local optimum/extremum
(i.e. local maximum or local minimum) at p ∈ X subject to the constraint g = 0 then h is
not open at p.

Proof. Assume on the contrary that h(p) = (f(p), g(p)) = (f(p), 0) is an inner point in the
image h(V ) ⊆ R× Y of some open neighborhood V of p. Then there are points p′, p′′ ∈ V
such that

f(p′) < f(p) < f(p′′) and g(p′) = g(p′′) = 0. (7.86)

This contradicts the assumption that p is a local extremum. �

Finally, consider an exceptionally useful special case:

Corollary 7.22 (Optimization in Rn). Assume that f, g1, . . . , gm : Rn → R are contin-
uously differentiable and that p ∈ Rn is a local extremum for f subject to the constraints
g1 = g2 = . . . = gm = 0, where 1 +m ≤ n. Then the vectors

∇f(p), ∇g1(p), ∇g2(p), , . . . , ∇gm(p) (7.87)

in Rn must be linearly dependent.

Proof. We form the C1 map h : Rn → R× Rm,

h(x) =
(
f(x), g1(x), . . . , gm(x)

)
. (7.88)

Its derivative is given by the Jacobian matrix

h′(x) =


∂f
∂x1

. . . ∂f
∂xn

∂g1
∂x1

. . . ∂g1
∂xn

...
∂gm
∂x1

. . . ∂gm
∂xn

 (x) =


f ′(x)
g′1(x)

...
g′m(x)

 =


∇f(x)T

∇g1(x)T

...
∇gm(x)T

 . (7.89)

If these rows would be linearly independent at x = p then the matrix has full rank, which
means that h′(p) is surjective. But then h is an open map by the Inverse Function Theorem
and therefore by the previous theorem p cannot be a local extremum. �

Further, by the implicit function theorem we may be able to solve the constraint g(x) = 0
locally with e.g. (x1, . . . , xm) as functions of (xm+1, . . . , xn), and then study the local
behavior of f in this smaller set of independent variables.
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equal, 14
equicontinuous, 88
equivalence class, 11
Equivalence relation, 5
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euclidean inner product, 46
euclidean norm, 30
Existence and uniqueness for regular ODE, 97
explicit, 103
exponential function, 53
extended real numbers, 20
Extreme value theorem, 69

field, 9
fineness, 73
finer partition, 73
finite subcover, 38
first category, 44
fixed point, 96
Frobenius norm, 59
function, 5
functionals, 93
Fundamental theorem of differential calculus, 68
Fundamental theorem of integral calculus, 78

generalized Hölder’s inequality, 94
geometry, 29
gradient, 63
graph, 5
greatest lower bound, 21
group, 9

abelian, 9

Hölder’s inequality, 93
Hölder’s inequality for integrals, 95
Hausdorff space, 38
Heine-Borel (HB) property, 39
Heine-Borel theorem, 39
Heisenberg’s uncertainty principle, 55
help map, 109
Hilbert space, 47, 52
homomorphisms, 59

identity, 9
image, 6, 10
implicit, 103
Implicit function theorem, 108
Implicit function theorem in Rn, 106
Implicit function theorem in one variable, 104
improper integrals, 77
increasing, 22
index set, 6
infimum, 21
infinity, 19
injective, 6
inner product, 46
inner product space, 46
inner/interior point, 32, 34
integral, 74
interior, 36

intermediate value property, 43, 71
Intermediate value theorem, 43
intersection, 7, 14
intervals, 29
inverse, 8

left, 8
right, 8

Inverse function theorem, 102
inverse function theorem, 100
inverse map, 63
isometric, 47
isomorphic, 47

Jacobian matrix, 56
Jordan–von Neumann’s theorem, 47

kernel, 10

least upper bound, 20
Lebesgue covering number, 75
left-hand limit, 41
liminf, 25
limit, 22, 25, 41
limit point, 36
limit point compact, 40
limsup, 25
line segments, 29
linear, 10
linear combination, 11
linear span, 11
linear transformation, 59
Lipschitz, 67
local inverse, 102
lower bound, 20
lower integral, 74

majorization theorem, 48
map, 5
Mean value inequality, 68
Mean value theorem, 69
Mean value theorem for curves, 70
meet, 36
metric, 33
metric space, 33
Min/max value theorem, 42
Minkowski’s inequality, 45, 47, 94
Minkowski’s inequality for integrals, 95
modulo, 11
monoid, 9
monotonic, 22, 43
monotonically decreasing, 43
monotonically increasing, 43
multiplication, 9
multiplicative unit, 19
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natural numbers, 14
negative, 9
neighborhood, 29, 34
non-negative rational numbers, 18
non-negative real numbers, 19
norm, 45, 52
normed linear space, 45
normed ring, 52
null set, 44, 75

one, 9
one-to-one, 6
onto, 6
open, 34, 108
open “ball”, 34
open ball, 29, 30
open cover, 38
open mapping, 108
open neighborhood, 30
open relative, 38
open set, 30
open sets, 35
operator, 59
operator norm, 59
Optimization in Rn, 109
Optimization in Banach spaces, 109
optimization problem, 109
Ordo, 57
oscillation, 76

parallelogram identity, 47
partial derivatives, 62
partial function, 6
Partial order, 5
partial sums, 48
partition, 73
perfect sets, 29
pointwise bounded, 82
pointwise continuous, 79
pointwise limit, 80
positive, 9
power series, 92
power set, 5, 14
pre-compact, 90
pre-Hilbert space, 46
pullback, 7
pushforward, 7

quadratic form, 46
quadratic space, 46
quotient, 11

range, 6
real numbers, 20
rectangle, 73

refinement, 73
reflexive, 5
relation, 5
relative topology, 38
respects, 11
Riemann integrable, 74
Riemann-Lebesgue’s theorem, 75
Riemann-Stieltjes integral, 74
right resp. left derivatives, 62
right-hand limit, 41
ring, 9

Banach, 52
commutative, 9
complete, 52
normed, 52
with unit, 9

Rolle’s theorem, 69
root, 21
Russel’s paradox, 15

scalar product, 46
Schröder-Bernstein’s theorem, 13
second (Baire) category, 44
separable, 38
separated, 41
sequence, 22, 30, 35
series, 48
series of functions, 82
simple discontinuity, 41
singleton subsets, 12
small-o, 57
smooth, 92
strict contraction, 96
strict subset, 5
strict total order, 5
strictly, 43
strictly increasing/decreasing, 22
subcover, 38
subsequence, 24
subset, 5
subspace, 10
subspace metric, 33
subspace topology, 38
successor, 15
support, 10, 51, 61
supremum, 20
supremum norm, 81
supremum property, 21
surjective, 6
symmetric, 5, 46
symmetric difference, 33

tangent, 67
Tarski’s fixpoint theorem, 13
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Taylor polynomials, 72
Taylor’s theorem, 71
Taylor/Maclaurin series, 93
Thomae’s popcorn function, 22
topological space, 35
topology, 29, 35
Total order, 5
transitive, 5
tuples, 30

uniformly bounded, 82
uniformly Cauchy, 81
uniformly continuous, 79
union, 6, 14
unit, 8
upper and lower limits, 25
upper bound, 20
upper integral, 74

vector field, 63
vector space, 9
Volterra’s function, 78

Weierstrass M -test, 82
Weierstrass approximation theorem, 92
Weierstrass’ function, 78, 87
Weierstrass’ monster, 87
weight function, 74

Young’s inequality, 94

Zermelo and Fraenkel, 14
zero, 9
zero cut, 19
ZF, 15
ZFC, 15
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