Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	000

Emergent gauge fields and anyons in quantum impurity problems

Enderalp Yakaboylu*

Institute of Science and Technology Austria

*enderalp.yakaboylu@ist.ac.at

11-16 March 2019

Nordita, Stockholm

000000000	0000000	0000000	00000	000
Motivation				

• Consider two non-interacting bosons. Spin-statistics theorem says

 $|\psi_1\psi_2\rangle = |\psi_2\psi_1\rangle$

• Would the statistics be the same when we immerse these two bosons in a 2D many-particle bath?

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
0				

Overview

Quantum Impurity Problems and Emergent Gauge Fields

- Polaron and angulon
- Emergence of gauge fields
- Non-Abelian magnetic monopole
- 2 Realization of Anyons
 - Spin-statistics theorem and gauge fields
 - Two-impurity problem

N-anyon Problem

- CS from bath
- CS from impurity: Spin-boson model
- Symmetries of Quantum Impurities
 - Quantum groups
 - Renormalization of B

Conclusion

- Polaron and angulon
- Emergence of gauge fields
- Non-Abelian magnetic monopole

Realization of Anyons

- Spin-statistics theorem and gauge fields
- Two-impurity problem

N-anyon Problem

- CS from bath
- CS from impurity: Spin-boson model
- Symmetries of Quantum Impurities
 - Quantum groups
 - Renormalization of B

Conclusion

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	000
Deleven				

Polaron

• Consider an electron immersed in a lattice

Figure: From Devreese

• Complicated many-body interaction

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000

Polaron

• Consider an electron immersed in a lattice

Figure: From Devreese

- Complicated many-body interaction
- Can be simplified within the quasiparticle picture

$$q, m \rightarrow q^*, m^*$$

 Polaron: electron dressed by lattice excitation Landau, Pekar, Fröhlich, Bogoliubov, Feynman, Holstein, Devreese, Lieb, ... Quantum Impurity Problems and Emergent Gauge Fields Realization of Anyons N-anyon Problem 00000000000

Fröhlich Hamiltonian : weakly interacting bath

The Hamiltonian

$$\hat{H}_{\text{pol}} = \frac{P^2}{2m} + \sum_{k} \omega(k) \hat{b}_{k}^{\dagger} \hat{b}_{k} + \sum_{k} V(k) \left(e^{-ik \cdot \hat{x}} \hat{b}_{k}^{\dagger} + e^{ik \cdot \hat{x}} \hat{b}_{k} \right)$$

Conservation of linear momentum

$$[\hat{\pmb{\Pi}},\hat{\pmb{H}}_{\mathsf{pol}}]=0\,,\quad\hat{\pmb{\Pi}}=\hat{\pmb{P}}+\sum_{m{k}}m{k}\hat{b}^{\dagger}_{m{k}}\hat{b}_{m{k}}$$

• Variational approach: $|\Psi_{p}
angle = \sqrt{Z}|p
angle|0
angle + \sum_{k}eta(k)|p-k
angle\hat{b}_{k}^{\dagger}|0
angle$

$$E = \frac{p^2}{2m} - \sum_{k} \frac{V(k)^2}{(p-k)^2/(2m) + \omega(k) - E - i0^+}$$

• Pekar ansatz: $|\Psi\rangle = |\varphi\rangle|\xi\rangle$

$$arepsilon [arphi] = \int d^3x \, |
abla arphi|^2 - lpha \int d^3x \, d^3y \, |arphi(oldsymbol{x})|^2 rac{1}{|oldsymbol{x}-oldsymbol{y}|} |arphi(oldsymbol{y})|^2$$

self-energy - summation of one-phonon diagrams

Realization of Anyons

N-anyon Problem

Symmetries of Quantur
 00000

es Conclusior 000

Angulon

• Angulon - a quantum rotor dressed by bosonic field excitations.

R. Schmidt and M. Lemeshko, PRL 114, 203001 (2015)

Figure: From Lemeshko

• The angulon Hamiltonian

 $\hat{H}_{ang} = B\hat{L}^2 + \sum_{k\lambda\mu} \omega(k)\hat{b}^{\dagger}_{k\lambda\mu}\hat{b}_{k\lambda\mu} + \underbrace{\sum_{k\lambda\mu} U_{\lambda}(k) \left[Y^*_{\lambda\mu}(\hat{\theta}, \hat{\phi})\hat{b}^{\dagger}_{k\lambda\mu} + Y_{\lambda\mu}(\hat{\theta}, \hat{\phi})\hat{b}_{k\lambda\mu}\right]}_{ihightarrow}$

• Conservation of angular momentum

$$[\hat{J}^2, \hat{H}_{ang}] = [\hat{J}_z, \hat{H}_{ang}] = 0, \quad \hat{J} = \hat{L} + \overbrace{\sum_{k\lambda\mu\nu} \sigma_{\mu\nu}^{\lambda} \hat{b}_{k\lambda\mu}^{\dagger} \hat{b}_{k\lambda\nu}}^{\hat{\Lambda}}$$

• The variational state

$$|\psi_{LM}
angle = \sqrt{Z}|LM
angle|0
angle + \sum_{k\lambda\mu jm} eta_{\lambda j}(k) C^{LM}_{jm\lambda\mu}|jm
angle \hat{b}^{\dagger}_{k\lambda\mu}|0
angle$$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
00000000	0000000	00000000	00000	000
Emergence of gauge fields				

