L. Oddis

 H_{α}

2 interacting

Quadratic Forms for Two-Anyon Systems

Luca Oddis

14/03/2019

Mathematical physics of anyons and topological states of matter

work in progress with M. Correggi (Rome)

L. Oddis

Outline

Introductio

Intermediate Statistics and Magnetic Gause

Q.Fs. for :

anyons

Classification of all s.a.

 H_{α}

The Friedrich extension Quadratic forms: boundedness from below e

2 interacting anyons Interaction Introduction.

- Intermediate statistics, magnetic gauge and the bosonization map;
- Motivation: well-posedness and self-adjointness of Hamiltonians in presence of a trap or an interaction potential;
- Quadratic forms for 2 non-interacting anyons.
 - Extraction of the center of mass and the "1-particle" system;
 - Classification of all self-adjoint realizations of the Hamiltonian;
 - Quadratic (energy) forms of the self-adjoint Hamiltonians: boundedness from below and closedness;
- Quadratic forms for 2 interacting anyons.
 - Generalization to Hamiltonians with an interaction potential;
- \square Perspectives: Forms for N non-interacting anyons;

L. Oddis

Outline

 H_{α}

2 interacting

■ Introduction

- Intermediate statistics, magnetic gauge and the bosonization map;
- Motivation: well-posedness and self-adjointness of Hamiltonians in presence of a trap or an interaction potential;
- Quadratic forms for 2 non-interacting anyons.
 - Extraction of the center of mass and the "1-particle" system;
 - Classification of all self-adjoint realizations of the Hamiltonian;
 - Quadratic (energy) forms of the self-adjoint Hamiltonians: boundedness from below and closedness:
- Quadratic forms for 2 interacting anyons.
 - Generalization to Hamiltonians with an interaction potential;
- Perspectives: Forms for N non-interacting anyons;

L. Oddis

Outline

Introductio

Intermediate Statistics and Magnetic Gauge

Q.Fs. for : noninteracting

interacting anyons

Classification
of all s.a.
realizations of

The Friedrich: extension Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction 1 Introduction.

- Intermediate statistics, magnetic gauge and the bosonization map;
- Motivation: well-posedness and self-adjointness of Hamiltonians in presence of a trap or an interaction potential;
- Quadratic forms for 2 non-interacting anyons.
 - Extraction of the center of mass and the "1-particle" system;
 - Classification of all self-adjoint realizations of the Hamiltonian;
 - Quadratic (energy) forms of the self-adjoint Hamiltonians: boundedness from below and closedness;
- Quadratic forms for 2 interacting anyons.
 - Generalization to Hamiltonians with an interaction potential;
- \square Perspectives: Forms for N non-interacting anyons;

L. Oddis

Outline

Introduction

Intermediate Statistics and Magnetic Gauge

Q.Fs. jor ; noninteracting

anyons Motivation

Classification of all s.a. realizations of H_{α}

The Friedrich.
extension
Quadratic
forms:
boundedness
from below e
closedness.

2 interacting anyons Interaction Introduction.

- Intermediate statistics, magnetic gauge and the bosonization map;
- Motivation: well-posedness and self-adjointness of Hamiltonians in presence of a trap or an interaction potential;
- Quadratic forms for 2 non-interacting anyons.
 - Extraction of the center of mass and the "1-particle" system;
 - Classification of all self-adjoint realizations of the Hamiltonian;
 - Quadratic (energy) forms of the self-adjoint Hamiltonians: boundedness from below and closedness;
- Quadratic forms for 2 interacting anyons.
 - Generalization to Hamiltonians with an interaction potential;

L. Oddis

Outline

Q.Fs. for 2

 H_{α}

2 interacting

The results on the quadratic forms for both noninteracting and interacting case can be found in:

M.Correggi, L.O., Hamiltonians for Two-Anyon Systems, Rend. Mat. Appl. 39, 277-292 (2018).

Heuristic Introduction

Anyons

L. Oddis

Intermediate Statistics and Magnetic Gauge

 H_{α}

2 interacting

Let us consider a system of two identical particles with positions x_1, x_2 in the 2-dimensional euclidean space. Since

$$|\psi(x_2, x_1)|^2 = |\psi(x_1, x_2)|^2,$$

by the indistinguishability, then we have

$$\psi(x_2, x_1) = e^{i\alpha\pi} \psi(x_1, x_2), \quad \alpha \in [0, 1].$$
 (1)

Fundamental particles

Bosons satisfy (1) with $\alpha = 0$,

Fermions satisfy (1) with $\alpha = 1$.

For $\alpha \in (0,1)$ the wave function is multivalued!

Heuristic Introduction

Anyons

L. Oddis

Intermediate Statistics and Magnetic Gauge

 H_{α}

2 interacting

Let us consider a system of two identical particles with positions x_1, x_2 in the 2-dimensional euclidean space. Since

$$|\psi(x_2, x_1)|^2 = |\psi(x_1, x_2)|^2,$$

by the indistinguishability, then we have

$$\psi(x_2, x_1) = e^{i\alpha\pi} \psi(x_1, x_2), \quad \alpha \in [0, 1].$$
 (1)

Fundamental particles

Bosons satisfy (1) with $\alpha = 0$,

Fermions satisfy (1) with $\alpha = 1$.

For $\alpha \in (0,1)$ the wave function is multivalued!

Heuristic Introduction

Anyons

L. Oddis

Intermediate Statistics and Magnetic Gauge

 H_{α}

2 interacting

Let us consider a system of two identical particles with positions x_1, x_2 in the 2-dimensional euclidean space. Since

$$|\psi(x_2, x_1)|^2 = |\psi(x_1, x_2)|^2,$$

by the indistinguishability, then we have

$$\psi(x_2, x_1) = e^{i\alpha\pi} \psi(x_1, x_2), \quad \alpha \in [0, 1].$$
 (1)

Fundamental particles

Bosons satisfy (1) with $\alpha = 0$,

Fermions satisfy (1) with $\alpha = 1$.

For $\alpha \in (0,1)$ the wave function is multivalued!

