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m Anyons:
> Non-standard statistics — arbitrary phase factor in commutation relations

P12 ~ e pady

> Non-trivial behavior under 27-rotation — real valued spin Sq € R

U(2r) ~ €275 (here: g ... U(1)-charge)



m Anyons:
> Non-standard statistics — arbitrary phase factor in commutation relations

P12 ~ e pady

> Non-trivial behavior under 27-rotation — real valued spin Sq € R

U(2r) ~ €275 (here: g ... U(1)-charge)

m Possibility for Anyon quantum fields depends on the dimension and on the
localization properties of the fields

m Best possible localization of Anyons:
> in 1D: Compact localization (double cones, intervals)
> in 2D: localization in (generalized) cones [Buchholz/Fredenhagen]



disjoint causal complement C1 and Cs differing by 27-rotation




Field theories for Anyons often involve gauge theories with a Chern-Simons term
Lcs ~ ANAdA and/or a Higgs term ~ A\¢*
(although not necessary for Anyon-statistics — cf. [Liguori/Mintchev/Rossi])

Construction of fields often indirect: Lagrangian — Schwinger functions — O.S.
reconstruction (e.g. [Fréhlich/Marchetti]);
or only on a lattice (e.g. non-Abelian version of Kitaev's toric code)



Field theories for Anyons often involve gauge theories with a Chern-Simons term
Lcs ~ ANAdA and/or a Higgs term ~ A\¢*
(although not necessary for Anyon-statistics — cf. [Liguori/Mintchev/Rossi])

Construction of fields often indirect: Lagrangian — Schwinger functions — O.S.
reconstruction (e.g. [Fréhlich/Marchetti]);
or only on a lattice (e.g. non-Abelian version of Kitaev's toric code)

More explicit Constructions:

m In d=1+1: Operators multiplying with a kink-function as implementable

Bogoliubov transformations — disorder operators
sgn,

N4
_/

— “Left-right” dependent statistics

$(w1)p(w2) ~ €T ENEIT2) (35) (1)




m On the circle: Similar construction as in d = 14+ 1 — implementers of “Blip
functions” (changes phase by 27 in small interval) [Carey/Langmann]
Phase factor is again of the form eimAsgn(z1-=2) with r1,T2 € S1

m In d=2+1: Constructions also often lead to something like

V(@)W (G) ~ ™ BT W () 0(F)
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Problem: Apart from the d = 1 + 1 case the sign-function in the phase factor does
not lead to the desired kind of localization

= Want explicit field net localized in cones + dependence on winding number
Here: For simplicity first construct local operators on the (universal covering of the)
circle — Non-relativistic net localized in cones on R?



m On the circle: Similar construction as in d = 1 + 1 — implementers of “Blip
functions” (changes phase by 27 in small interval) [Carey/Langmann]
Phase factor is again of the form eimAsgn(z1-=2) with r1,T2 € S1

m In d=2+1: Constructions also often lead to something like
Y(F)W(G) ~ e a0y () ¥ (7)
Problem: Apart from the d = 1 + 1 case the sign-function in the phase factor does

not lead to the desired kind of localization

= Want explicit field net localized in cones + dependence on winding number
Here: For simplicity first construct local operators on the (universal covering of the)
circle — Non-relativistic net localized in cones on R?

Difficulty: No-Go theorem for free Anyons: [Bros/Mund]

A covariant cone-local field net for Anyons (satisfying Reeh-Schlieder) always has
non-trivial S-matrix = There are no one-particle generators for Anyons



For the definition of a quantum field net for anyons we first need the concept of
generalized cones (or “paths of cones”).

Usual cone C on R? specified by two ingredients:
> point ¥ € R? and
> interval I C Sp on the circle

(with S7 serving as the set of directions)




For the definition of a quantum field net for anyons we first need the concept of
generalized cones (or “paths of cones”).

Usual cone C on R? specified by two ingredients:
> point ¥ € R? and
> interval I C Sp on the circle

(with S7 serving as the set of directions)

Taking the universal covering §I of S1 and
generalized intervals I C Sy a generalized cone C'
can be defined as the pair

c =z

— Depends on the “winding number” of I!

= Not invariant under 27-rotations!