• The general Hamiltonian:

$$\hat{H} = -\mu \,
abla^2 + \hat{H}_{\sf mb}({m r};arphi)$$
 ; $\hat{H}\langle {m r}|\Psi_E
angle = E\langle {m r}|\Psi_E
angle$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
Emergence of gauge fields				

• The general Hamiltonian:

$$\hat{H} = -\mu \,
abla^2 + \hat{H}_{\sf mb}(m{r};arphi) \quad ; \quad \hat{H}\langlem{r}|\Psi_E
angle = E\langlem{r}|\Psi_E
angle$$

- Coordinate of the impurity, \mathbf{r} , is an external parameter in the many-body Hamiltonian: $\hat{H}_{mb}(\mathbf{r};\varphi)|\varphi_n(\mathbf{r})\rangle = \varepsilon_n(\mathbf{r})|\varphi_n(\mathbf{r})\rangle$.
- ullet The state can be expanded as $\langle r|\Psi_E\rangle=\sum_n \varPhi^E_n(r)|\varphi_n(r)\rangle$
- The eigenvalue equation for the impurity:

$$\sum_{n} H_{nm}^{\text{eff}} \Phi_{m}^{E}(\boldsymbol{r}) = E \Phi_{n}^{E}(\boldsymbol{r})$$

with the effective impurity Hamiltonian

$$H_{nm}^{\text{eff}} = -\mu \sum_{l} \left[\delta_{nl} \nabla + \langle \varphi_{n} | \nabla | \varphi_{l} \rangle \right] \cdot \left[\delta_{lm} \nabla + \langle \varphi_{l} | \nabla | \varphi_{m} \rangle \right] + \varepsilon_{n} \delta_{nm}$$

Quantum Impurity Problems and Emergent Gauge Fields Realization of Anyons N-anyon Problem 00000000000

Emergence of gauge fields - restriction of the basis vectors

The non-Abelian gauge field:

$$\boldsymbol{A}_{mn}(\boldsymbol{r}) = \langle \varphi_m(\boldsymbol{r}) | i \nabla | \varphi_n(\boldsymbol{r}) \rangle \tag{1}$$

• If $A_{nn} \gg A_{mn}$, we can neglect off-diagonal terms:

 $\langle \boldsymbol{r} | \Psi^E \rangle \approx \Phi_n^E(\boldsymbol{r}) | \varphi_n(\boldsymbol{r}) \rangle \rightarrow \mathsf{U}(1)$ gauge field,

e.g., adiabatic approximation for a non-degenerate state.

If

e.g., adiabatic approximation for a degenerate state.

Quantum Impurity Problems and Emergent Gauge Fields Realization of Anyons N-anyon Problem 00000000000

Emergence of gauge fields - restriction of the basis vectors

The non-Abelian gauge field:

$$\mathbf{A}_{mn}(\mathbf{r}) = \langle \varphi_m(\mathbf{r}) | i \nabla | \varphi_n(\mathbf{r}) \rangle \tag{1}$$

• If $A_{nn} \gg A_{mn}$, we can neglect off-diagonal terms:

1

 $\langle \boldsymbol{r} | \Psi^E \rangle \approx \Phi_n^E(\boldsymbol{r}) | \varphi_n(\boldsymbol{r}) \rangle \rightarrow \mathsf{U}(1)$ gauge field,

e.g., adiabatic approximation for a non-degenerate state.

If

e.g., adiabatic approximation for a degenerate state.

• We truncate the number of basis vectors by a variational state.

s Realization of Anyons 00000000

N-anyon Problem

Symmetries of Quantum Imp 00000

urities Conclusion 000

Non-Abelian magnetic monopole

EY, A. Deuchert, and M. Lemeshko, PRL 119, 235301 (2017)

• Go back to the angulon Hamiltonian

$$\hat{H}_{ang} = B\hat{L}^2 + \sum_{k\lambda\mu} \omega(k) \hat{b}^{\dagger}_{k\lambda\mu} \hat{b}_{k\lambda\mu} + \sum_{k\lambda\mu} U_{\lambda}(k) \left[Y^*_{\lambda\mu}(\hat{\theta}, \hat{\phi}) \hat{b}^{\dagger}_{k\lambda\mu} + Y_{\lambda\mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k\lambda\mu} \right]$$

• In the co-rotating frame

$$\hat{S} = e^{-i\hat{\phi}\otimes\hat{\Lambda}_z} \; e^{-i\hat{ heta}\otimes\hat{\Lambda}_y} \; e^{-i\hat{\phi}\otimes\hat{\Lambda}_z}$$

the Hamiltonian

$$\hat{H}_{\mathsf{ang}}' = \hat{S}^{-1} \hat{H}_{\mathsf{ang}} \hat{S} = B(\hat{L'} - \Lambda)^2 + \sum_{k\lambda\mu} \omega(k) \hat{b}_{k\lambda\mu}^{\dagger} \hat{b}_{k\lambda\mu} + \sum_{k\lambda} V_{\lambda}(k) \left[\hat{b}_{k\lambda0}^{\dagger} + \hat{b}_{k\lambda0} \right]$$

Observe that

$$[\hat{L}^2, \hat{H}'_{\text{ang}}] = [\hat{L_z}, \hat{H}'_{\text{ang}}] = 0 \quad \text{but} \quad [\hat{L'_z}, \hat{H}'_{\text{ang}}] \neq 0$$

