
Collegium Urbis Nov Eborac Nordita Anyons Bröllopsfest

The Calogero Model: Physics, Mathematics and
Recent Results

March 11, 2019

The Calogero Model: Physics, Mathematics and Recent Results



Introduction
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...Sometimes we work on problems because they are
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...and sometimes we get lucky and get both for the price of one!
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How it all started...
A system of nonrelativistic identical particles on the line (m = 1)

H =
N∑
i=1

1

2
p2i +

∑
i<j

g

(xi − xj)2

Francesco Calogero, 1969:

Looking for solvable many-body problems
solved 3 particle problem Quantum Mechanically

Solved N particle problem

Others generalized it (Sutherland, Moser, etc.)

Seminal review by Olshanetskii & Perelomov

1989-1997 Secretary General of Pugwash

Conferences on Science and World A�airs
Peace Nobel Prize 1995
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We can also `con�ne' the particles in a box:

Either add an external harmonic trap:
∑

i
1

2
ω2x2i (Calogero 1971)

...or put the particles on a periodic space of length L

Each particle interacts with the images of all other particles, so the
potential becomes

V (x) =
∞∑

n=−∞

g

(x + nL)2
=

g(
L
π sin πx

L

)2 (Sutherland 1972)

Same as interacting through
the chord length on a circle.
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By analytically continuing L = iL′ we can also consider a model
with hyperbolic interactions

V (x) =
∞∑

n=−∞

g

(x + inL′)2
=

g(
L′

π sinh πx
L′

)2
Uncon�ned model, interaction falls o� exponentially with distance

Finally, we can periodize the hyperbolic model in x → x + L. This
gives the elliptic model with a Weierstrass elliptic function potential

V (x) = gP(x ; L, iL′)

Little is known about the elliptic system's classical or quantum
solution (Langmann) � it remains an interesting challenging topic.
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Impossible to do full justice to everyone who contributed...

...or to everyone who became interested!
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Why is this system physically interesting?

Arises in various situations of physical interest: a 'Jack in the box' !

E�ective descriptions of fractional quantum Hall states

Edge states behave as one-dimensional Calogero particles

Mapping to anyons

Spin chains in macromolecules

Spin states behave like Calogero particles
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Interface dynamics in strati�ed �uids

Benjamin-(Davis-Acrivos)-Ono model
1967 - (1967) - 1975

∂u

∂t
+ u

∂u

∂x
+

∂2

∂x2
−
∫

u(y)

x − y
dy = 0

(Hilbert transform)

Admits `soliton' solutions whose guiding centers behave like
Calogero particles

Two-dimensional gauge �eld theories

Matrix model descriptions of quantum gravity and string theory

Etc...
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...and mathematically interesting?

Plenty:

Integrability

Group theory

Moment maps

Di�erential-di�erence operators

Symmetric functions

Eigenvalue problems

Soliton theory

Self-adjoin extensions

Others that I forget or ignore!
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The Calogero system: a physical look

Nonrelativistic identical particles on the line with inverse-square
two-body potentials (every word counts)

Many special properties:

1/x2 a sort of mutual `centrifugal' potential: Vcf = L2

2mr2

`Borderline' short-distance stable potential in 2 or more
dimensions (for attractive potentials)

`Borderline' long-distance potential for phase transition
(�uid vs. crystal at low temperatures)

p2 ∼ ~2/x2: only scale-free potential in QM
Put g = ~2α, then α is pure number

(~ = 1 from now on)
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Stability, Statistics

Classically stable: g ≥ 0

QM: uncertainty principle improves stability to
g = `(`− 1) ≥ −1

4
(Exercise in Landau & Lifshitz!)

Wavefunction behaves as ψ ∼ x` at coincidence points

` and `′ = 1− `, give the same g

We will keep ` ≥ 0. For g ≤ 0 two values of ` survive and
represent two di�erent quantizations of the g ≤ 0 model

What about statistics?

1/x2 potential is QM impenetrable; therefore
ordinary statistics (symmetry of wavefunction) irrelevant

All physical observables of the system independent of statistics

Dimensionless parameter ` subsumes all statistics of the model

` = 0: free bosons; ` = 1: free fermions; other values?

The Calogero Model: Physics, Mathematics and Recent Results



Stability, Statistics

Classically stable: g ≥ 0

QM: uncertainty principle improves stability to
g = `(`− 1) ≥ −1

4
(Exercise in Landau & Lifshitz!)

Wavefunction behaves as ψ ∼ x` at coincidence points

` and `′ = 1− `, give the same g

We will keep ` ≥ 0. For g ≤ 0 two values of ` survive and
represent two di�erent quantizations of the g ≤ 0 model

What about statistics?

1/x2 potential is QM impenetrable; therefore
ordinary statistics (symmetry of wavefunction) irrelevant

All physical observables of the system independent of statistics

Dimensionless parameter ` subsumes all statistics of the model

` = 0: free bosons; ` = 1: free fermions; other values?