Definition: An anyonic quantum field net is a map C +— F(C), assigning to every
generalized cone C a x-algebra F(C') of operators acting on a Hilbert space H, which
satisfies the following axioms:

Isotony: The map C +— F(C) preserves inclusions, i.e. F(C1) C F(Cy) if
C1 C Cs.
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Definition: An anyonic quantum field net is a map C +— F(C), assigning to every
generalized cone C a x-algebra F(C') of operators acting on a Hilbert space H, which
satisfies the following axioms:

Isotony: The map C +— F(C) preserves inclusions, i.e. F(C1) C F(Cy) if
C1 C Cs.

A Charged Sectors: The Hilbert space splits into a direct sum of charge eigenspaces

H:@le , vacuum Q € Ho
qEZ

Basic Fields: In every local algebra ]-'(C") there exist charge shifting “fields”
®,d* € F(C) such that

DdHy C Hgt1 <I>*Hq CHg-1-



—~—

Covariance and Spin: On H there is a representation U of E(2) ~ R? x R with

U2r) = P e’ %ap,
qEZ

where S; € R is the spin of the sector H4, such that

U(@,w)F (O (d@w)" C F(F(w)C +a).
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Covariance and Spin: On H there is a representation U of E(2) ~ R? x R with

U2r) = P e’ %ap,
qEZ

where S; € R is the spin of the sector H4, such that
U(@,w)F(C)U(&,w)* C F(F(w)C + ).

(Twisted) Locality: For cones C’l, Cs whose projections C1, C2 do not intersect,
the basic fields ®1 € F(C1), P2 € F(C2) satisfy

g ezm‘s(zN(él,éz)+1) Dy B1, (*)

where s € ]11 is a real parameter and N(C’l, C~’2) € Z denotes the relative winding
number of C7 w.r.t. Cs.



QUANTUM FIELD NETS FOR ANYONS

Definitions

e~

Covariance and Spin: On 7 there is a representation U of E(2) ~ R? x R with

U2r) = @ * 5P,
qEZ

where S; € R is the spin of the sector H4, such that
U(@,w)F(C)U(@,w)* C FFw)C + a).

(Twisted) Locality: For cones C~’1, C~’2 yvhose projections C7, C2 do not intersect,
the basic fields ®1 € F(C1), P2 € F(C2) satisfy

Oy Py = eQ'fris(QN(é’l,C_'gH»l) By By, (*)

where s € Risa real parameter and N(C’l, C’z) € 7 denotes the relative winding
number of C7 w.r.t. Ca.

The commutation relations (%), together with So = 0 and S_,; = S already lead to

Lemma (Spin addition rule)

Sq = sq°
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Model on the circle — simple enough to construct explicitly (implementable
multiplication operators) but still capable of showing non-trivial rotational behavior!

= Use representation of U(1) of the form
U(w) = €59 U (w)

where Up(w) is a (2m-periodic) representation of U(1).



Model on the circle — simple enough to construct explicitly (implementable
multiplication operators) but still capable of showing non-trivial rotational behavior!

= Use representation of U(1) of the form
U(w) = €59 U (w)
where Up(w) is a (2m-periodic) representation of U(1).

Basic idea of construction:
m Implementer of one-particle multiplication operators — Auxiliary field ® on
S1 =~ [0,27), covariant under Up = T'(Uy)

m Lift to covering space :S'\I by using the full representation U

By, = w57 em1wsQ% | b, = Up(w)doUo(—w)

)




m Hilbert space: H1 = L2(S1) ~ I?(No) ® 2(N_) =: H] @ H]
m Representation of U(1): (U1 (w)p)(z) := o(z —w)



m Hilbert space: H1 = L2(S1) ~ I?(No) ® 2(N_) =: H] @ H]
m Representation of U(1): (U1 (w)p)(z) := o(z —w)
m Second Quantization: > Fock space: H = Fo(H1)

> Free field ¢(¢) := a*(p1) + b(p2)
> Implementer of diagonal unitary operator U = Uy @ U__:

D(U) :=T(U+)T({U--)

= I(e") = €7 and D(U)$ (o)L (V)" = ¢(Up)



CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Preliminaries: Implementable Bogoliubov Transformations

m Hilbert space: H1 = L?(S1) =~ I>(No) ® I?(N_) = H] @ H]
m Representation of U(1): (U1 (w)p)(z) := o(z —w)
m Second Quantization: > Fock space: H = Fo(H1)

> Free field ¢(¢) := a* (1) + b(p2)

> Implementer of diagonal unitary operator U = U4 @ U__:

L) :=T(U; )T(T__)

= () = €72 and D (U)p(0)D(U) = $(Up)
m Implementers for general unitaries:
Theorem (Shale-Stinespring)
A unitary V on Hi has an implementer I'(V') on Fock space Fo(H1) iff

Vix € Ba(H1)
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Preliminaries: Implementable Bogoliubov Transformations

Hilbert space: H1 = L?(S1) ~ ?(No) ® I2(N_) = H @ H;
Representation of U(1): (U1 (w)p)(z) := ¢(z — w)

Second Quantization: > Fock space: H = Fq(H1)

> Free field ¢(¢) := a* (1) + b(p2)

> Implementer of diagonal unitary operator U = U4 @ U__:

F(U) = T4 )T (T-0)
= () = €72 and D (U)p(0)D(U) = $(Up)
m Implementers for general unitaries:
Theorem (Shale-Stinespring)
A unitary V on Hi has an implementer I'(V') on Fock space Fo(H1) iff

Vix € Ba(H1)

Charge shifts: An implementer f(V) shifts the charge of a vector by the integer
q(V), the Fredholm index of V__, i.e.

g(V) := dimker(V__) — dimker(V*_)

Local Anyons on the Circle Matthias Plaschke
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Preliminaries: Implementable Bogoliubov Transformations

Lemma (Properties of Implementers)

i) For a self-adjoint A the unitary operator €4 is implementable Yt € R. iff

Aiy € BQ(Hl)
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Preliminaries: Implementable Bogoliubov Transformations

Lemma (Properties of Implementers)

i) For a self-adjoint A the unitary operator €4 is implementable Yt € R. iff
Aiy € By (7‘[1)

i) Unitaries V with ker(V__) = {de— | A€ C}, ker(V*_)=0and V_ =0
create one-particle vectors from the vacuum, i.e.

I(V)Q=ey whereeg=Ve_.
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Preliminaries: Implementable Bogoliubov Transformations

Lemma (Properties of Implementers)

i) For a self-adjoint A the unitary operator €4 is implementable Yt € R. iff
At € Ba(H1)

i) Unitaries V with ker(V__) = {de— | A€ C}, ker(V*_)=0and V_ =0
create one-particle vectors from the vacuum, i.e.

I(V)Q=ey whereeg=Ve_.

iii) For a charge shift V and self-adjoint A, B such that [A,B] = [V,A] =[V,B] =0
there holds

f(e“‘)f(v) _ ei(f(V)Q,df(A)f(V)Q) f(V)f(eiA),
f\(eiA)fw(eiB) _ eiS(A,B) f(eiB)fx(eiA)

with the Schwinger term S(A, B) :=iTr(A_4+By_ — B_{A;_).

Local Anyons on the Circle Matthias Plaschke
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Preliminaries: Implementable Bogoliubov Transformations

Use multiplication operators in x-space:

= All occurring operators commute
=- The Schwinger term takes a simple form

Lemma (Multiplication operators)

i) For a smooth real-valued function o € C°°(S1,R) the multiplication operator
(ap)(x) := a(x)p(z) satisfies
ot € B ('Hl)
ita

Therefore e is implementable V¥t € R and moreover q(e'*®) = 0.
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Preliminaries: Implementable Bogoliubov Transformations

Use multiplication operators in x-space:

= All occurring operators commute
=- The Schwinger term takes a simple form

Lemma (Multiplication operators)

i) For a smooth real-valued function o € C°°(S1,R) the multiplication operator
(ap)(x) := a(x)p(z) satisfies

ot S BQ(Hl).