Variational state

$$|\Psi_{LM}'\rangle = g_0|\underbrace{\hat{L}^2}_{L}\underbrace{\hat{h}_z}_{M}\underbrace{\hat{L}'_z}_{0}|0\rangle + \sum_{k\lambda n} \alpha_{\lambda n}(k)|LMn\rangle \hat{b}_{k\lambda n}^{\dagger}|0\rangle$$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
00000000000	0000000	0000000	00000	000
Variational state				

Truncated state

$$\langle \Omega | \Psi_{LM}
angle = \sum_{n=1}^{2\lambda_{\max}+1} \Phi_n^{LM}(\Omega) | \varphi_n(\Omega)
angle$$

• The basis vectors

$$|\varphi_n(\Omega)\rangle = \hat{S}(\Omega)\left(\delta_{n0}g_0|0\rangle + \sum_{k\lambda} \alpha_{\lambda n}(k)\hat{b}^{\dagger}_{k\lambda n}|0\rangle\right)$$

• The impurity wave function

$$\Phi_n^{LM}(\Omega) = \langle \Omega | LMn \rangle$$
 : spin weighted spherical harmonics

Quantum	n Impurity P	roblems and Emerg	ent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conc
00000	000000			0000000	00000000	00000	000

Non-Abelian magnetic monopole

•
$$U_{\lambda}(k) = 0$$
 for $\lambda > 1$, then $U(3)$ gauge field:

$$A_{\phi} = \begin{pmatrix} -\cot\theta & \frac{-\kappa}{\sqrt{2}} & 0\\ \frac{-\kappa^*}{\sqrt{2}} & 0 & \frac{-\kappa^*}{\sqrt{2}}\\ 0 & \frac{-\kappa}{\sqrt{2}} & \cot\theta \end{pmatrix}, A_{\theta} = \begin{pmatrix} 0 & \frac{i\kappa}{\sqrt{2}} & 0\\ \frac{-i\kappa^*}{\sqrt{2}} & 0 & \frac{i\kappa^*}{\sqrt{2}}\\ 0 & \frac{-i\kappa}{\sqrt{2}} & 0 \end{pmatrix}$$
$$\kappa \equiv \kappa(\omega, U_{\lambda}, B)$$

• The curvature

$$F_{\phi heta}=i[D_{\phi},D_{ heta}]=\partial_{\phi}A_{ heta}-\partial_{ heta}A_{\phi}-i[A_{\phi},A_{ heta}]=(1-|\kappa|^2)egin{pmatrix} -1&0&0\ 0&0&0\ 0&0&0\ 0&0&1 \end{pmatrix}$$

is the strength of a U(3) magnetic monopole with charge $g=1-|\kappa|^2.$

Realization of Anyons

N-anyon Problem

em Symmetries of 00000

ries of Quantum Impurities O Conclusion 000

Non-Abelian magnetic monopole

Angulon: an impurity interacting with the field of a non-Abelian magnetic monopole.

Realization of Anyons

ns N-anyon Problem

m Symmetries of Quantum Impurities

mpurities Conclus 000

Topology: Abelianization

• The Chern number

$$c = \frac{1}{2\pi} \oint d\Omega \operatorname{Tr} F = 0$$
 trivial topology?

Realization of Anyons N-anyon Problem

Topology: Abelianization

• The Chern number

$$c = rac{1}{2\pi} \oint d \Omega \operatorname{Tr} F = 0$$
 trivial topology?

• For $\kappa = 0$, the monopole gauge field becomes 'Abelianized,' i.e.

$$A_{\phi} = \cot heta \, egin{pmatrix} -1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix} \,, \quad A_{ heta} = 0 \quad \Rightarrow \quad oldsymbol{A} = oldsymbol{A}_- \oplus oldsymbol{A}_0 \oplus oldsymbol{A}_+$$

• A_{\pm} is the Dirac monopole field with the charge

 $g_{\pm} = \pm 1 = c_{\pm} \quad
ightarrow ext{topological restriction}$

Realization of Anyons

ons N-anyon Problem 00000000

Symmetries of Quantum Imp 00000 ties Conclusion

Topology: Abelianization

• The Chern number

$$c = \frac{1}{2\pi} \oint d\Omega \operatorname{Tr} F = 0$$
 trivial topology?

• For $\kappa=$ 0, the monopole gauge field becomes 'Abelianized,' i.e.

$$egin{aligned} & {\cal A}_{\phi} = \cot heta \, \left(egin{aligned} -1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \ \end{pmatrix} \, , \quad {\cal A}_{ heta} = 0 \quad \Rightarrow \quad {oldsymbol A} = {oldsymbol A}_{-} \oplus {oldsymbol A}_{0} \oplus {oldsymbol A}_{+} \end{aligned}$$

• A_{\pm} is the Dirac monopole field with the charge

 $g_{\pm}=\pm 1=c_{\pm}$ ightarrow topological restriction

The transition from a non-Abelian vector potential to an Abelian vector potential is a topological transition of the underlying vector bundle.