The Calogero Model: Physics, Mathematics and Recent Results



Stability, Statistics

Classically stable: g ≥ 0

QM: uncertainty principle improves stability to
g = `(`− 1) ≥ −1

4
(Exercise in Landau & Lifshitz!)

Wavefunction behaves as ψ ∼ x` at coincidence points

` and `′ = 1− `, give the same g

We will keep ` ≥ 0. For g ≤ 0 two values of ` survive and
represent two di�erent quantizations of the g ≤ 0 model

What about statistics?

1/x2 potential is QM impenetrable; therefore
ordinary statistics (symmetry of wavefunction) irrelevant

All physical observables of the system independent of statistics

Dimensionless parameter ` subsumes all statistics of the model

` = 0: free bosons; ` = 1: free fermions; other values?

The Calogero Model: Physics, Mathematics and Recent Results



Fractional Statistics

Calogero can be interpreted as free particles with fractional
statistics

Dimensionless parameter ` subsumes all statistics of the model!

One dimension: statistics a tricky concept

Particles "bump" into each other

No spin-statistics connection

Several ways to de�ne statistics:

Boundary condition at coincidence points: behavior of
wavefunction

Scattering: high energy limit of scattering phase shift

Stat Mech: statistical properties of many-body systems

Under which of the above does the Calogero system correspond to
fractional statistics?

All of the above! (More to come)
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Integrability

A classical Hamiltonian system possessing conserved quantities

In, n = 1, 2, . . .N functions of coordinates and momenta not
involving time explicitly is called integrable.

The In also must be (and always are) in involution: their Poisson
brackets must vanish

{In, Im} = 0

Obvious conserved quantities like total energy H and total
momentum P are part of In but for N > 2 there must be more.

What are those for the Calogero system?
Equations of motion:

ẋi = pi , ṗi = 2
∑
j( 6=i)

g

(xi − xj)3
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The Lax pair

Consider N × N matrices

Ljk = pjδjk + (1− δjk)
i`

xjk
, Ajk = `δjk

∑
s 6=j

1

x2js
+ `(δjk − 1)

1

x2jk

where we de�ned the shorthand xij = xi − xj
Upon use of the equations of motion and some algebra we �nd

dL

dt
= i [L,A]

and thus

L(t) = U(t)−1L(0)U(t) , U(t) = Pe i
∫ t
0 A(τ)dτ

So L(t) evolves by unitary conjugation and its eigenvalues are
constants of motion. Alternatively:

In = TrLn

I1 = P , I2 = 2H; I3, . . . new conserved quantities.
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Properties of the classical system

As time goes to ±∞ particles �y away from each other and all
coordinate terms in L and A vanish. Therefore

In =
N∑
i=1

kni

with ki the asymptotic momenta.

Asymptotic monenta ki are conserved

Some more work reveals that the angle variables θn conjugate to In
asymptotically become g -independent functions of the coordinates
xi and momenta ki . Therefore, at t → ±∞

xi (t) = ki t + ai

Impact parameters ai are also conserved!
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After scattering, all particles resume their initial asymptotic
momenta and impact parameters

There is no time delay, just a permutation; therefore...

System looks asymptotically free!

Suggestive fact: action increases w.r.t. free system by
∆S = π

√
g per particle exchange
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Quantum properties of the model

Lax pair formulation extends quantum mechanically

Classical limit is `→∞

Corollaries:

Particles scatter and preserve asymptotic momenta

Scattering phase shift is a constant:

θsc =
N(N − 1)

2
π`

(Compare with classical result ∆S = π
√
g per scattering)

Since ∂θsc/∂ki = 0 there is no time delay (again, compare
with classical result)

Calogero particles can be interpreted as free particles with an extra
phase shift of π` when they exchange, that is,

particles with exchange statistics of order ` (my entry, 1988)
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The periodic model: particles, holes and duality

Particles on a circle of length L have discrete momenta
p = 2π~

L n = 0,±1,±2, . . . upon choosing ~ = 1 and L = 2π
Free particles would have energy eigenvalues

E =
N∑
i=1

1

2
p2i

If the particles are indistinguishable only the set of values
{p1, p2, . . . , pN} matters, not their arrangement
Bose statistics: p1 ≤ · · · ≤ pN or pi+1 − pi ≥ 0

Fermi statistics: p1 < · · · < pN or pi+1 − pi ≥ 1 (no spin!)
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For Calogero particles the energies turn out to be

E =
N∑
i=1

1

2
p2i + `

∑
i<j

(pj − pi ) + `2
N(N2 − 1)

24

with pi ≤ pi+1 (boson rule)
(symmetry or antisymmetry of wavefunction is irrelevant)

De�ning `pseudomomenta' p̄i = pi + (N
2
− i)` (`open the fan':

a partial bosonization) the energy becomes free

E =
N∑
i=1

1

2
p̄2i

but now the p̄i satisfy p̄i+1 − p̄i ≥ `

Fractional exclusion statistics (Haldane 1991)
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For large N there are particle and hole excitations