L. Oddis

Outlin

Introducti

Intermediate Statistics and Magnetic Gauge

 $Q.\,Fs.$ for 2

noninteracting

Motivation Classification

of all s.a. realizations H_{α}

extension
Quadratic
forms:
boundedness
from below e

2 interacting anyons Interaction

Potential

This multivaluedness of the wave functions leads to consider a new formulation of Quantum Mechanics which extends to non-simply connected configuration spaces.

In our case, the N-particles configuration space Γ_N is

$$\Gamma_N = \mathbb{R}^{2N} \setminus \bigcup_{i < j} \left\{ X = (x_1, \dots, x_N) | x_i = x_j \right\},\,$$

whose 1st homotopy group is the braid group of N elements \mathbb{B}_N ! The wave functions are sections of a fiber bundle over Γ_N , in this picture.

Bosonization Map

Anyons

L. Oddis

Outline

Introductio

Intermediate Statistics and Magnetic Gauge

Q.Fs. for

non-

Motivation

Classificati

of all s.a.
realizations of

The Friedrich

forms: boundedness from below e closedness.

2 interacting anyons Interaction Potential

Potential

One can still choose to work with regular wave functions, via a suitable gauge transformation

Indeed, one can consider the so called bosonization operator which maps multivalued wave functions into conventional ones.

Definition

Let $\mathbf{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_N)$. Set $z^j:=x_j^1+ix_j^2$, for $j=1,\ldots,N$. For any $\alpha\in(0,1]$ we define the bosonization operator

 $\mathcal{U}_{\alpha}: L^2_{\alpha-any}(\mathbb{R}^{2N}) \to L^2_{sym}(\mathbb{R}^{2N})$ on α -anyonic function as

$$(\mathcal{U}_{\alpha}\psi)(\mathbf{X}) := \prod_{j < k} \frac{|z^j - z^k|^{\alpha}}{(z^j - z^k)^{\alpha}} \psi(\mathbf{X}) = \prod_{j < k} e^{-i\alpha \cdot \arg(z^j - z^k)} \psi(\mathbf{X}).$$

Bosonization Map

Anyons

L. Oddis

Outinne

Introductio

Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. for %

interacting

anyons

Motivation

of all s.a. realizations

 H_{lpha} The Friedrich extension

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction Potential

Perenectines

One can still choose to work with regular wave functions, via a suitable gauge transformation

Indeed, one can consider the so called bosonization operator which maps multivalued wave functions into conventional ones.

Definition

Let $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$. Set $z^j := x_j^1 + ix_j^2$, for $j = 1, \dots, N$. For any $\alpha \in (0, 1]$ we define the bosonization operator

 $\mathcal{U}_{\alpha}: L^2_{\alpha-any}(\mathbb{R}^{2N}) \to L^2_{sym}(\mathbb{R}^{2N})$ on α -anyonic function as

$$(\mathcal{U}_{\alpha}\psi)(\mathbf{X}) := \prod_{j < k} \frac{|z^j - z^k|^{\alpha}}{(z^j - z^k)^{\alpha}} \psi(\mathbf{X}) = \prod_{j < k} e^{-i\alpha \cdot \arg(z^j - z^k)} \psi(\mathbf{X}).$$

Bosonization Map

Anyons

L. Oddis

Intermediate Statistics and Magnetic Gauge

 H_{α}

2 interacting

One can still choose to work with regular wave functions, via a suitable gauge transformation

Indeed, one can consider the so called bosonization operator which maps multivalued wave functions into conventional ones.

Definition

Let $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$. Set $z^j := x_i^1 + ix_i^2$, for $j = 1, \dots, N$. For any $\alpha \in (0,1]$ we define the bosonization operator

 $\mathcal{U}_{\alpha}: L^2_{\alpha-any}(\mathbb{R}^{2N}) \to L^2_{sym}(\mathbb{R}^{2N})$ on α -anyonic function as

$$(\mathcal{U}_{\alpha}\psi)(\mathbf{X}) := \prod_{j < k} \frac{|z^j - z^k|^{\alpha}}{(z^j - z^k)^{\alpha}} \psi(\mathbf{X}) = \prod_{j < k} e^{-i\alpha \cdot \arg(z^j - z^k)} \psi(\mathbf{X}).$$

From Anyonic to Magnetic Gauge

Anyons

L. Oddis

Outline

Introducti

Intermediate Statistics and Magnetic Gauge

Q.Fs. for 2

noninteracting

Motivation Classificati

of all s.a.
realizations
Ha

The Friedrich extension Quadratic forms: boundedness from below e

2 interacting anyons Interaction Potential

Pomomo ation on

This operator simplifies the phase space. On the other hand, the new Hamiltonian contains a singular magnetic interaction term.

Gauges and Hamiltonians

	Anyonic Gauge	Magnetic Gauge
Hilbert Space	$L^2_{\alpha-any}(\mathbb{R}^{2N})$	$L^2_{sym}(\mathbb{R}^{2N})$
Hamiltonian	$\sum_{j=1}^{N} - \Delta_{j}$	$\sum_{j=1}^{N} \left(-i\nabla_j + \mathbf{A}_j \right)^2$

where **A** is a multiplication operator associated to an *Aharonov-Bohm*-like potential. We set $\hbar = 1, m = \frac{1}{2}$.