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	000

- Polaron and angulon
- Emergence of gauge fields
- Non-Abelian magnetic monopole

Realization of Anyons

- Spin-statistics theorem and gauge fields
- Two-impurity problem

3 N-anyon Problem

- CS from bath
- CS from impurity: Spin-boson model
- Symmetries of Quantum Impurities
 - Quantum groups
 - Renormalization of B

Conclusion

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
A 1 1 1 1	C 1 1			

Spin-statistics theorem and gauge fields

• Spin-statistics theorem

$$|\psi_1\psi_2\rangle = (-1)^{2s} |\psi_2\psi_1\rangle.$$

• Two-body wave function in relative coordinates

$$\psi'(\mathbf{r},\varphi+\pi) = e^{i\xi} \psi'(\mathbf{r},\varphi), \qquad (2)$$

$$\xi = 0 \Rightarrow bosons$$

 $\xi = \pi \Rightarrow fermions$

000000000	000000	00000000	00000	000

Spin-statistics theorem and gauge fields

Spin-statistics theorem

$$|\psi_1\psi_2\rangle = (-1)^{2s} |\psi_2\psi_1\rangle.$$

• Two-body wave function in relative coordinates

$$\psi'(\mathbf{r},\varphi+\pi) = e^{i\xi} \psi'(\mathbf{r},\varphi), \qquad (2)$$

$$\xi = 0 \Rightarrow bosons$$

 $\xi = \pi \Rightarrow fermions$

• True only in 3+1 : Poincaré group \rightarrow SO(3) \rightarrow quantized spin

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	000000	00000000	00000	000
2D				

• In a 2-spatial dimensional world rotation is trivial:

Poincaré group \rightarrow SO(2) \rightarrow NO spin quantization \rightarrow any statistics : $0 \le \xi \le \pi$ J.M. Leinaas and J. Myrheim, Nuovo Cimento B37, 1 (1977)

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	00000000	00000000	00000	000
2D				

• In a 2-spatial dimensional world rotation is trivial:

Poincaré group \rightarrow SO(2) \rightarrow NO spin quantization \rightarrow any statistics : $0 \le \xi \le \pi$ J.M. Leinaas and J. Myrheim, Nuovo Cimento B37, 1 (1977)

Unusual boundary conditions

$$\psi'(r,\varphi+2\pi)=e^{i2\xi}\,\psi'(r,\varphi)\neq\psi'(r,\varphi)$$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	00000000	00000000	00000	000
2D				

• In a 2-spatial dimensional world rotation is trivial:

Poincaré group \rightarrow SO(2) \rightarrow NO spin quantization \rightarrow any statistics : $0 \le \xi \le \pi$ J.M. Leinaas and J. Myrheim, Nuovo Cimento B37, 1 (1977)

Unusual boundary conditions

$$\psi'(r, \varphi + 2\pi) = e^{i2\xi} \psi'(r, \varphi) \neq \psi'(r, \varphi)$$

• Single-valued wave function, $\psi(r,\varphi) = \exp[-2i\xi\varphi/(2\pi)]\psi'(r,\varphi)$, is governed by the Hamiltonian

$$e^{-2i\xi\varphi/(2\pi)}\hat{H}'\left\{\frac{\partial}{\partial\varphi}\right\} e^{2i\xi\varphi/(2\pi)} = \hat{H}\left\{\frac{\partial}{\partial\varphi} + i\frac{2\xi}{2\pi}\right\}$$
(3)

•
$$A = \frac{2\xi}{2\pi}$$
 is the statistical gauge field:
anyon = boson/fermion interacting with the statistical gauge field.

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
Dealt-stien of survey				

Realization of anyon

• A magnetic field can substitute the role of the statistical gauge field.

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
Realization of anyon				

- A magnetic field can substitute the role of the statistical gauge field.
- Wilczek picture: Flux-tube-charged-particle composites
- Chern-Simons picture: Charged particle coupled to Chern-Simons gauge field

Two-impurity problem				
000000000	00000000	00000000	00000	000
Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion

I wo-impurity problem

EY and M. Lemeshko, Phys. Rev. B 98, 045402 (2018)

• How to realize anyons in a more realistic problem?

Quantum	Impurity	Problems	and	Emergent	Gauge	Fields
000000	00000	C				

Realization of Anyons N-anyon Problem 00000000

Two-impurity problem

EY and M. Lemeshko, Phys. Rev. B 98, 045402 (2018)

• How to realize anyons in a more realistic problem?

Emergent gauge field

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion 000
Two-impurity problem				
EY and M. Lemeshko, Phys. Rev. B 98, 0	45402 (2018)			

• How to realize anyons in a more realistic problem?

Emergent gauge field

• Consider two non-interacting impurities immersed in a 2D bath

$$\hat{H}_{2imp} = \frac{1}{2m}\hat{P}_{1}^{2} + \frac{1}{2m}\hat{P}_{2}^{2} + \sum_{k}\omega(k)\hat{b}_{k}^{\dagger}\hat{b}_{k} + \sum_{k}V(k)\left[e^{-ik\cdot\hat{x}_{1}} + e^{-ik\cdot\hat{x}_{2}}\right]\hat{b}_{k}^{\dagger} + \text{H.c.}$$

• In relative coordinates

$$\hat{H}_{\text{rel}} = \frac{1}{m}\hat{L}_z^2 + \sum_{k\mu}\tilde{\omega}(k)\hat{b}_{k\mu}^{\dagger}\hat{b}_{k\mu} + \sum_{k\mu}Y_{\mu}(k)\left[e^{-i\mu\hat{\varphi}}\hat{b}_{k\mu}^{\dagger} + e^{i\mu\hat{\varphi}}\hat{b}_{k\mu}\right] + \hat{\Gamma}(\mathcal{O}(\hat{b}^2))$$
(4)

Observe that

$$[\hat{J}_z, \hat{H}_{rel}] = 0, \quad \hat{J}_z = \hat{L}_z + \hat{\Lambda}_z, \quad \hat{\Lambda}_z = \sum_{k\mu} \mu \hat{b}^{\dagger}_{k\mu} \hat{b}_{k\mu}$$