Particles

Exclude ` states

Excited by one unit

Holes

Exclude one state

Excited by ` units

There is a particle-hole duality generalizing the one in free Fermi
systems:

` holes = −1 particle

particle↔ hole , `↔ 1

`
, p ↔ `p

In the classical (`→∞) continuum (N →∞) limit:

Particles: Solitons Holes: Waves

The Calogero Model: Physics, Mathematics and Recent Results



More formal: Particle symmetries and Statistics

Consider a set of �rst-quantized indistinguishable particles

Identical particles: SN a dynamical symmetry

Indistinguishable particles: all physical operators commute
with SN : discrete gauge symmetry

Gauge invariants:

I (k , q) =
N∑
i=1

: e ikixi+iqpi :

[I (k, q), I (k ′, q′)] = 2i sin
kq′ − k ′q

2
I (k + k ′, q + q′)

This is the `sine' version of W∞ algebra

The above algebra admits a host of representations, corresponding
to the underlying particles being (para)bosons, (para)fermions...

Calogero: Scalar irreps; Casimir becomes coupling strength
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Concentrate on the special case N = 2

Center of mass variables X , P : gauge invariant

Relative variables x , p: not gauge invariant - quadratic
invariants

A = x2 , B =
xp + px

2
, C = p2

A,B,C commute with X ,P and close to the SL(2,R) algebra

[A,B] = 2iA , [B,C ] = 2iB , [A,C ] = 4iB

with Casimir

G =
AC + CA

2
− B2

Unitarity of SL(2,R) mandates G = `(`− 1)

A realization of the irrep with the above G is

A = x2 , B =
xp + px

2
, C = p2 +

`(`− 1)

x2

The kinetic energy acquired an inverse-square potential part

The Calogero model! Coupling: Casimir (superselected)

Statistics ↔ Superselection sectors ↔ Calogero dynamics
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The Hermitian Matrix Model

Formulate particle coordinates as eigenvalues of an N × N matrix

SN promotred to UN

Irreps of UN de�ne physical ilbert space

L = Tr
{

1

2
Ṁ2 − V (M)

}
V (x) is a scalar potential evaluated for the matrix variable M.

Time-translation invariance leads to conserved energy

H = Tr
{

1

2
Ṁ2 + V (M)

}
Invariance under M → UMU−1 leads to conserved

J = i [M, Ṁ]

where [ , ] denotes ordinary matrix commutator

J are `gauge charges' that will determine the realization
(`statistics') of the indistinguishable particle system
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Reduction to particles

Parametrize M = UΛU−1 and de�ne A = −U−1U̇. Then

Ṁ = U
(

Λ̇ + [Λ,A]
)
U−1 := ULU−1

J = iU ([Λ, [Λ,A]])U−1 := UKU−1

The matrix elements of A and K are related

Kjk = i [Λ, [Λ,A]]jk = i(xj − xk)2Ajk , Kii = 0

Solving for Ajk and putting into H we obtain

H =
∑
i

1

2
p2i + 1

2

∑
i 6=j

KijKji

(xi − xj)2
+
∑
i

V (xi )

The Kij are still dynamical

Models obtain by choosing `sectors' for J and thus K

J = 0 ⇒ K = 0: free particles
The Calogero Model: Physics, Mathematics and Recent Results



Let there be spinning Calogeros

Realize J in terms of n vectors vs J = `(
∑n

s=1
v †s vs − 1)

and thus K = `(
n∑

s=1

u†sus − 1) , us = U−1vs

From Kii = 0

n∑
s=1

u∗siusi = 1 (no sum over i)

So KijKji =
∑
s,r

`usiu
∗
sj `urju

∗
ri = `2

∑
s,r

S sr
i S rs

j (i 6= j)

with S sr
i = usiu

∗
ri and H becomes

H =
∑
i

1

2
pi +

∑
i<j

`2Tr(SiSj)

(xi − xj)2
+
∑
i

V (xi )

The Calogero model with dynamical particle 'spins': TrS2

i = 1

The strength g = `2 is related to the conserved charge `

For n = 1 we recover spinless Calogero

External potential V (x) arbitrary at this stage
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Integrability through matrix technology

Consider the free matrix model: V (x) = 0 and thus Ṁ = 0
Therefore In = TrṀn = Tr(UṀU−1)n = TrLn are conserved

Ṁ is the canonical momentum matrix

Its elements have vanishing Poisson brackets

Therefore, the In are in involution: {Im, In} = 0

Ljk = (UṀU−1)jk = δjk ẋj − (1− δjk)
iKjk

xj − xk

= δjk ẋj − (1− δjk)
i`
∑

s usju
∗
sk

xj − xkThe Lax matrix!

In TrLn products us1i1u
∗
s1i2

us2i2u
∗
s2i3
· · · = Tr(Si1 · · · Sin)

In will involve only xi , ẋi = pi . Si and the constant `

In are the conserved integrals of the Calogero model

The actual motion of the model can be obtained explicitly
The Calogero Model: Physics, Mathematics and Recent Results



Farewel to the hermitian matrix model

Quantum model: can �nd explicitly spectrum and states
(matrix ladder operators and U(N) reduction)

One puzzle: in QM case ` must be an integer.Why?