Aharonov-Bohm Potential

Anyons

L. Oddis

Outinne

Introducti

Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. for 2

noninteracting

Motivation

Classification of all s.a. realizations

 H_{lpha} The Friedrich

Quadratic forms: boundedness from below e

2 interacting anyons Interaction Potential $Definition \ (Aharonov-Bohm(AB) \ Potential)$

The Aharonov-Bohm potential of intensity α centered in $\mathbf{x_0} \in \mathbb{R}^2$ is the function $\mathbf{A_{x_0}} : \mathbb{R}^2 \setminus \{\mathbf{x_0}\} \longrightarrow \mathbb{R}^2$ defined as follows:

$$\mathbf{A}_{\mathbf{x}_0}(\mathbf{x}) := \alpha \frac{(\mathbf{x} - \mathbf{x}_0)^{\perp}}{|\mathbf{x} - \mathbf{x}_0|^2}.$$

The operator \mathbf{A}_j is the multiplication operator which attaches to each particle an AB flux:

$$\mathbf{A}_{j}(\mathbf{x}) := \alpha \sum_{\substack{k=1\\k \neq j}}^{N} \frac{(\mathbf{x} - \mathbf{x}_{k})^{\perp}}{|\mathbf{x} - \mathbf{x}_{k}|^{2}}$$

Aharonov-Bohm Potential

Anyons

L. Oddis

Outline

Introducti

Intermediate Statistics and Magnetic Gauge

Q.Fs. for 2

interacting

Motivation

Classification of all s.a. realizations

 H_{α} The Friedrich

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction Potential

Pomom action on

Definition (Aharonov-Bohm(AB) Potential)

The Aharonov-Bohm potential of intensity α centered in $\mathbf{x_0} \in \mathbb{R}^2$ is the function $\mathbf{A_{x_0}} : \mathbb{R}^2 \setminus \{\mathbf{x_0}\} \longrightarrow \mathbb{R}^2$ defined as follows:

$$\mathbf{A}_{\mathbf{x}_0}(\mathbf{x}) := \alpha \frac{(\mathbf{x} - \mathbf{x}_0)^{\perp}}{|\mathbf{x} - \mathbf{x}_0|^2}.$$

The operator A_j is the multiplication operator which attaches to each particle an AB flux:

$$\mathbf{A}_{j}(\mathbf{x}) := \alpha \sum_{\substack{k=1\\k \neq j}}^{N} \frac{(\mathbf{x} - \mathbf{x}_{k})^{\perp}}{|\mathbf{x} - \mathbf{x}_{k}|^{2}}$$

Motivation

Anyons

L. Oddis

Motivation

 H_{α}

2 interacting

Well-posedness and self-adjointness of the Hamiltonian

$$H_N = \sum_{j=1}^N \left[\left(-i\nabla_j + \mathbf{A}_j(\mathbf{x}_j) \right)^2 + \sum_{k>j} v(|\mathbf{x}_j - \mathbf{x}_k|) + V(\mathbf{x}_j) \right],$$

even considering just one of the two potentials, are still open questions.

Pairwise interaction potential

Trapping Potential

Motivation

Anyons

L. Oddis

Motivation

 H_{α}

2 interacting

Well-posedness and self-adjointness of the Hamiltonian

$$H_N = \sum_{j=1}^N \left[\left(-i\nabla_j + \mathbf{A}_j(\mathbf{x}_j) \right)^2 + \sum_{k>j} v(|\mathbf{x}_j - \mathbf{x}_k|) + V(\mathbf{x}_j) \right],$$

even considering just one of the two potentials, are still open questions.

Pairwise interaction potential

Trapping Potential

Motivation

Anyons

L. Oddis

Motivation

 H_{α}

2 interacting

Well-posedness and self-adjointness of the Hamiltonian

$$H_N = \sum_{j=1}^N \left[\left(-i\nabla_j + \mathbf{A}_j(\mathbf{x}_j) \right)^2 + \sum_{k>j} v(|\mathbf{x}_j - \mathbf{x}_k|) + V(\mathbf{x}_j) \right],$$

even considering just one of the two potentials, are still open questions.

Pairwise interaction potential

Trapping Potential

Setting

Anyons

L. Oddis

Classification of all s.a. realizations of

 H_{α}

2 interacting

Consider a system of N non relativistic spinless identical particles with anyonic statistics in two dimensions, consider the Hilbert Space

$$\mathfrak{H}:=L^2_{sym}(\mathbb{R}^{2N}),$$

and the operator defined on smooth functions supported away from the coincidence hyperplanes

$$\begin{cases} \mathcal{D}(\mathcal{H}_{\alpha}) := C_{c}^{\infty}(\Gamma_{N}) \\ \mathcal{H}_{\alpha} := \sum_{j=1}^{N} (D_{\alpha}^{j})^{2}, \end{cases}$$

where $D_{\alpha}^{j} := -i\nabla + \mathbf{A}_{i}$.

L. Oddis

Calline

Introductio

Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. jor noninteracting

anyons

Motivation Classification

Classification of all s.a. realizations of H_{α}

The Friedrich extension Quadratic forms: boundedness from below e

forms:
boundedness
from below e
closedness.

2 interacting

anyons
Interaction

Interaction Potential

Perspectives

Since $\mathbb{R}^{2N}\setminus \Gamma_N$ has Lebesgue measure zero, \mathcal{H}_{α} is a densely defined symmetric operator \Rightarrow it is closable.

Furthermore \mathcal{H}_{α} is positive and thus there \exists self-adjoint extensions of \mathcal{H}_{α} .

In particular, the Friedrichs extension can be considered, by taking the closure of the quadratic form associated to \mathcal{H}_{α} .

The case with N=2 can also be studied by means of Von Neumann's theory of the self-adjoint extensions of a symmetric densely defined operator.

L. Oddis

Classification of all s.a. realizations of H_{α}

2 interacting

Since $\mathbb{R}^{2N} \setminus \Gamma_N$ has Lebesgue measure zero, \mathcal{H}_{α} is a densely defined symmetric operator \Rightarrow it is closable.

Furthermore \mathcal{H}_{α} is positive and thus there \exists self-adjoint extensions of \mathcal{H}_{α} In particular, the Friedrichs extension can be considered, by taking the closure of the quadratic form associated to \mathcal{H}_{α} .

The case with N=2 can also be studied by means of Von

Neumann's theory of the self-adjoint extensions of a symmetric densely defined operator.

L. Oddis

Classification of all s.a. realizations of H_{α}

2 interacting

Since $\mathbb{R}^{2N} \setminus \Gamma_N$ has Lebesgue measure zero, \mathcal{H}_{α} is a densely defined symmetric operator \Rightarrow it is closable.

Furthermore \mathcal{H}_{α} is positive and thus there \exists self-adjoint extensions of \mathcal{H}_{α}

In particular, the Friedrichs extension can be considered, by taking the closure of the quadratic form associated to \mathcal{H}_{α} .

