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Introduction
Anyons in QFT

Anyons:
. Non-standard statistics → arbitrary phase factor in commutation relations

φ1φ2 ∼ eiπλφ2φ1

. Non-trivial behavior under 2π-rotation → real valued spin Sq ∈ R

U(2π) ∼ e2πiSq (here: q ... U(1)-charge)

Possibility for Anyon quantum fields depends on the dimension and on the
localization properties of the fields

Best possible localization of Anyons:
. in 1D: Compact localization (double cones, intervals)
. in 2D: localization in (generalized) cones [Buchholz/Fredenhagen]
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Introduction
Anyons in QFT

disjoint causal complement
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C̃1 and C̃2 differing by 2π-rotation
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Introduction
Motivation

Field theories for Anyons often involve gauge theories with a Chern-Simons term
LCS ∼ A ∧ dA and/or a Higgs term ∼ λφ4

(although not necessary for Anyon-statistics → cf. [Liguori/Mintchev/Rossi])

Construction of fields often indirect: Lagrangian → Schwinger functions → O.S.
reconstruction (e.g. [Fröhlich/Marchetti]);
or only on a lattice (e.g. non-Abelian version of Kitaev’s toric code)

More explicit Constructions:

In d=1+1: Operators multiplying with a kink-function as implementable
Bogoliubov transformations → disorder operators

¶

-¶

x

sgn
¶

→ “Left-right” dependent statistics

φ(x1)φ(x2) ∼ eiπλ sgn(x1−x2)φ(x2)φ(x1)
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Introduction
Motivation

On the circle: Similar construction as in d = 1 + 1 → implementers of “Blip
functions” (changes phase by 2π in small interval) [Carey/Langmann]
Phase factor is again of the form eiπλ sgn(x1−x2) with x1, x2 ∈ S1

In d=2+1: Constructions also often lead to something like

Ψ(~x)Ψ(~y) ∼ eiπλ sgn(arg(~x−~y))Ψ(~y)Ψ(~x)

Problem: Apart from the d = 1 + 1 case the sign-function in the phase factor does
not lead to the desired kind of localization

⇒ Want explicit field net localized in cones + dependence on winding number
Here: For simplicity first construct local operators on the (universal covering of the)
circle → Non-relativistic net localized in cones on R2

Difficulty: No-Go theorem for free Anyons: [Bros/Mund]

A covariant cone-local field net for Anyons (satisfying Reeh-Schlieder) always has
non-trivial S-matrix ⇒ There are no one-particle generators for Anyons
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Quantum Field Nets for Anyons
Paths of Cones

For the definition of a quantum field net for anyons we first need the concept of
generalized cones (or “paths of cones”).

C0

C
I

S1

~x

Usual cone C on R2 specified by two ingredients:
. point ~x ∈ R2 and
. interval I ⊂ S1 on the circle

(with S1 serving as the set of directions)

Taking the universal covering S̃1 of S1 and

generalized intervals Ĩ ⊂ S̃1 a generalized cone C̃
can be defined as the pair

C̃ =̂ (~x, Ĩ)

→ Depends on the “winding number” of Ĩ!

⇒ Not invariant under 2π-rotations!
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Quantum Field Nets for Anyons
Definitions

Definition: An anyonic quantum field net is a map C̃ 7→ F(C̃), assigning to every
generalized cone C̃ a ∗-algebra F(C̃) of operators acting on a Hilbert space H, which
satisfies the following axioms:

1 Isotony: The map C̃ 7→ F(C̃) preserves inclusions, i.e. F(C̃1) ⊂ F(C̃2) if
C̃1 ⊂ C̃2.

2 Charged Sectors: The Hilbert space splits into a direct sum of charge eigenspaces

H =
⊕
q∈Z
Hq , vacuum Ω ∈ H0

3 Basic Fields: In every local algebra F(C̃) there exist charge shifting “fields”
Φ,Φ∗ ∈ F(C̃) such that

ΦHq ⊂ Hq+1 , Φ∗Hq ⊂ Hq−1.
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Quantum Field Nets for Anyons
Definitions

4 Covariance and Spin: On H there is a representation U of Ẽ(2) ' R2 oR with

U(2π) =
⊕
q∈Z

e2πiSqPq ,

where Sq ∈ R is the spin of the sector Hq , such that

U(~a, ω)F(C̃)U(~a, ω)∗ ⊂ F(r̃(ω)C̃ + ~a).

5 (Twisted) Locality: For cones C̃1, C̃2 whose projections C1, C2 do not intersect,
the basic fields Φ1 ∈ F(C̃1),Φ2 ∈ F(C̃2) satisfy

Φ1 Φ2 = e2πis(2N(C̃1,C̃2)+1) Φ2 Φ1, (?)

where s ∈ R is a real parameter and N(C̃1, C̃2) ∈ Z denotes the relative winding
number of C̃1 w.r.t. C̃2.