0000000000	00000000	00000000	00000	000
Statistics of impurities				

Statistics of impurities

EY and M. Lemeshko, Phys. Rev. B 98, 045402 (2018)

ullet In the rotating frame, $\hat{S}=e^{-i\hat{arphi}\otimes\hat{\Lambda}_z},$ the Hamiltonian

$$\hat{H}'_{\mathsf{rel}} = \hat{S}^{-1}\hat{H}_{\mathsf{rel}}\hat{S} = \frac{1}{m}(\hat{L}_z - \hat{\Lambda}_z)^2 + \sum_{k\mu}\tilde{\omega}(k)\hat{b}^{\dagger}_{k\mu}\hat{b}_{k\mu} + \sum_{k\mu}Y_{\mu}(k)\left[\hat{b}^{\dagger}_{k\mu} + \hat{b}_{k\mu}\right] + \hat{\Gamma}$$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	00000000	00000000	00000	000
Statistics of impurities				

EY and M. Lemeshko, Phys. Rev. B 98, 045402 (2018)

ullet In the rotating frame, $\hat{S}=e^{-i\hat{arphi}\otimes\hat{\Lambda}_z},$ the Hamiltonian

$$\hat{H}'_{\mathsf{rel}} = \hat{S}^{-1}\hat{H}_{\mathsf{rel}}\hat{S} = \frac{1}{m}(\hat{L}_z - \hat{\Lambda}_z)^2 + \sum_{k\mu}\tilde{\omega}(k)\hat{b}^{\dagger}_{k\mu}\hat{b}_{k\mu} + \sum_{k\mu}Y_{\mu}(k)\left[\hat{b}^{\dagger}_{k\mu} + \hat{b}_{k\mu}\right] + \hat{\Gamma}$$

• The angular part of the impurity decouples:

$$\langle \varphi | \Psi \rangle = \langle \varphi | M \rangle \hat{S} | \text{bos}_n \rangle \quad \rightarrow \quad \text{U(1) gauge field} \quad A = \langle \text{bos}_n | \hat{A}_z | \text{bos}_n \rangle , \quad (5)$$

where $|bos_n\rangle$ is the eigenstate of

$$\hat{H}_{\text{bos}} = \frac{1}{m} (M - \hat{\Lambda}_z)^2 + \sum_{k\mu} \tilde{\omega}(k) \hat{b}^{\dagger}_{k\mu} \hat{b}_{k\mu} + \sum_{k\mu} Y_{\mu}(k) \left[\hat{b}^{\dagger}_{k\mu} + \hat{b}_{k\mu} \right] + \hat{\Gamma}$$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	00000000	00000000	00000	000
Statistics of impurities				

EY and M. Lemeshko, Phys. Rev. B 98, 045402 (2018)

ullet In the rotating frame, $\hat{S}=e^{-i\hat{arphi}\otimes\hat{\Lambda}_z},$ the Hamiltonian

$$\hat{H}_{\mathsf{rel}}' = \hat{S}^{-1}\hat{H}_{\mathsf{rel}}\hat{S} = \frac{1}{m}(\hat{L}_z - \hat{A}_z)^2 + \sum_{k\mu}\tilde{\omega}(k)\hat{b}_{k\mu}^{\dagger}\hat{b}_{k\mu} + \sum_{k\mu}Y_{\mu}(k)\left[\hat{b}_{k\mu}^{\dagger} + \hat{b}_{k\mu}\right] + \hat{\Gamma}$$

• The angular part of the impurity decouples:

$$\langle \varphi | \Psi \rangle = \langle \varphi | M \rangle \hat{S} | \text{bos}_n \rangle \rightarrow \text{U(1) gauge field} \quad A = \langle \text{bos}_n | \hat{\Lambda}_z | \text{bos}_n \rangle ,$$
 (5)

where $|bos_n\rangle$ is the eigenstate of

$$\hat{H}_{\text{bos}} = \frac{1}{m} (M - \hat{\Lambda}_z)^2 + \sum_{k\mu} \tilde{\omega}(k) \hat{b}^{\dagger}_{k\mu} \hat{b}_{k\mu} + \sum_{k\mu} Y_{\mu}(k) \left[\hat{b}^{\dagger}_{k\mu} + \hat{b}_{k\mu} \right] + \hat{\Gamma}$$

• By using $\partial \hat{H}_{bos}/\partial M = 2B(M - \hat{A}_z)$ and the Hellmann-Feynman theorem, one obtains

$$A = M - \frac{1}{2B} \frac{\partial E}{\partial M} \,. \tag{6}$$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	00000000	00000000	00000	000

Two-impurity problem

• The energy can be approximated by a variational energy

$$|var
angle = \sqrt{Z}|0
angle + \sum_{k\mu} \beta_{k\mu} \hat{b}^{\dagger}_{k\mu}|0
angle , \quad \delta \langle var|\hat{H}_{bos} - E|var
angle = 0$$
(7)

Quantum Impurity Problems and Emergent Gauge Fields Realization of Anyons N-anyon Problem 00000000

Two-impurity problem

• The energy can be approximated by a variational energy

$$|var
angle = \sqrt{Z}|0
angle + \sum_{k\mu} eta_{k\mu} \hat{b}^{\dagger}_{k\mu}|0
angle , \quad \delta \langle var|\hat{H}_{bos} - E|var
angle = 0$$
 (7)

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion		
000000000	0000000	00000000	00000	000		
Statistics of impurities						

In the presence of a bath, each impurity turns into a tightly bound flux-tube-charged-particle composite.