The case with N=2 can also be studied by means of Von Neumann's theory of the self-adjoint extensions of a symmetric densely defined operator.

VN's Approach to the Extensions

Anyons

L. Oddis

Classification

of all s.a. realizations of H_{α}

2 interacting

Set N=2. Our configuration space is

$$\Gamma_2 = \mathbb{R}^4 \setminus \{ \mathbf{x}_1 = \mathbf{x}_2 \} \,. \tag{2}$$

In any inertial reference frame, with coordinates $\mathbf{x}_1 = (x_1^1, x_2^1)$, $\mathbf{x}_2 = (x_1^2, x_2^2)$, two particles are described by the operator

$$\mathcal{H}_{\alpha} = (-\imath \nabla_1 + \mathbf{A}_1)^2 + (-\imath \nabla_2 + \mathbf{A}_2)^2, \tag{3}$$

where $\mathbf{A}_1(\mathbf{x}) = \alpha(\mathbf{x}_1 - \mathbf{x}_2)^{\perp} |(\mathbf{x}_1 - \mathbf{x}_2)|^2$, $\mathbf{A}_2(\mathbf{x}) = \alpha \frac{(\mathbf{x}_2 - \mathbf{x}_1)^{\perp}}{|(\mathbf{x}_1 - \mathbf{x}_2)|^2}$.

Extraction of the Center of Mass

Anyons

L. Oddis

Introductio

Intermediate
Statistics and
Magnetic
Gause

Q.Fs. for a

Motivation

Classification
of all s.a.
realizations of

The Friedric
extension
Quadratic

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Persnectines

The extraction of the center of mass leads to a major simplification.

By changing coordinates to

$$\begin{cases} \mathbf{X} := \frac{\mathbf{x}_1 + \mathbf{x}_2}{2} \\ \mathbf{r} := \mathbf{x}_1 - \mathbf{x}_2, \end{cases} \tag{4}$$

the operator splits

$$\mathcal{H}_{\alpha} = -\frac{\Delta_{\mathbf{X}}}{2} + 2(-i\nabla_{\mathbf{r}} + \mathbf{A}_{\text{rel}}(\mathbf{r}))^{2},$$
 (5)

where

$$\mathbf{A}_{\mathrm{rel}}(r) := \alpha \frac{\mathbf{r}^{\perp}}{|\mathbf{r}|^2}.$$

Extraction of the Center of Mass

Anyons

L. Oddis

Outline

Introduction

Intermediate Statistics and Magnetic Gause

Q.Fs. for 2 non-

anyons

Motivation

Classification of all s.a. realizations of H_{α}

The Friedrick

forms: boundedness from below e closedness.

2 interacting anyons Interaction

r otential

The extraction of the center of mass leads to a major simplification. By changing coordinates to

$$\begin{cases} \mathbf{X} := \frac{\mathbf{x}_1 + \mathbf{x}_2}{2} \\ \mathbf{r} := \mathbf{x}_1 - \mathbf{x}_2, \end{cases} \tag{4}$$

the operator splits

$$\mathcal{H}_{\alpha} = -\frac{\Delta_{\mathbf{X}}}{2} + 2(-i\nabla_{\mathbf{r}} + \mathbf{A}_{\text{rel}}(\mathbf{r}))^{2}, \tag{5}$$

where

$$\mathbf{A}_{\mathrm{rel}}(r) := \alpha \frac{\mathbf{r}^{\perp}}{|\mathbf{r}|^2}.$$

A Single Particle in an AB Flux

Anyons

L. Oddis

Outine

Introductio

Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. for 2

interacting

3/ -+:--+:--

Classification of all s.a. realizations o

realizations of H_{lpha} The Friedrichs

Quadratic forms: boundedness from below e

2 interacting anyons Interaction

D ...

A particle subject to the Aharonov-Bohm potential In [Adami,Teta, 1998] the problem of self-adjointness of the Hamiltonian of a particle on the plane subject to an AB potential is studied.

Phys.Rev. 115,485 1959

1-Particle Hamiltonian

Anyons

L. Oddis

Outlin

Introduci

Intermediate Statistics and

Magnetic Gauge

Q.Fs. for 2 non-

anyons

Motivation

Classification
of all s.a.
realizations of
Ho

The Friedrichs extension Quadratic

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction Potential

Perspectives

The Hamiltonian reads

$$\begin{cases} \mathcal{D}(\mathcal{H}_{\alpha}) := C_c^{\infty}(\mathbb{R}^2 \setminus \{0\}) \\ \mathcal{H}_{\alpha} := -\Delta - 2i\alpha \frac{\mathbf{x}^{\perp}}{|\mathbf{x}|^2} \nabla + \frac{\alpha^2}{|\mathbf{x}|^2}, \end{cases}$$

where the α depends both on the charge of the particle and the flux generated by the solenoid. This operator defined on smooth functions is only symmetric and it admits a 4-parameter family of s.a. extensions.

2 Anyons

One has to take into account the symmetry constraints imposed by the indistinguishability of the two particles!

Anyons

L. Oddis

Outine

Introducti

Intermediate Statistics and Magnetic

Q.Fs. for 2

non-

anyons

Motivation

Classification
of all s.a.
realizations of

 H_{α} The Friedrich extension Q undratic

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Perenectines

We return to our problem.

The starting operator, in polar coordinates, reads

$$\begin{cases} \mathcal{D}(\mathcal{H}_{\alpha}) := C_{c}^{\infty}(\mathbb{R}^{+}) \otimes L_{even}^{2}([0, 2\pi]), \\ \mathcal{H}_{\alpha} := -\partial_{\rho}^{2} - \frac{1}{\rho}\partial_{\rho} + \frac{1}{\rho^{2}}(i\partial_{\omega} - \alpha)^{2}, \end{cases}$$

where $L^2_{even}([0,2\pi]) := span_{\mathbb{C}} \left\{ e^{2in\omega} \right\}_{n \in \mathbb{N}}$

This operator is densely defined and symmetric \longrightarrow it is closable. Let \mathcal{H}_{α} be its closure.