Because of group theory!

Yes, but why? Not needed in particle system!

We augmented the gauge symmetry from SN to SU(N)
The larger gauge symmetry may have anomalies!
A `monopole-like' quantization is needed to avoid anomaly

In QM we get g = `(`+ 1) = ¯̀(¯̀− 1), ¯̀ = 1, 2, . . .
Where is ¯̀ = 0 (bosons)?

Gone! Matrix model fermionizes particles (renormalizes ` to `+ 1)
(the infamous Vandermonde determinant in the measure)
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The unitary matrix model

Particles on unit circle (periodic): phases of eigenvalues of a unitary
matrix U

L = −1

2
Tr(U−1U̇)2 ⇒ d

dt

(
U−1U̇

)
= 0

Invariant under U → VUW−1, V , W unitary

Two conserved matrix angular momenta L and R :

U → VU : L = i U̇U−1

U → UW−1 : R = −iU−1U̇

Unitary conjugation corresponds to W = V with generator

J = L + R = i [U̇,U−1]

Similarly as in hemitian model, we recover the Sutherland
inverse-sine-square model

H =
∑
i

1

2
ẋ2i + 1

2

∑
i 6=j

KijKji

4 sin2
xi−xj
2

Integrable, solvable and quantizable by similar techniques
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Farewell to Matrices

The Matrix Model provides us with:

A realization of the scalar model but with a quantized

Calogero statistics parameter `+ 1

A realization of Calogero models with particle spin degrees of
freedom

A systematic way of solving the above models.

Integrability for V (x) up to quartic polynomial (others?)

What the matrix model has not provided is

A realization of the Calogero model for fractional values of `

A realization of spin-Calogero systems with the spins in
arbitrary (non-symmetric or antisymmetric) representations.

A control of the coupling strength of the potential for the
spin-Calogero models.

A new approach is needed!
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Exchange operator formalism

Operators Mij permute the coordinate DOF of N particles in one
dimension. They satisfy the permutation algebra (symmetric group)

Mij = M−1ij = M†ij = Mji

[Mij ,Mkl ] = 0 if i , j , k , l distinct

MijMjk = MikMij if i , j , k distinct

One-particle operators: any Ai satisfying

MijAk = AkMij if i , j , k distinct

MijAi = AjMij

Construct the exchange-momenta one-particle (Dunkl) operators

πj = pj +
∑
k(6=j)

i W (xj − xk)Mjk := pj +
∑
k(6=j)

i WjkMjk

For πi to be Hermitian the prepotential W (x) should satisfy

W (−x) = −W (x)∗
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`Free' Hamiltonian in πi would be H =
∑

j
1

2
π2j

Contains terms linear in pj : to eliminate them

W (−x) = −W (x) = real

Commutators of πi and Hamiltonian become

[πi , πj ] =
∑
k

Wijk(Mijk −Mjik)

H =
∑
i

1

2
p2i +

∑
i<j

(
W 2

ij + W ′
ijMij

)
+
∑

i<j<k

WijkMijk

where Mijk = MijMjk is cyclic permutation of (i , j , k) and

Wijk = WijWjk + WjkWki + WkiWij

Goal: commutator zero or a constant

This leads to functional equation for W (x):

W (x)W (y)−W (x + y) [W (x) + W (y)] = const(= Wijk)

Can be solved and we will list its solutions (up to scaling of x)
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a) Wijk = 0 ⇒ W (x) = `/x
b) Wijk = −`2 < 0 ⇒ W (x) = ` cot x
c) Wijk = +`2 > 0 ⇒ W (x) = ` coth x

Case a) πj = pj +
∑
k 6=j

i`

xjk
Mjk , [πj , πk ] = 0

H =
∑
i

1

2
p2i +

∑
i<j

`(`−Mij)

x2ij

Calogero-like model with exchange interactions

Trivially integrable: In =
∑
i

πni

Assume particles are bosons or fermions: Mij = ±1 on states

The model becomes the standard Calogero model

Projected integrals In,± commute (by locality)

We proved quantum integrability of Calogero model in one sweep!
Model with harmonic potential can also be solved this way
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Let there be spin (again!)