The commutation relations (?), together with S0 = 0 and S−q = Sq already lead to

Lemma (Spin addition rule)

Sq = sq2
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Construction of Local Anyons on the Circle
General Strategy

Model on the circle → simple enough to construct explicitly (implementable
multiplication operators) but still capable of showing non-trivial rotational behavior!

⇒ Use representation of Ũ(1) of the form

U(ω) = eiωsQ
2
U0(ω)

where U0(ω) is a (2π-periodic) representation of U(1).

Basic idea of construction:

Implementer of one-particle multiplication operators → Auxiliary field Φ̂ on
S1 ' [0, 2π), covariant under U0 = Γ(U1)

Lift to covering space S̃1 by using the full representation U

Φω := eiωsQ
2
Φ̂ωe

−iωsQ2
, Φ̂ω = U0(ω)Φ̂0U0(−ω)
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Construction of Local Anyons on the Circle
Preliminaries: Implementable Bogoliubov Transformations

Hilbert space: H1 = L2(S1) ' l2(N0)⊕ l2(N−) =: H+
1 ⊕H

−
1

Representation of U(1): (U1(ω)ϕ)(x) := ϕ(x− ω)

Second Quantization: . Fock space: H = Fa(H1)
. Free field φ(ϕ) := a∗(ϕ+) + b(ϕ−)
. Implementer of diagonal unitary operator U = U++ ⊕ U−−:

Γ̂(U) := Γ(U++)Γ(U−−)

⇒ Γ̂(eiγ) = eiγQ and Γ̂(U)φ(ϕ)Γ̂(U)∗ = φ(Uϕ)

Implementers for general unitaries:

Theorem (Shale-Stinespring)

A unitary V on H1 has an implementer Γ̂(V ) on Fock space Fa(H1) iff

V±∓ ∈ B2(H1)

Charge shifts: An implementer Γ̂(V ) shifts the charge of a vector by the integer
q(V ), the Fredholm index of V−−, i.e.

q(V ) := dim ker(V−−)− dim ker(V ∗−−)
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Construction of Local Anyons on the Circle
Preliminaries: Implementable Bogoliubov Transformations

Lemma (Properties of Implementers)

i) For a self-adjoint A the unitary operator eitA is implementable ∀t ∈ R iff

A±∓ ∈ B2(H1)

ii) Unitaries V with ker(V−−) = {λe− | λ ∈ C}, ker(V ∗−−) = ∅ and V−+ = 0
create one-particle vectors from the vacuum, i.e.

Γ̂(V )Ω = e0 where e0 = V e−.

iii) For a charge shift V and self-adjoint A,B such that [A,B] = [V,A] = [V,B] = 0
there holds

Γ̂(eiA)Γ̂(V ) = ei〈Γ̂(V )Ω,dΓ̂(A)Γ̂(V )Ω〉 Γ̂(V )Γ̂(eiA),

Γ̂(eiA)Γ̂(eiB) = eiS(A,B) Γ̂(eiB)Γ̂(eiA)

with the Schwinger term S(A,B) := iT r(A−+B+− −B−+A+−).
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Construction of Local Anyons on the Circle
Preliminaries: Implementable Bogoliubov Transformations

Use multiplication operators in x-space:

⇒ All occurring operators commute
⇒ The Schwinger term takes a simple form

Lemma (Multiplication operators)

i) For a smooth real-valued function α ∈ C∞(S1,R) the multiplication operator
(αϕ)(x) := α(x)ϕ(x) satisfies

α±∓ ∈ B2(H1).

Therefore eitα is implementable ∀t ∈ R and moreover q(eitα) = 0.

ii) For α, β ∈ C∞(S1,R) the Schwinger term for the corresponding multiplication
operators turns out to be

S(α, β) =
1

2π

∫ 2π

0
dxα(x)β′(x) =

1

4π

∫ 2π

0
dx
(
α(x)β′(x)− α′(x)β(x)

)
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Construction of Local Anyons on the Circle
Construction of the Field

H+
1

H−
1

e2

e1

e0 = V e−1

e−1 ∈ kerV−−

e−2

V++

V−−

V+−

Consider the following shift operator:

(V ϕ)(x) := eixϕ(x)

W.r.t. the basis en(x) := 1√
2π
einx it acts as

V en = en+1.

Lemma (Shift Operator)

i) V+− is Hilbert-Schmidt and V−+ = 0

ii) The diagonal elements satisfy

kerV−− = {λe−1 | λ ∈ R} , kerV ∗−− = ∅

⇒ Γ̂(V ) raises the charge by 1!