Anyons

L. Oddis

Classification of all s.a.

realizations of H_{α}

2 interacting

We return to our problem.

The starting operator, in polar coordinates, reads

$$\begin{cases} \mathcal{D}(\mathcal{H}_{\alpha}) := C_{c}^{\infty}(\mathbb{R}^{+}) \otimes L_{even}^{2}([0, 2\pi]), \\ \mathcal{H}_{\alpha} := -\partial_{\rho}^{2} - \frac{1}{\rho}\partial_{\rho} + \frac{1}{\rho^{2}}(i\partial_{\omega} - \alpha)^{2}, \end{cases}$$

where $L^2_{even}([0,2\pi]) := span_{\mathbb{C}} \left\{ e^{2in\omega} \right\}_{n \in \mathbb{N}}$

This operator is densely defined and symmetric \longrightarrow it is closable.

Let \mathcal{H}_{α} be its closure.

Anyons

L. Oddis

Classification of all s.a.

realizations of H_{α}

2 interacting

We return to our problem.

The starting operator, in polar coordinates, reads

$$\begin{cases} \mathcal{D}(\mathcal{H}_{\alpha}) := C_{c}^{\infty}(\mathbb{R}^{+}) \otimes L_{even}^{2}([0, 2\pi]), \\ \mathcal{H}_{\alpha} := -\partial_{\rho}^{2} - \frac{1}{\rho}\partial_{\rho} + \frac{1}{\rho^{2}}(i\partial_{\omega} - \alpha)^{2}, \end{cases}$$

where $L^2_{even}([0,2\pi]) := span_{\mathbb{C}} \left\{ e^{2in\omega} \right\}_{n \in \mathbb{N}}$

This operator is densely defined and symmetric \longrightarrow it is closable.

Let \mathcal{H}_{α} be its closure.

Anyons

L. Oddis

Oumne

Im+made at

Intermediate Statistics and Magnetic

Q.Fs. for S

non-

anyons

Motivation

Classification
of all s.a.
realizations of

The Friedrich extension Quadratic

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Pomom potinica

We return to our problem.

The starting operator, in polar coordinates, reads

$$\begin{cases} \mathcal{D}(\mathcal{H}_{\alpha}) := C_{c}^{\infty}(\mathbb{R}^{+}) \otimes L_{even}^{2}([0, 2\pi]), \\ \mathcal{H}_{\alpha} := -\partial_{\rho}^{2} - \frac{1}{\rho}\partial_{\rho} + \frac{1}{\rho^{2}}(i\partial_{\omega} - \alpha)^{2}, \end{cases}$$

where $L^2_{even}([0,2\pi]) := span_{\mathbb{C}} \left\{ e^{2in\omega} \right\}_{n \in \mathbb{N}}$

This operator is densely defined and symmetric \longrightarrow it is closable. Let $\overline{\mathcal{H}}$ be its closure

Let \mathcal{H}_{α} be its closure.

S.A. Realizations for 2-Anyons

Anyons

L. Oddis

Outline

Introducti

Intermediate Statistics and Magnetic Gauge

Q.Fs. for 2

noninteracting

an y 010 0

Motivation

Classification of all s.a. realizations of H_{α}

The Friedrich extension

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Perspectives

The symmetry constraint actually leads to a different (smaller) family of self-adjoint realizations of the AB-like Hamiltonian.

One looks for solutions of the deficiency equations,

$$(\mathcal{H}_{\alpha}^* - i)\psi_+ = 0,$$

$$(\mathcal{H}_{\alpha}^* + i)\psi_- = 0.$$

which can be reduced to decoupled Bessel equations for the partial waves,

$$-w''(\rho) + \frac{1}{\rho^2} \left((2n + \alpha)^2 - \frac{1}{4} \right) w(\rho) = \pm i.$$

VN's Approach to the Extensions

Anyons

L. Oddis

Outline

T-4----

Intermediate Statistics and Magnetic Gause

Q.Fs. for 2

non-

unyons

Classification
of all s.a.
realizations of

The Friedrich

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Perenectines

One finds that both deficiency indeces are $d_{\pm}=1$. The normalized solutions are

$$\psi_{+} := N_{\alpha} K_{\alpha} (\rho e^{-i\frac{\pi}{4}}), \qquad \psi_{-} := N_{\alpha} e^{i\alpha\frac{\pi}{2}} K_{\alpha} (\rho e^{i\frac{\pi}{4}}),$$
 (6)

where $N_{\alpha}:=rac{\sqrt{2\cos(lpharac{\pi}{2})}}{\pi}$ and K_{lpha} is the modified Bessel function or Macdonald function.

Deficiency Functions

Anyons

L. Oddis

Outine

Introductio

Intermediate Statistics an Magnetic Gauge

Q.Fs. for 2 non-

interacting anyons

Motivation

Classification of all s.a. realizations of H_{α}

 H_{lpha} The Friedrich extension

Quadratic forms: boundedness from below e

2 interacting anyons Interaction

Persnectives

The deficiency functions have a singularity at the origin, their magnetic gradient D_{α} is not a square-integrable function. Indeed, when $z \to 0$, $\forall \alpha \notin -\mathbb{N}$:

$$K_{\alpha}(z) = \frac{\Gamma(\alpha)2^{\alpha-1}}{z^{\alpha}} - \frac{\Gamma(1-\alpha)z^{\alpha}}{\alpha 2^{\alpha+1}} + O(z^{2-\alpha}).$$

Plot of
$$|\psi_+|^2=|N_{\frac{1}{4}}K_{\frac{1}{4}}(\rho e^{-i\frac{\pi}{4}})|^2$$

Comparison between Different Statistics

Anyons

L. Oddis

Classification of all s.a.

realizations of H_{α}

2 interacting

If we consider the relative Hamiltonian with the symmetry constraints

Bosons

$$d \cdot - d$$

$$d_{+} = d_{-} = 1$$
 $\psi_{+} := N_{0} K_{0}(\rho e^{-i\frac{\pi}{4}}), \quad \psi_{-} := N_{0} K_{0}(\rho e^{i\frac{\pi}{4}}),$