Therefore e is implementable V¥t € R and moreover q(e'*®) = 0.

ii) For a, 8 € C°°(S1,R) the Schwinger term for the corresponding multiplication
operators turns out to be

1

" r

27
(. ) = — /0 de oz)f' (z)

27
o A dz (a(z)B' (z) — o' (z)B8(z))
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Consider the following shift operator:

(Ve)(@) = o) Co
L]
W.r.t. the basis e, (z) := \/%e“”” it acts as Viy o e2
e €1

Ven = €n+1-

e e EkerV__

e €2
Vo_| e
. ’]-[;



Consider the following shift operator:

(Vo)(x) := e p(x) ’

L]

W.r.t. the basis en () := \/%76””” it acts as Vigl o
L

Ven =ent1. ,‘fk:{,’

L]

Lemma (Shift Operator) .
Vo e

i) Vi_ is Hilbert-Schmidt and V_ = 0

ii) The diagonal elements satisfy

kerV._ ={Xe_1 | AeR}, kerV* =0

= I'(V) raises the charge by 1!

e € ker V__

€2

Hy



CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Construction of the Field

Consider the following shift operator:

— ) N
(Ve)(z) := eop(z) Hi
L]
W.r.t. the basis ey () := \/%e””” it acts as Viyl o ez
° €1
Ven =enpt1.

e e EkerV__
Lemma (Shift Operator) e €2

i) Vi_ is Hilbert-Schmidt and V. =0

ii) The diagonal elements satisfy

Hy
kerV._ ={de_1 | A€ER}, kerV'_ =0

= (V) raises the charge by 1!
From V,, := U1 (w)VU1(w)* = e7*V it also follows that

D(Ve) = T(V)e™? = (Vi )T (Vi) = € 1792 T (Vo )T (Vi)
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Construction of the Field

A smooth function oo € C*°(S1) (defined later) and real parameter A € R then lead to

Definition (Auxiliary field)

b, = (V)P )

. 2 A . 2
D, = ezst @wefzst

— Commutation relations:

By By = eil(1=28) (w2 —w1)+A% S (awy ,awy)] By Py
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CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE

Construction of the Field

A smooth function oo € C*°(S1) (defined later) and real parameter A € R then lead to

Definition (Auxiliary field)

b, = (V)P )

. 2 A . 2
D, = ezst @wefzst

— Commutation relations:

By By = eil(1=28) (w2 —w1)+A% S (awy ,awy)] By Py

With A2 = (1 — 2s) and the winding number
2rN(w) i=w — @ & ... projection onto Sp

we need to find a smooth function « such that the Schwinger term satisfies

—

S(awl,an) = (Wl *UJ2)*7T

Local Anyons on the Circle Matthias Plaschke 14/21



Need multiplication operator of the form ¢**® for A € R
But: not smooth on the circle => not implementable

Solution: Smearing

with a bump function x. € C5°(R) with properties
> supp xe = [—¢,¢] with 0 < e < §
> Xe(—2) = Xe(2) = xe(z)
> [drxe(z) =1

Xe

-&



Need multiplication operator of the form ¢**® for A € R
But: not smooth on the circle => not implementable

Solution: Smearing

with a bump function x. € C5°(R) with properties
> supp xe = [—¢,¢] with 0 < e < §
> Xe (=) = Xe(2) = xe(2)
> [drxe(z) =1

Now define a smooth 27-periodic function o according to

ot (x) = / (T~ 9)x=(v)

Xe

-z




CONSTRUCTION OF LOCAL ANYONS ON THE CIRCLE
Construction of the Field

Need multiplication operator of the form e** for A € R Xe
But: not smooth on the circle = not implementable

Solution: Smearing

with a bump function xe € C§°(R) with properties
> supp xe = [—¢,e] with 0 <e < §
> Xe(—2) = Xe(x) = xe(®)
> [drxe(z) =1

Now define a smooth 2m-periodic function a® according to

ot (x) = / Ay " D)xe W)

Lemma (Schwinger Term)

For wi,w2 € R such that €1 + g3 < (wmg) < 27 — €1 — 2 the Schwinger term
satisfies .

S(af}l,azg) = (w1 —w2)—.
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Conclusion: For every admissible smearing function x. with support in I§

one can construct fields
(DZ — f\(ei)\(xZ) f(Vw)eiws(2Q+1)
localized in the interval
IF={zeS |w—e<z<wt+e}CS,

satisfying anyonic commutation relations.