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000 000	00000	000

- Polaron and angulon
- Emergence of gauge fields
- Non-Abelian magnetic monopole

Realization of Anyons

- Spin-statistics theorem and gauge fields
- Two-impurity problem

N-anyon Problem

- CS from bath
- CS from impurity: Spin-boson model
- Symmetries of Quantum Impurities
 - Quantum groups
 - Renormalization of B

Conclusion

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	000
C 1 C 1				

Chern-Simons

• A particle coupled with the Chern-Simons field:

$$S=rac{1}{2}\int dt\,\sum_{q=1}^N\dot{x}_q^2-\int d^3y\,A_\mu(y)j^\mu(y)+rac{k}{2}\int d^3y\,\epsilon^{\mu
u
ho}A_\mu\partial_
u A_
ho\,,$$

where k is the level parameter.

• The N-anyon Hamiltonian is given by

$$\hat{\mathcal{H}}_{ ext{N-anyon}} = rac{1}{2}\sum_{q=1}^{N} \left[-i
abla_q - oldsymbol{A}_q(oldsymbol{x}_q)
ight]^2 \,,$$

where the gauge field is

$$\mathcal{A}_{q}^{i}(\boldsymbol{x}_{q}) = \alpha \sum_{p(\neq q)=1}^{N} \frac{\epsilon^{ij} \left(\boldsymbol{x}_{q}^{j} - \boldsymbol{x}_{p}^{j} \right)}{|\boldsymbol{x}_{q} - \boldsymbol{x}_{p}|^{2}} \,. \tag{8}$$

- $\alpha = 1/(2\pi k)$ which interpolates between 0 (boson) and 1 (fermion).
- In the Chern-Simons theory, the flux is given by $\Phi = 1/k \rightarrow \alpha = \Phi/(2\pi)$, whereas in the flux-tube-charged-particle composite picture, i.e., in the Maxwell theory, $\alpha = 2\xi/(2\pi)$ with ξ being the flux of the each composite.

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion	
000000000	0000000	0000000	00000	000	
Emergent Chern-Simons field					

Emergent Chern-Simons field

• Our aim is to define the statistics gauge field as an emergent gauge field:

$$\boldsymbol{A}_{q}(\boldsymbol{x}_{q}) = i \langle \psi_{n}(\boldsymbol{x}_{q}) | \nabla_{q} | \psi_{n}(\boldsymbol{x}_{q}) \rangle .$$
(9)

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000

Emergent Chern-Simons field

• Our aim is to define the statistics gauge field as an emergent gauge field:

$$\boldsymbol{A}_{q}(\boldsymbol{x}_{q}) = i \langle \psi_{n}(\boldsymbol{x}_{q}) | \nabla_{q} | \psi_{n}(\boldsymbol{x}_{q}) \rangle .$$
(9)

• Consider a free N-boson system coupled to a light system

$$\hat{H}_{\text{tot}} = -\frac{1}{2} \sum_{q=1}^{N} \nabla_q^2 + \hat{H}_{\text{light}}(\boldsymbol{x}_q) \,. \tag{10}$$

The corresponding eigenvalue equation can be written as

$$\sum_m H_{nm}^{\text{eff}} \Phi_m^{\mathsf{E}}(\boldsymbol{x}_q) = \mathsf{E} \, \Phi_n^{\mathsf{E}}(\boldsymbol{x}_q) \,,$$

where the effective Hamiltonian is

$$H_{nm}^{\rm eff} = -\frac{1}{2} \sum_{q=1}^{N} \sum_{l} \left[\delta_{nl} \nabla_{q} + \langle \psi_{n} | \nabla_{q} | \psi_{l} \rangle \right] \cdot \left[\delta_{lm} \nabla_{q} + \langle \psi_{l} | \nabla_{q} | \psi_{m} \rangle \right] + \varepsilon_{n} \delta_{nm} \,,$$

and $|\psi_n(x_q)\rangle$ is the eigenstate of the *light* Hamiltonian.

 Quantum Impurity Problems and Emergent Gauge Fields
 Realization of Anyons
 N-anyon Problem
 Symmetries of Quantum Impurities
 Conclusion

 00000000000
 0000000
 0000000
 0000000
 0000000
 0000000

Emergent Chern-Simons field

• Assume that in the adiabatic limit $\langle \psi_n | \nabla_q | \psi_m \rangle \approx \delta_{nm} \langle \psi_n | \nabla_q | \psi_n \rangle$:

$$\frac{1}{2}\sum_{q=1}^{N}\left[-i\nabla_{q}-i\langle\psi_{n}|\nabla_{q}|\psi_{n}\rangle\right]^{2}\Phi_{n}^{\mathcal{E}}(\boldsymbol{x}_{q})=\left(\boldsymbol{E}-\tilde{\varepsilon}_{n}(\boldsymbol{x}_{q})\right)\Phi_{n}^{\mathcal{E}}(\boldsymbol{x}_{q}),$$

• For an eigenstate in the form of

$$\ket{\psi_n(\boldsymbol{x}_q)} = \exp\left[-i\hat{lpha}\Theta(\boldsymbol{x}_q)
ight] \ket{ ilde{\psi}_n}$$

where

$$\Theta(\boldsymbol{x}_q) = \sum_{q > p} \arctan\left[rac{y_q - y_p}{x_q - x_p}
ight] \, ,$$

the emergent gauge field

$$i\langle\psi_n(\boldsymbol{x}_q)|
abla_q|\psi_n(\boldsymbol{x}_q)
angle = lpha\sum_{p(
eq q)=1}^Nrac{\epsilon^{ij}\left(x_q^j-x_p^j
ight)}{|\boldsymbol{x}_q-\boldsymbol{x}_p|^2}\,.$$

• The statistics parameter emerges as $\alpha = \langle \tilde{\psi}_n | \hat{\alpha} | \tilde{\psi}_n \rangle$ for some operator $\hat{\alpha}$ acting on the light system.