Anyons

$$d_{+} = d_{-} = 1$$
 $\psi_{+} := N_{\alpha} K_{\alpha}(\rho e^{-i\frac{\pi}{4}}), \quad \psi_{-} := N_{\alpha} e^{i\alpha\frac{\pi}{2}} K_{\alpha}(\rho e^{i\frac{\pi}{4}}),$

Fermions

$$d_+ = d_- = 0$$
 (essential self-adjointness)

L. Oddis

Classification of all s.a. realizations of H_{α}

2 interacting

Hence we have that \mathcal{H}_{α} admits a 1-parameter family of s.a. extensions.

$$\mathcal{D}(\mathcal{H}_{\alpha,\beta}) = \mathcal{D}(\overline{\mathcal{H}}_{\alpha}) \oplus span_{\mathbb{C}} \{ \psi_{+} + e^{i\beta} \psi_{-} \}$$

$$\equiv \{ \psi = \phi + \gamma (\psi_{+} + e^{i\beta} \psi_{-}) | \phi \in \mathcal{D}(\overline{\mathcal{H}}_{\alpha}), \gamma \in \mathbb{C} \},$$

$$\mathcal{H}_{\alpha,\beta} \psi = \overline{\mathcal{H}_{\alpha}} \phi + i\gamma \psi_{+} - i\gamma e^{i\beta} \psi_{-}$$

$$= \overline{\mathcal{H}}_{\alpha} \phi + i\gamma N_{\alpha} K_{\alpha} (\rho e^{-i\frac{\pi}{4}}) - i\gamma e^{i\left(\beta + \alpha\frac{\pi}{2}\right)} N_{\alpha} K_{\alpha} (\rho e^{i\frac{1}{4}\pi}),$$

with $\beta \in [-\pi, \pi]$.

The Friedrichs Extension

Anyons

L. Oddis

 H_{α}

The Friedrichs extension

2 interacting

In terms of the chosen parametrization, the Friedrichs extension is the one corresponding to $\beta = \pi$. (see below)

Since the symmetric operator \mathcal{H}_{α} is positive, the existence of the Friedrichs extension is guaranteed. One can find it among the others extensions. by imposing that its domain must be contained in the form domain. The form domain is the set of function which have a square-integrable magnetic gradient D_{α} . Let the form be

$$\begin{cases}
\mathcal{D}(\mathcal{Q}_{\alpha}) = \{\phi \in L^{2}(\mathbb{R}^{2}) | D_{\alpha}\phi \in L^{2}(\mathbb{R}^{2})^{2} \}, \\
\mathcal{Q}_{\alpha}[\phi] = \|D_{\alpha}\phi\|^{2}.
\end{cases} \tag{7}$$

The Friedrichs Extension

Anyons

L. Oddis

Outlin

Introducti

Intermediate Statistics and Magnetic

Q.Fs. for 2 non-

anyons Mativation

Classification
of all s.a.
realizations

The Friedrichs

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Perenectines

In terms of the chosen parametrization, the Friedrichs extension is the one corresponding to $\beta=\pi$. (see below)

Since the symmetric operator \mathcal{H}_{α} is positive, the existence of the Friedrichs extension is guaranteed. One can find it among the others extensions. by imposing that its domain must be contained in the form domain. The form domain is the set of function which have a square-integrable magnetic gradient D_{α} . Let the form be

$$\begin{cases}
\mathcal{D}(\mathcal{Q}_{\alpha}) = \{\phi \in L^{2}(\mathbb{R}^{2}) | D_{\alpha}\phi \in L^{2}(\mathbb{R}^{2})^{2} \}, \\
\mathcal{Q}_{\alpha}[\phi] = \|D_{\alpha}\phi\|^{2}.
\end{cases} \tag{7}$$

The Friedrichs Extension

Anyons

L. Oddis

Outlin

Introduct

Intermediate Statistics an Magnetic

Q.Fs. for 2 noninteracting

interacting anyons

n on on

of all s.a. realizations

Hα

The Friedrichs

extension Quadratic forms:

forms: boundedness from below e closedness.

2 interacting anyons Interaction Potential

Perspectives

The first order terms in the expansion of K_{α} cancel out and it remains a function in the form domain $\mathcal{D}(\mathcal{Q}_{\alpha})$.

$$D_{\alpha} \left(\psi_{+} - i\psi_{-} \right) \in L^{2}$$

Plot of
$$|\psi_+ - i\psi_-|^2$$
 (closer look)

Def. of the Quadratic Forms

Anyons

L. Oddis

Oumne

Introductio

Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. for 2

interacting

Motivation

Classificati

of all s.a. realizations of H_{lpha}

The Friedrich extension

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Perspectives

The expectation value of the operator $\mathcal{H}_{\alpha,\beta}$ suggests a possible expression of the quadratic form.

We write a parametrization which relies upon the knowledge of the asymptotics of the eigenvalue near the origin. We start from the form associated to the Friedrichs extension:

 $Friedrichs \ 'Form$

We define the quadratic form

$$\mathcal{F}_{\alpha,\mathrm{F}}[\psi] := \mathcal{F}_{\alpha}[\psi] = \int_{\mathbb{R}^2} \mathrm{d}\mathbf{r} \left| \left(-i\nabla + \frac{\alpha \mathbf{r}^{\perp}}{r^2} \right) \psi \right|^2,$$

with domain

$$\mathscr{D}[\mathcal{F}_{\alpha,F}] = \overline{C_0^{\infty}(\mathbb{R}^2 \setminus \{0\})}^{\parallel \parallel_{\alpha}} \cap L_{\text{even}}^2.$$

Def. of the Quadratic Forms

Anyons

L. Oddis

 H_{α}

Quadratic forms: boundedness from below e closedness.

2 interacting

The expectation value of the operator $\mathcal{H}_{\alpha,\beta}$ suggests a possible expression of the quadratic form.