Conclusion: For every admissible smearing function x. with support in I§ = (—¢,¢)
one can construct fields

@, = f\(eiAaZ) f(Vw)eiws(2Q+1)
localized in the interval
IF={zeS |w—e<z<wt+e}CS,

satisfying anyonic commutation relations.

(®¢,)* = Polynomial algebra = Local algebras F(I¢)

= Local, covariant quantum field net for Anyons on the (covering of the) circle!



Consider the free field

Y(f) = () +e(f), {elh), ()} = (f,9)

on the anti-symmetric Fock space F,(L2?(IR?)). For supp f Nsupp g = 0 it satisfies

V(f)¥(g) = —¥(9)¥(f).



Consider the free field

Y(f) = () +e(f), {elh), ()} = (f,9)

on the anti-symmetric Fock space F,(L2?(IR?)). For supp f Nsupp g = 0 it satisfies
V()¥(g) = =¥ (9)¥(f)

Now define the composite field

|Fo() = 9() @

on the total Hilbert space H = F,(L?(R?)) ® Fo(L2(S1)).



Consider the free field

Y(f) = () +e(f), {elh), ()} = (f,9)

on the anti-symmetric Fock space F,(L2?(IR?)). For supp f Nsupp g = 0 it satisfies
V(HW(g) = —W(g)¥(f)-

Now define the composite field

|Fo() = 9() @

on the total Hilbert space H = F,(L?(R?)) ® Fo(L2(S1)).

= Localized in the (generalized) cone

C[f,I] :=supp f + Ry U @i, C R2
HEI

C[f, I] + (supp £, IS),



_ ~
P N
7 N
7 \
/ A\
/ \
| \
1 A S
_ >
_ - p 3!
— /
~
Y /
P 7/
= N 4
N .
~ \\




m Covariant under a representation of translations and rotations of the form

P U(@,w) @ e DU (w))
m Satisfies anyonic commutation relations

FEL(f1)FE2(f2) = 2™ @N(CL.C0+D) pea(p)FEL(f),
for supp f1 Nsupp fo2 = 0 and Ifé al 1522 =0



m Covariant under a representation of translations and rotations of the form

P (E,w) @ e (U (@)
m Satisfies anyonic commutation relations
FEL(F)FE (f2) = 2N (CLOT 2 (1) FEL (),
for supp f1 Nsupp fo2 = 0 and If}l n 1522 =0

m Generalization to arbitrary field algebra O — F(O) on R1+2

F(&) = U Fo)eFI),
occ

— field net localized in generalized cones C with winding-number dependent
anyonic commutation relations



Shortcomings and open questions:

m No boost covariance. Representation of the full (covering of the) Lorentz group:
U(A) ~ e5Q2M) g ()

where Q(A) is now an operator on the Hilbert space [Wigner rotation Q(A, p)]

— simple trick of lifting an auxiliary field to covering space only works for pure
rotations

m Method of using multiplication operators as implementable Bogoliubov
transformations leads to problems in more than one dimension (Hilbert-Schmidt
property)

m Reeh-Schlieder property for intervals (or cones)?

m Direct (more “physical”) construction in d =2+ 17



Based on:

Local Anyonic Quantum Fields on the Circle Leading to Cone-Local Anyons in Two Dimensions,
Letters in Mathematical Physic (2015), Vol. 105 Issue 8, p1033-1055
Implementable gauge transformations on S; or R:

m A. L. Carey, C. A. Hurst: A Note on the Boson-Fermion Correspondence and Infinite
Dimensional Groups, (1985)

m A. L. Carey, E. Langmann: Loop Groups, Anyons and the Calogero-Sutherland Model, (1999)
m A. L. Carey, S. N. M. Ruijsenaars: On Fermion Gauge Groups, Current Algebras and
Kac-Moody Algebras, (1987)
No-Go theorem for free Anyons:
m J. Bros, J. Mund: Braid Group Statistics Implies Scattering in Three-Dimensional Local
Quantum Physics, (2012)
Anyons ind =2+ 1:
m J. Fréhlich, P. A. Marchetti: Quantum Field Theories of Vortices and Anyons, (1989)

m A. Liguori, M. Mintchev, M. Rossi: Anyon Quantum Fields without a Chern-Simons Term,
(1993)
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