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000

TWO APPROACHES

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	000000000	00000	000
CS from bath				

• Bath as a light system

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	000000000	00000	000
CS from bath				

- Bath as a light system
- N-impurity problem at the Fröhlich level

$$\hat{H}_{\rm tot} = -\frac{1}{2}\sum_{q=1}^{N}\nabla_{q}^{2} + \sum_{\mu}\omega_{\mu}\; \hat{b}_{\mu}^{\dagger}\hat{b}_{\mu} + \sum_{\mu}\lambda_{\mu}\left({\rm e}^{-i\beta_{\mu}\Theta(\boldsymbol{x}_{q})}\hat{b}_{\mu}^{\dagger} + {\rm H.c.}\right)\,. \label{eq:hot}$$

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	000000000	00000	000
CS from bath				

- Bath as a light system
- N-impurity problem at the Fröhlich level

$$\hat{H}_{\rm tot} = -\frac{1}{2}\sum_{q=1}^{N}\nabla_{q}^{2} + \sum_{\mu}\omega_{\mu}\,\hat{b}_{\mu}^{\dagger}\hat{b}_{\mu} + \sum_{\mu}\lambda_{\mu}\left({\rm e}^{-i\beta_{\mu}\mathcal{O}(\boldsymbol{x}_{q})}\hat{b}_{\mu}^{\dagger} + {\rm H.c.}\right)\,. \label{eq:hot}$$

Adiabacity condition

$$\sum_{\nu} \beta_{\nu} \left(\frac{\lambda_{\nu}}{\omega_{\nu}} \right)^2 \gg \beta_{\mu} \frac{\lambda_{\mu}}{\omega_{\mu}} \quad \rightarrow \text{Emergent CS field}$$

Free N bosons become N anyons

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem ○○○○○○●○	Symmetries of Quantum Impurities	Conclusion 000
CS from bath				

 $\bullet\,$ For instance, the $N_{\rm ph}\to\infty$ solution of the following impurity Hamiltonian gives anyons

$$\hat{H}_{\text{tot}} = -\frac{1}{2} \sum_{q=1}^{N} \nabla_q^2 + \sum_{\mu=1}^{N_{\text{ph}}} \sqrt{N_{\text{ph}}} \, \hat{b}_{\mu}^{\dagger} \hat{b}_{\mu} + \sum_{\mu=1}^{N_{\text{ph}}} \sqrt{\alpha} \, \left(e^{-i\Theta(\boldsymbol{x}_q)} \hat{b}_{\mu}^{\dagger} + \text{H.c.} \right)$$
(11)

• Does it bring new insights to the N-anyon problem, such as the upper and lower bounds of the problem ?

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	000
CS from impurity				

• Impurity as a light system

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	000
CS from impurity				

- Impurity as a light system
- Quantum dissipation model

$$\hat{H}_{\text{tot}} = \frac{1}{2} \sum_{q=1}^{N} \left(-\nabla_q^2 + \boldsymbol{x}_q^2 \right) + \Delta \left(\hat{J}_z \right)^n + h \left(e^{-i\Theta(\boldsymbol{x}_q)} \hat{J}_+ + \text{H.c.} \right)$$

• Spin-Boson model

$$\hat{H}_{\text{tot}} = \sum_{q=1, i=x, y}^{N} \left(\hat{a}_{q,i}^{\dagger} \hat{a}_{q,i} + 1 \right) + \Delta \left(\hat{J}_{z} \right)^{n} + h \hat{J}_{+} \prod_{p>q}^{N} \frac{\hat{a}_{q,y}^{\dagger} - \hat{a}_{p,y}^{\dagger} + \hat{a}_{q,y} - \hat{a}_{p,y}}{\hat{a}_{q,x}^{\dagger} - \hat{a}_{p,x}^{\dagger} + \hat{a}_{q,x} - \hat{a}_{p,x}} + \text{H.c.}$$
(12)

• Bosonic bath turns into anyonic bath in the presence of a single impurity

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	0 000	000

- Polaron and angulon
- Emergence of gauge fields
- Non-Abelian magnetic monopole