We write a parametrization which relies upon the knowledge of the asymptotics of the eigenvalue near the origin. We start from the form associated to the Friedrichs extension:

Friedrichs' Form We define the quadratic form

$$\mathcal{F}_{\alpha,\mathrm{F}}[\psi] := \mathcal{F}_{\alpha}[\psi] = \int_{\mathbb{R}^2} \mathrm{d}\mathbf{r} \left| \left(-i\nabla + \frac{\alpha \mathbf{r}^{\perp}}{r^2} \right) \psi \right|^2,$$

with domain

$$\mathscr{D}[\mathcal{F}_{\alpha,F}] = \overline{C_0^{\infty}(\mathbb{R}^2 \setminus \{0\})}^{\| \cdot \|_{\alpha}} \cap L_{\text{even}}^2.$$

L. Oddis

Cattonie

Introducti

Intermediate Statistics an Magnetic Gause

Q.Fs. for 2

interactin

anyons

Motivation Classificati

of all s.a. realizations H_{lpha}

extension
Quadratic
forms:
boundedness

forms: boundedness from below e closedness.

2 interacting anyons Interaction

Perspectives

Proposition (Friedrichs extension)

The quadratic form $\mathcal{F}_{\alpha,F}$ is closed and positive on $\mathscr{D}[\mathcal{F}_{\alpha,F}]$ for any $\alpha \in [0,1]$. Furthermore, for any $\alpha \in (0,1)$,

$$\mathscr{D}[\mathcal{F}_{\alpha,\mathrm{F}}] \subset H^1(\mathbb{R}^2).$$

The associated self-adjoint operator $H_{lpha,\mathrm{F}}$ acts as H_lpha on the domain

$$\mathcal{D}(H_{\alpha,F}) = \left\{ \psi \in \mathcal{D}\left[\mathcal{F}_{\alpha,F}\right] \mid H_{\alpha}\psi \in L^{2} \right\}$$

$$= \left\{ \psi \mid \psi|_{\mathcal{H}_{n}} \in H^{2}(\mathbb{R}^{2}), \forall n \neq 0; \right.$$

$$\left. \psi_{0} \in H^{2}(\mathbb{R}^{2} \setminus \{0\}) \cap H^{1}(\mathbb{R}^{2}), \ \psi_{0}(r) \underset{r \to 0^{+}}{\sim} r^{\alpha} + o(r) \right\}.$$

L. Oddis

Outline

Introducti

Intermediate Statistics and Magnetic Gauge

Q.Fs. for 2 non-

interacting anyons

Classification

of all s.a. realizations of H_{lpha}

The Friedrich extension

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Perspectives

All the other forms are defined decomposing the wave function in a regular part and in a singular one.

The family of quadratic forms $\mathcal{F}_{\alpha,\beta}[\psi]$, $\alpha\in(0,1)$ and $\beta\in\mathbb{R}$, is defined as

$$\mathcal{F}_{\alpha,\beta}[\psi] := \mathcal{F}_{\alpha}[\phi_{\lambda}] - 2\lambda^{2} \Re q \langle \phi_{\lambda} | G_{\lambda} \rangle + \left[\beta + (1 - \alpha) c_{\alpha} \lambda^{2\alpha} \right] |q|^{2}$$

$$\mathscr{D}[\mathcal{F}_{\alpha,\beta}] = \left\{ \psi \in L^2_{\text{even}} \mid \psi = \phi_{\lambda} + qG_{\lambda}, \phi_{\lambda} \in \mathscr{D}[\mathcal{F}_{\alpha,F}], q \in \mathbb{C} \right\},\,$$

and G_{λ} , $\lambda \in \mathbb{R}^+$, is the defect function

$$G_{\lambda}(\mathbf{r}) := \lambda^{\alpha} K_{\alpha}(\lambda r),$$

with K_{α} the modified Bessel function of index α . The coefficient c_{α} is given by

$$c_{\alpha} := \frac{\lambda^{2-2\alpha} \|G_{\lambda}\|_{2}^{2}}{\alpha} = \frac{\pi^{2}}{\sin \pi \alpha} > 0$$

Closedness and Boundedness

Anyons

L. Oddis

 H_{α}

Quadratic forms: boundedness from below e closedness.

2 interacting

The forms can be rewritten as

$$\mathcal{F}_{\alpha,\beta}[\psi] = \mathcal{F}_{\alpha}[\phi_{\lambda}] + \lambda^{2} \|\phi_{\lambda}\|_{2}^{2} - \lambda^{2} \|\psi\|_{2}^{2} + (\beta + c_{\alpha}\lambda^{2\alpha}) |q|^{2},$$

The Friedrichs form $\mathcal{F}_{\alpha,F}$ is included in the family and formally recovered for $\beta = +\infty$, in which case q = 0 and

$$\mathscr{D}[\mathcal{F}_{\alpha,+\infty}] = \mathscr{D}[\mathcal{F}_{\alpha,F}].$$

Closedness and Boundedness

Anyons

L. Oddis

Outline

Introducti

Intermediate Statistics an Magnetic

Q.Fs. for 2

noninteracting anyons

Classification

H_α
The Friedrich

Quadratic forms: boundedness from below e

2 interacting anyons Interaction Potential

Pamanaatina

The forms can be rewritten as

$$\mathcal{F}_{\alpha,\beta}[\psi] = \mathcal{F}_{\alpha}[\phi_{\lambda}] + \lambda^{2} \|\phi_{\lambda}\|_{2}^{2} - \lambda^{2} \|\psi\|_{2}^{2} + (\beta + c_{\alpha}\lambda^{2\alpha}) |q|^{2},$$

The Friedrichs form $\mathcal{F}_{\alpha,\mathrm{F}}$ is included in the family and formally recovered for $\beta=+\infty$, in which case q=0 and

$$\mathscr{D}[\mathcal{F}_{\alpha,+\infty}] = \mathscr{D}[\mathcal{F}_{\alpha,F}].$$

Closedness and Boundedness

Anyons

L. Oddis

Outline

Intermediate Statistics and Magnetic

Q.Fs. for 2

noninteracting

Motivation

Classification of all s.a. realizations

realizations of H_{α}

extension

Quadratic

forms:

boundedness

from below e closedness.