Assume particles carry a number q of discrete internal states

σij exchanges the internal states of particles i and j

Total particle permutation operator is Tij = Mij σij

Assume states bosonic or fermionic under total particle exchange

TijψB,F = ±ψB,F ⇒ MijψB,F = ±σijψB,F

Exchange Calogero and Sutherland Hamiltonians become

Hc =
∑
i

1

2
p2i +

∑
i

1

2
ω2xi +

∑
i<j

`(`∓ σij)
x2ij

Hs =
∑
i

1

2
p2i +

∑
i<j

`(`∓ σij)
sin2 xij

− `2
N(N − 1)

2
+
∑

i<j<k

σijk


Calogero-Sutherland models with spin-exchange interactions
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Fundamental SU(q) generators T a satisfy completeness relation

q2−1∑
a=1

T a
αβT

a
γδ = δαδδγβ −

1

q
δαβδγδ or

∑
a

T1T2 = T12 −
1

q

Therefore σij = ~Si · ~Sj +
1

q

where Sa
i is T a acting on internal states of particle i

Calogero-Sutherland interaction coe�cient becomes

`(`∓ σij) = `

(
∓~Si · ~Sj + `∓ 1

q

)
Ferro/Antiferromagnetic spin interaction models (as in Matrix)
Arbitrary coe�cient strength (`)
Spins necessarily in the fundamental of SU(q)
Ferro → Antiferro: B → F or `→ −`
` = 1: Matrix and Exchange models agree

(B ↔ fundamental, F ↔ antifundamental)
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Asymptotic Bethe Ansatz approach

ABA: physically lucid method, works well for periodic models

Consider distinguishable exchange-Calogero particles without
external potential coming in with asymptotic momenta ki 5

Key fact: particles `go through' each other, no backscattering

Impenetrable 1/x2 potential became completely penetrable!

[Proof: simultaneous eigenstate of πi becomes asymptotically an
eigenstate of pi at both t → ±∞: no shu�ing of pi ]

(Puzzle: what happens with the correspondence principle? The

interaction coe�cient is `(`− ~Mij). How can ~ produce such a dramatic

e�ect, particles going through each other?)

Bottom line: free particles obeying generalized selection rules

Particles with spin: spectrum and degeneracies the same as
those of free particles with spin distributed among ni
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Sidebar: Yang-Baxter equation and integrability

The fact that particles go through each other means that their
scattering trivially satis�es the Yang-Baxter relation:

S12 S13 S23 = S23 S13 S12

YB equation is considered a hallmark of integrability

It is actually necessary for integrablity but not su�cient

YB condition can be viewed as absence of Aharonov-Bohm e�ects
around triple coincidence points

For zero-range interactions it is enough:

Lieb-Liniger: triple points of measure zero

Heisenberg and XXZ: triple points do not exist

In general, 3-particle e�ects introduce additional scattering that
may spoil integrability. I will give an example in private.

But in Calogero land all is well.
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The freezing trick

Take the strength of interaction to grow large: `→∞
System `freezes' around the position of classical equilibrium

Low-lying excitations are vibrational modes (phonons) and spin
excitation modes (spinons)

Particle distances xi − xj have negligible �uctuations, so spin
and coordinates decouple into a spinless Calogero model and a
spin chain model

Both vibrational and spin excitation energies of order `

Energy states can be found by `modding' the spin-Calogero
states by the spinless Calogero states: Zs = ZsC/ZC

From spin-Sutherland model: The Haldane-Shastry model

HHS = ∓
∑
i<j

~Si · ~Sj
sin2 π(i−j)

N
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From harmonic spin-Calogero model we obtain a spin chain model
with spins sitting on an inhomogeneous lattice

HP = ∓
∑
i<j

~Si · ~Sj
x̄2ij

x̄i minimize classical potential and satisfy

x̄i −
∑
j( 6=i)

1

(x̄i − x̄j)3
= 0 ⇔ x̄i −

∑
j(6=i)

1

x̄i − x̄j
= 0

x̄i are the roots of the N-th Hermite polynomial.

Spectrum is equidistant − spin content is nontrivial

Antiferromagnetic end of the spectrum is a c = 1 conformal
�eld theory (perturbatively exactly in 1/N)

Generalizations to spin chains for other spin representations
(e.g., SU(p|q) `supersymmetric' chain) also exist
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Parting words

Exchange operator formulation gave us

Neat way to treat the system directly at the QM domain

Spinless and spin-particle models with arbitrary, non-quantized
coupling strength

Correspondence to free particles and generalized statistics

Spin chain models through the freezing trick

...while Matrix formulation gave us

Arbitrary-size spin representations

No formulation gives �everything"

Desideratum: arbitrary spin (e.g., SU(2) spin 1) and arbitrary
strength to use freezing trick and obtain spin-1 chain and thus

validate (or disprove) Haldane's mass gap conjecture

Still an open question...
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Noncommutative Elliptic Spin-Calogero Model

Most exotic model: "Fold" spin-Calogero model with two
noncommuting complex translations and spin rotations

De�ne spins (S̃i )
pq
~α with Poisson brackets

{(S̃i )pq~α , (S̃j)
rs
~β
} = iδij

[
ω
~α×~β
2 δps (S̃i )

rq

~α+~β
− ω−

~α×~β
2 δrq (S̃i )

ps

~α+~β

]
U(k)-extended Moyal (star-commutator) algebra
Elliptic model with spin couplings

W =
∑
i ,j

∑
~α;p,q

(S̃i )
pq
~α (S̃j)

qp
−~α W pq

~α (xi − xj)