Realization of Anyons

- Spin-statistics theorem and gauge fields
- Two-impurity problem

3 N-anyon Problem

- CS from bath
- CS from impurity: Spin-boson model

Symmetries of Quantum Impurities

- Quantum groups
- Renormalization of B

5 Conclusion

Quantum	Impurity	Problems	and	Emergent	Gauge	Fields	Rea
00000	00000	C					00

alization of Anyons N-anyon Problem

Symmetries of Quantum Impurities 00000

Symmetries of quantum impurities

• Rigid rotor is given by SO(3)

$$H_{\rm rotor} = B \underbrace{J^2}_{\rm Casimir operator}$$

s Realization of Anyons

N-anyon Problem

Symmetries of Quantum Impurities
 OOOO

npurities Conclus 000

Symmetries of quantum impurities

• Rigid rotor is given by SO(3)

$$H_{
m rotor} = B \underbrace{J^2}_{
m Casimir operator}$$

- Angulon: a rotor dressed by the field excitations
- $B \rightarrow B^*$: a deformed rotor

in perturbative regime:

$$B \to B^* = B - \frac{1}{2} \sum_{j=0}^{2} \sum_{k\lambda j'} {\binom{2}{j} \frac{(-1)^j V_\lambda(k)^2 \left[C_{2-j0,\lambda 0}^{j'0}\right]^2}{Bj'(j'+1) + \omega(k) - B(2-j)(3-j)}} + \mathcal{O}(U_\lambda(k)^4)$$

s Realization of Anyons

N-anyon Problem

Symmetries of Quantum Impurities

Conclusion 000

Symmetries of quantum impurities

• Rigid rotor is given by SO(3)

$$H_{
m rotor} = B \underbrace{J^2}_{
m Casimir operator}$$

- Angulon: a rotor dressed by the field excitations
- $B \rightarrow B^*$: a deformed rotor

in perturbative regime:

$$B \to B^* = B - \frac{1}{2} \sum_{j=0}^{2} \sum_{k\lambda j'} {\binom{2}{j}} \frac{(-1)^j V_\lambda(k)^2 \left[C_{2-j0,\lambda 0}^{j'0} \right]^2}{Bj'(j'+1) + \omega(k) - B(2-j)(3-j)} + \mathcal{O}(U_\lambda(k)^4)$$

Can we find a symmetry group for angulon?

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	0000	000

Quantum groups

Conjuncture

let us deform the group $SO(3) \rightarrow SO_q(3)$

deformation of the Lie algebra

$$[\hat{J}_{z}^{q}, \hat{J}_{\pm}^{q}] = \pm \hat{J}_{\pm}^{q} \quad [\hat{J}_{+}^{q}, \hat{J}_{-}^{q}] = [2\hat{J}_{z}^{q}]_{q},$$
(13)

where the square bracket implies

$$[\hat{A}]_q = \frac{q^{\hat{A}} - q^{-\hat{A}}}{q - q^{-1}}, \qquad (14)$$

with the deformation parameter q such that $\lim_{q\to 1} [\hat{A}]_q = \hat{A}$.

• The Hamiltonian

$$H_{\text{deformed rotor}} = B \underbrace{\left(\hat{J}_{-}^{q} \hat{J}_{+}^{q} + [\hat{J}_{z}^{q}]_{q} [\hat{J}_{z}^{q} + 1]_{q} \right)}_{\text{Gasimir of the quantum group}}$$

casimir of the quantum group

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
Renormalization of B				

• Within the quantum group

$$B o B^* = B\cos(3\tau) = B(1 - 9\tau^2/2 + \mathcal{O}(\tau^4)),$$

where $q = \exp(i\tau)$.

• Match it with the perturbative result

$$\tau = \left(\frac{1}{9B} \sum_{k\lambda j' j} {\binom{2}{j}} \frac{(-1)^{j} V_{\lambda}(k)^{2} \left[C_{2-j0,\lambda 0}^{j'0}\right]^{2}}{Bj'(j'+1) + \omega(k) - B(2-j)(3-j)}\right)^{1/2}$$

 $B^* = B\cos(3\tau)$ is valid in any coupling ???

Realization of Anyons

N-anyon Problem

00000

Symmetries of Quantum Impurities

Renormalization of B

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	00

- Polaron and angulon
- Emergence of gauge fields
- Non-Abelian magnetic monopole

Realization of Anyons

- Spin-statistics theorem and gauge fields
- Two-impurity problem

3 N-anyon Problem

- CS from bath
- CS from impurity: Spin-boson model
- Symmetries of Quantum Impurities
 - Quantum groups
 - Renormalization of B

Conclusion

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
Conclusion				

Quantum impurity problems can be considered as charged particle/s coupled to a gauge field.

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
C 1 1				

Quantum impurity problems can be considered as charged particle/s coupled to a gauge field.

In the angulon case, the emergent gauge field is a non-Abelian magnetic monopole

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
C 1 1				

Quantum impurity problems can be considered as charged particle/s coupled to a gauge field.

In the angulon case, the emergent gauge field is a non-Abelian magnetic monopole

A 2D bath attaches a magnetic flux to impurities; fractional statistics

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
C 1 1				

Quantum impurity problems can be considered as charged particle/s coupled to a gauge field.

In the angulon case, the emergent gauge field is a non-Abelian magnetic monopole

A 2D bath attaches a magnetic flux to impurities; fractional statistics

 $N\mbox{-anyon}$ setup is possible: either N bosonic impurities turn into N anyons, or bosonic bath into anyonic bath in the presence of an impurity

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	00000000	00000	000
C 1 1				

Quantum impurity problems can be considered as charged particle/s coupled to a gauge field.

In the angulon case, the emergent gauge field is a non-Abelian magnetic monopole

A 2D bath attaches a magnetic flux to impurities; fractional statistics

 $N\mbox{-anyon}$ setup is possible: either N bosonic impurities turn into N anyons, or bosonic bath into anyonic bath in the presence of an impurity

Non-Abelian anyons ???

Quantum Impurity Problems and Emergent Gauge Fields	Realization of Anyons	N-anyon Problem	Symmetries of Quantum Impurities	Conclusion
000000000	0000000	0000000	00000	000

THANK YOU FOR YOUR ATTENTION

The People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 291734.