From Vω := U1(ω)V U1(ω)∗ = e−iωV it also follows that

Γ̂(Vω) = Γ̂(V )eiωQ =⇒ Γ̂(Vω1 )Γ̂(Vω2 ) = e−i(ω1−ω2)Γ̂(Vω2 )Γ̂(Vω1 )
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Construction of Local Anyons on the Circle
Construction of the Field

A smooth function α ∈ C∞(S1) (defined later) and real parameter λ ∈ R then lead to

Definition (Auxiliary field)

Φ̂ω := Γ̂(Vω)Γ̂(eiλαω )

Φω := eiωsQ
2
Φ̂ωe

−iωsQ2

→ Commutation relations:

Φω1Φω2 = ei[(1−2s)(ω2−ω1)+λ2S(αω1
,αω2

)] Φω2Φω1

With λ2 = (1− 2s) and the winding number

2πN(ω) := ω − ω̂ ω̂ ... projection onto S1

we need to find a smooth function α such that the Schwinger term satisfies

S(αω1 , αω2 ) = ( ̂ω1 − ω2)− π
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Construction of Local Anyons on the Circle
Construction of the Field

-¶ 0 ¶

x

Χ
¶

Need multiplication operator of the form eiλx̂ for λ ∈ R
But: not smooth on the circle ⇒ not implementable

Solution: Smearing
with a bump function χε ∈ C∞0 (R) with properties
. suppχε = [−ε, ε] with 0 < ε < π

2

. χε(−x) = χε(x) = χε(x)

.
∫
dxχε(x) = 1

Λ x

¶ 2 Π - ¶ 2 Π
x0

ΛΑ
¶

Now define a smooth 2π-periodic function αε according to

αε(x) :=

∫
dy(x̂− y)χε(y)

Lemma (Schwinger Term)

For ω1, ω2 ∈ R such that ε1 + ε2 < ( ̂ω1 − ω2) < 2π − ε1 − ε2 the Schwinger term
satisfies

S(αε1ω1
, αε2ω2

) = ( ̂ω1 − ω2)− π .
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Construction of Local Anyons on the Circle
Construction of the Field

Conclusion: For every admissible smearing function χε with support in Iε0 = (−ε, ε)
one can construct fields

Φεω = Γ̂(eiλα
ε
ω ) Γ̂(Vω)eiωs(2Q+1)

localized in the interval

Ĩεω := {x ∈ S̃1 | ω − ε < x < ω + ε} ⊂ S̃1,

satisfying anyonic commutation relations.

(Φεω)∗ =⇒ Polynomial algebra =⇒ Local algebras F(Ĩεω)

=⇒ Local, covariant quantum field net for Anyons on the (covering of the) circle!
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Cone-localized Anyons on R2

Consider the free field

Ψ(f) := c∗(f) + c(f̄) , {c(f), c∗(g)} = 〈f, g〉

on the anti-symmetric Fock space Fa(L2(R2)). For supp f ∩ supp g = ∅ it satisfies

Ψ(f)Ψ(g) = −Ψ(g)Ψ(f).

Now define the composite field

F εω(f) := Ψ(f)⊗ Φεω

on the total Hilbert space H = Fa(L2(R2))⊗Fa(L2(S1)).

⇒ Localized in the (generalized) cone

C[f, I] := supp f +R+

⋃
µ∈Iεω

~nµ ⊂ R2

C̃[f, Ĩεω ]↔ (supp f, Ĩεω),
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f2

C̃(f2, Ĩ2)

Ĩ2

ω0

f1

C̃(f1, Ĩ1)

Ĩ1

ω0

Local Anyons on the Circle Matthias Plaschke 18/21



Covariant under a representation of translations and rotations of the form

Γ̂(U(~a, ω))⊗ eisωQ
2
Γ̂(U1(ω))

Satisfies anyonic commutation relations

F ε1ω1
(f1)F ε2ω2

(f2) = e2πis(2N(C̃1,C̃2)+1) F ε2ω2
(f2)F ε1ω1

(f1),

for supp f1 ∩ supp f2 = ∅ and Iε1ω1
∩ Iε2ω2

= ∅

Generalization to arbitrary field algebra O 7→ F(O) on R1+2

F(C̃) =
⋃
O⊂C

F(O)⊗F(Ĩ),

→ field net localized in generalized cones C̃ with winding-number dependent
anyonic commutation relations
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Open Questions

Shortcomings and open questions:

No boost covariance. Representation of the full (covering of the) Lorentz group:

U(Λ̃) ∼ eisQΩ(Λ̃)U0(Λ)

where Ω(Λ̃) is now an operator on the Hilbert space [Wigner rotation Ω(Λ̃, p)]
→ simple trick of lifting an auxiliary field to covering space only works for pure
rotations

Method of using multiplication operators as implementable Bogoliubov
transformations leads to problems in more than one dimension (Hilbert-Schmidt
property)

Reeh-Schlieder property for intervals (or cones)?

Direct (more “physical”) construction in d = 2 + 1?
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