Elliptic model with noncommutative spin twists

Two-body spin couplings W (xi − xj) and spin self-coupling W̃

∗ Practically nothing is known about this model
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Hydrodynamic limit, Waves and Solitons

Dense collection of particles: hydrodynamic description

Exact in N →∞ limit, 1/N corrections

Particle system is integrable, hydro system should be as well

Use ρ(x , t) and v(x , t) as fundamental variables

∂tρ+ ∂x(ρv) = 0 , ∂tv + v∂xv = F (ρ, x)

Euler description is Hamiltonian

{ρ(x), v(y)} = δ′(x − y) , H =

∫
dx
[
1

2
ρv2
]

+ U

Su�ces to �nd the potential energy of the system in terms of ρ
For external potential Vo(x) and interaction V (x − y) we expect

U =

∫
dxρ(x)Vo(x) +

∫
dxdy ρ(x) ρ(y)V (x − y)

First part always OK. Not so for the second: singular interaction
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Can �nd result either through Collective Field Theory or through
careful regularization

U =

∫
dx

[
π2`2

6
ρ3 +

π`(`− 1)

2
ρ ∂xρ

H + (`− 1)2
(∂xρ)2

8ρ

]
(ρH Hilbert transform)

Terms ∼ ρ3, (∂xρ)2/ρ: short-distance contributions

Term ∼ ρ∂xρH : regularized `naive' continuum term

Leading term: fermions with ~→ `~: fractional statistics
Classical limit: `(`− 1), (`− 1)2 → `2

Perturbatively exact. Nonperturbative e�ects: depletion

Trigonometric or hyperbolic potentials: change kernel of
Hilbert transform

ρH(x) = −
∫

K (x − y)ρ(y)dy , K (x) =
1

x
, cot x , coth x

Trigonometric amounts to choosing ρ(x) periodic
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Solitons...

Solitons/waves: ρ(x , t) = ρ(x − vt), v(x , t) = v(x − vt)

EOM admit solitons of rational type

ρ(x) = ρo

[
1 +

g(v2 − v2s )

gv2s + (v2 − v2s )2x2

]

Solitons can only have speed |v| > vs

Become highly peaked as v� vs

Particle number Q, momentum P and energy E of soliton are

Q = 1 , P = v , E = 1

2
v2

Same as those of a free particle at speed v

Soliton can be identi�ed as a particle `going through' the
system in a `Newton's cradle' fashion
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...and �nite amplitude Waves

Summing periodic copies of (modi�ed) soliton solutions: waves

Can also be considered as solitons of Sutherland model

Wave speed v can be both above and below vs

Nonlinear, amplitude-dependent dispersion relation

Small amplitude: sound waves; large amplitude: solitons

Description in terms of classical pseudo-Fermi sea

QM πFermi sea of kj : ~→ 0, ~`→ g

Pseudo-Fermi level kF = vs

Sound waves: holes − small gaps inside the πFermi sea

Solitons: particles �ying over the πFermi sea

Large amplitude waves: �nite gaps inside πFermi sea

Waves and solitons are dual descriptions of the system
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Recent results: Dual formulation, Generating Function
with Manas Kulkarni, 2017 and ongoing

Consider xa, a = 1, . . . , n particle coordinates with �rst order EOM

maẋa = ∂aΦ

Φ a function of the xa; ma a set of constant �masses"

maẍa =
∑
b

∂b∂aΦ ẋb =
∑
b

∂a∂bΦ
1

mb
∂bΦ

= −∂V
∂xa

, V = −
∑
a

1

2ma
(∂aΦ)2

Choose Φ = 1

2

∑
a 6=b

mambFab(xa − xb) +
∑
a

maWa(xa)

(factors of ma are for later convenience)

∂aΦ =
∑
b

mambfab + mawa

where fab = F ′ab(xa − xb) , wa = W ′
a(xa)
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After some algebra and symmetrizations of indices we obtain

−V =
1

4

∑
b 6=c

mbmc(mb + mc)f 2bc

+
1

6

∑
b 6=c 6=d

mbmcmd [fbc fbd + fcbfcd + fdbfdc ]

+ 1

2

∑
b 6=c

mbmc(wb − wc)fbc + 1

2

∑
b

mbw
2

b

Look for one- and two-body relative potentials
Conditions:

fbc fbd + fcbfcd + fdbfdc = gbc + gbd + gcd

for all distinct b, c , d , for some functions gab(xa − xb), and

(wb − wc) fbc = ubc + vb + vc

for some functions uab(xa − xb) and va(xa)

Functional equations admitting families of solutions
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Table: Solutions to functional equations for relative potentialsl

Cabc fab(xab) Fab(xab) −Vab(xab)

0 g/xab g mamb log |xab|
g mamb(ma+mb)

4 x2ab

−g2 g cot xab g mamb log |sin xab|
g2mamb(ma+mb)

4 sin2 xab

+g2 g coth xab g mamb log |sinh xab|
g2mamb(ma+mb)

4 sinh2 xab

Table: Solutions to functional equations for external potential

fab(xab) wa(xa) −2Va(xa)

g/xab
c0 + c1xa + c2 x

2

a maw
2

a + g(mtot −ma)ma(c2 xa + 3

2
c3 x

2

a )

g cot xab c0 + c1 cos 2xa +
c2 sin 2xa

maw
2

a + g(mtot −ma)ma(c2 cos 2xa − c1 sin 2xa)

g coth xab
c0+c1 cosh 2xa+
c2 sinh 2xa

maw
2

a +g(mtot−ma)ma(c2 cosh 2xa+c1 sinh 2xa)
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Recover standard Calogero interactions (rational, trigo, hyper)

Arbitrary particle masses apparently allowed

External potentials up to quartic

However

Potential is negative de�nite: instability

To cure it: make all fab, wa imaginary

First-order equations become complex

To have a real system

A subset of particles xj , j = 1, . . .N, must be real

The remaining zα, α = 1, . . .M (M + N = n) can be complex:
we will call them solitons

xj and zα must decouple in the second-order equations

This imposes: mj = −mα = m (put = 1)

Solitons in this formulation are negative mass particles!
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The dual equations

ẋj = i
∑
k( 6=j)

f (xj − xk) − i
∑
α

f (xj − zα) + iw(xj)

żα = i
∑
β(6=α)

f (zα − zβ)− i
∑
k

f (zα − xk) + iw(zα)

Coupled, complex equations
By construction, second order equations decouple
Choosing xj , ẋj real at t = 0 they will remain real
This implies∑

k(6=j)

f (xj − xk) + w(xj) = Re

(∑
α

f (xj − zα)

)

ẋj = Im

(∑
α

f (xj − zα)

)
The values of zα determine xj , ẋj
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For the simplest case of harmonic Calogero we have the dual system

ẋj − iωxj = −ig
N∑
k 6=j

1

xj − xk
+ ig

M∑
α=1

1

xj − zα

żα − iωzα = ig
M∑
β 6=α

1

zα − zβ
− ig

N∑
j=1

1

zα − xj

For any M,N the above equations imply:

ẍj = −g2
N∑
k 6=j

1

(xj − xk)3
− ω2xj

z̈α = −g2
M∑
β 6=α

1

(zα − zβ)3
− ω2xα

For M ≥ N system reproduces full Calogero dynamics

For M < N the above reproduces restricted Calogero solutions

Similarly for other Calogero systems and external potentials
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Deriving hydrodynamics from dual system

Take the limit of N →∞ (but M can remain small)
Device: Introduce one more spectator particle x0 = x with mass m0

Full system of N + M + 1 particles remains Calogero-like

Must take m0 → 0 in order not to disturb the system

Spectator particle is a �pilot �sh�: it becomes "trapped" and
follows particles as they move

du

dt
= −∂x

[∑
j
1

2
f (x − xj)

2 +
∑

α
1

2
f (x − zα)2

+ (N −M)v(x) + 1

2
w(x)2

]
Final twist: �Sprincle� the system with many spectator particles at
various positions x ("sawdust on a stream")

The spectator velocity u(t) is promoted to a �eld u(x , t)
(x dependence arises from its dependence on initial position x)
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Therefore
du

dt
= ∂tu + ∂x

(
1

2
u2
)

Need to express terms in du
dt involving xj and zα in terms of u

Necessitates splitting u = u+ + u−

u+(x) = −i
∑
α

f (x − zα) + iw(x)

u−(x) = i
∑
j

f (x − xj)

Eventually, we obtain (with V (x) the external potential)

∂tu + ∂x

[
1

2
u2 +

ig

2
∂x(u+ − u−) + V

]
= 0

This is a bi-chiral version of the Benjamin-Ono equation
Equation valid for all N and M (even before N →∞)

u+(x) essentially determines everything through analyticity and its
pole structure

The Calogero Model: Physics, Mathematics and Recent Results



Go to hydro limit

Hydro obtained by expressing u+ and u− in terms of ρ and v

u+(x) = v(x)− iπgρH(x) + ig ∂x ln
√
ρ(x)

u−(x ± i0) = ∓πgρ(x) + iπgρH(x)

Finally some generalized solitons in external potentials
One-soliton solution: a single zα = Z satisfying the equation

z̈ + V ′(z) = 0

Fixes both xj(t) in N-body system and u±(x , t) in hydro limit

u+(x , t) =
ig

x − z(t)
+ iw(x)

v − ig(πρH − ∂x log
√
ρ) =

ig

x − z
+ iw(x)

Above equations can in principle be solved for xj , ρ and v
Numerical solutions easily obtainable
Et voilà some pictures:
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One soliton solution for quartic potential
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Two soliton solution for quartic potential
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z(t) on the complex plane for one and two solitons
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And at last... Anyons!
with Stéphane Ouvry, 2018 and ongoing...

Fundamental question:

Aren"t you sick of me
already??

Didn"t you have enough
Calogero yet??

Will build upon two important principles:

Never underestimate the pleasure of the audience listening to

what they already know

Nobody ever hated a speaker for �nishing early

(Now as for those who go overtime...)
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Indications of relation between these models

Similarity of Calogero and anyon LLL wavefunctions

Real one-dimensional coordinate maps to complex coordinate
on the plane

Already some results:

Alternative realizations of operators in two systems Brink et al. 1993

Matrix model noncommutative realization of FQH states AP 2001

We would like an explicit mapping rather than a formal one

Why is such a mapping useful?

Instrinsically interesting

Calculation of quantities in either side may be easier

E.g., density correlation calculations

Exploit particle ↔ hole duality in either system

In the sequel we will derive an N-body kernel that maps
Calogero to anyon wavefunctions
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The LLL anyon model (Stéphane will tell you all)

N nonrelativistic anyons of unit mass and unit charge
Anyonic statistical parameter α
Constant magnetic �eld B = 2ωc

Weak con�ning harmonic trap of frequency ωo

Singular gauge: anyon statistics encoded in the monodromy of the
wavefunction

LLL states are analytic in zi
(unnormalized) 1-body eigenstates are z`ii
Many-body LLL eigenstates are

ψfree =
∏
i<j

(zi − zj)
αe−ω

∑N
i=1 zi z̄i/2

∑
π∈SN

N∏
i=1

z`iπ(i)

with the spectrum

EN = (ωt − ωc)

[
N∑
i=1

`i +
1

2
N(N − 1)α + N

]
+ Nωt
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The Calogero model

Same spectrum as N-body 1d harmonic Calogero model with
ω = ωt − ωo and ` = α (up to a global Nωt2 shift)

We will seek mapping between anyon and Calogero
wavefunctions of same energy (from now on set ω = 1)

N-body ground state of harmonic Calogero Hamiltonian

ψ0 =
∏
i>j

(xi − xj)
g e−

∑N
i=1 x

2
i /2 := ∆x

g e−[x2]/2

where ∆x =
∏
i>j

(xi − xj) , [x2] =
N∑
i=1

x2i

ψ0 is bosonic and above holds in the �wedge" x1 < · · · < xN

Use g instead of ` to avoid confusion with `i
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The kernel

Consider the scattering Calogero N-body Hamiltonian is

H̄g = −1
2

N∑
i=1

∂2

∂x2i
+
∑
i<j

g(g − 1)

(xi − xj)2

De�ne hg [x , z ] to be the scattering Calogero eigenstate with
asymptotic momenta z1 < · · · < zN

H̄g hg [x , z ] = 1

2
[z2] hg [x , z ]

hg [x , z ] behaves as (xi − xj)
g when xi → xj

Asymptotically combination of scattered plane waves

e i
∑

i xizi → e−iπN(N−1)g/4
∑
π∈SN

e iπg c(π) e i
∑

i xπ(i)zi

c(π) is the number of particle crossings in {xπ(i)}
Phase chosen symmetric for incident wave e i(x1zN+···+xNz1) and
scattered wave e i(x1z1+···+xNzN)
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The appropriate kernel is

kg [x , z ] = e [z2]/4e−[x2] hg [x , z ]

Scattering momenta zi become anyon coordinates

The proof is rather long (but oh, so beautiful... read all about it!)

Basic steps:

Generate Calogero states through action of ladder operators

Conjugate ladder operators to their free form

Use (anti)hermiticity to make them act on hg [x , z ]

Turn their action into eigenvalues of scattering conserved
quantities to produce zi

`j part

Show that remaining integral reproduces ∆g
z

The last step is the most challenging one

Achieved only for integer g (For N > 2)

Should be true in general by analytic continuation
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And after a lot of work and twists...

Putting everything together we obtain our �nal result∫
e [z2]/4e−[x2]/2hg [x , z ]ψ`[x ] [dx ] = ∆z

g
∑
π∈SN

N∏
i=1

z`iπ(i)

Calogero → Anyons

Our desired
mapping relation!

Open questions

Sutherlad to what? (Anyons on cylinder? Maybe on sphere??)

Elliptic to what? (Anyons on torus???)

Interesting applications????
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Conclusions and Outlook

A grand tour in Calogero land, but we left out many sights:

Foldings and new systems obtained through them (anisotropic,
noncommutative etc)

Density correlations and their analytic challenges (Jack
polynomials, integral expressions etc.)

Connection with Yang-Mills and Chern-Simons �eld theories

"Relativistic" Calogero systems (Ruijsenaars-Schneider model)

Duality and its manifestations; etc. etc.

Many open questions remaining

Formulation encompassing Matrix and Operator ones

Correlations for irrational values of `

"Continuous" expression of density correlations

Full solution of Elliptic system

Anything at all on the noncommutative model

(Use your imagination...)
The Calogero Model: Physics, Mathematics and Recent Results



...sometimes doing things for fun rather than pro�t is the most
pro�table path

Thank You!
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