2 interacting

2 interacting anyons Interaction Potential

Potential

Theorem (M. Correggi, L.O. '18)

For any $\alpha \in (0,1)$ and any $\beta \in \mathbb{R}$, the quadratic form $\mathcal{F}_{\alpha,\beta}$ is closed and bounded from below on the domain $\mathscr{D}[\mathcal{F}_{\alpha,\beta}]$. Furthermore,

$$\frac{\mathcal{F}_{\alpha,\beta}[\psi]}{\|\psi\|_2^2} \geqslant \begin{cases} 0, & \text{if } \beta \geqslant 0; \\ -\left(\frac{|\beta|\sin(\pi\alpha)}{\pi^2}\right)^{\frac{1}{\alpha}}, & \text{if } \beta < 0. \end{cases}$$
(8)

Sketch of the Proof: Boundedness

Anyons

L. Oddis

Outtine

Introducti

Intermediate Statistics an Magnetic

Q.Fs. for 2

noninteracting

Motivation Classificati

of all s.a. realizations of H_{α}

The Friedrich

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction Potential

Perenectines

First, one drops the summands $\mathcal{F}_{\alpha}[\phi_{\lambda}]$ and $\lambda^2 \|\phi_{\lambda}\|_2^2$, then

$$\mathcal{F}_{\alpha,\beta}[\psi] \geqslant -\lambda^2 \|\psi\|_2^2 + (\beta + c_\alpha \lambda^{2\alpha}) |q|^2,$$

which implies that if $\beta\geqslant 0$ the form is positive when one takes λ arbitrarily small.

If $\beta<0$, one can exploit the freedom in the choice of λ and get that if $\lambda=\left(\frac{|\beta|}{c_{\alpha}}\right)^{\frac{1}{2\alpha}}$,

$$\mathcal{F}_{\alpha,\beta}[\psi] \geqslant -\lambda^2 \|\psi\|_2^2$$
.

Sketch of the Proof: Closedness

Anyons

L. Oddis

 H_{α}

Quadratic

forms: boundedness from below e closedness. 2 interacting

We investigate the form $\widetilde{\mathcal{F}}_{\alpha,\beta}[\psi] := \mathcal{F}_{\alpha,\beta}[\psi] + \lambda^2 \|\psi\|_2^2$.

With the choice of λ made before, one has

 $\widetilde{\mathcal{F}}_{\alpha,\beta}\left[\psi_n - \psi_m\right] \geqslant \mathcal{F}_{\alpha,F}\left[\phi_n - \phi_m\right] + \lambda^2 \left\|\phi_n - \phi_m\right\|_2^2 + C_{\alpha,\beta}\left|q_n - q_m\right|^2$

if we now take a sequence in $\mathscr{D}[\mathcal{F}_{\alpha,\beta}]$ s.t.

$$\lim_{n,m\to\infty} \widetilde{\mathcal{F}}_{\alpha,\beta} \left[\psi_n - \psi_m \right] = 0, \qquad \lim_{n,m\to\infty} \left\| \psi_n - \psi_m \right\|_2^2 = 0,$$

by positivity we find

$$\psi_n \xrightarrow[n \to \infty]{} \phi_{\lambda} + qG_{\lambda} \in \mathscr{D}[\mathcal{F}_{\alpha,\beta}],$$

 ϕ, q being the limit respectively of $\{\phi_n\}, \{q_n\}$.

Operators and Boundary Conditions

Anyons

L. Oddis

Oumne

Intermediate

Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. for S

interacting anyons

Motivation

of all s.a. realizations

 H_{lpha} The Friedrich

extension

Ouadratic

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

Persnectines

Corollary (Self-adjoint operators $H_{\alpha,\beta}$)

The one-parameter family of self-adjoint operators associated to the forms $\mathcal{F}_{\alpha,\beta}$, $\alpha\in(0,1)$ and $\beta\in\mathbb{R}$, is given by

$$\begin{split} \left(H_{\alpha,\beta} + \lambda^2\right) \psi &= \left(H_{\alpha} + \lambda^2\right) \phi_{\lambda}, \\ \mathscr{D}\left(H_{\alpha,\beta}\right) &= \left\{\psi \in L^2_{\text{even}} \middle| \psi_n \in \mathscr{D}\left(H_{\alpha,\text{F}}\right), \forall n \neq 0; \; \psi_0 = \phi_{\lambda} + qG_{\lambda}, \right. \\ \left. \phi_{\lambda} \in \mathscr{D}\left(H_{\alpha,\text{F}}\right), \; q = -\frac{2^{\alpha}\Gamma(\alpha+1)}{(\beta+c_{\alpha}\lambda^{2\alpha})} \lim_{r \to 0^+} \frac{\phi_{\lambda}(r)}{r^{\alpha}} \right\}, \end{split}$$

where $\lambda > 0$ is free to choose provided $\beta + c_{\alpha}\lambda^{2\alpha} \neq 0$. Furthermore, the operators $H_{\alpha,\beta}$ extend H_{α} , i.e., $H_{\alpha}|_{\mathscr{D}(H_{\alpha})} = H_{\alpha}$, and, conversely, any self-adjoint extension of H_{α} is included in the family $H_{\alpha,\beta}$, $\beta \in \mathbb{R}$.

Spectral Properties

Anyons

L. Oddis

 H_{α}

Quadratic forms: boundedness from below e

closedness. 2 interacting

Proposition (Spectral properties of $H_{\alpha,\beta}$)

For any $\alpha \in (0,1)$ and any $\beta \in \mathbb{R}$,

 $\sigma(H_{\alpha,\beta}) = \sigma_{\rm pp}(H_{\alpha,\beta}) \cup \sigma_{\rm ac}(H_{\alpha,\beta}), \text{ with } \sigma_{\rm ac}(H_{\alpha,\beta}) = \mathbb{R}^+ \text{ and }$

$$\sigma_{\rm pp}(H_{\alpha,\beta}) = \begin{cases} \left\{ -\left(\frac{|\beta|\sin(\pi\alpha)}{\pi^2}\right)^{\frac{1}{\alpha}} \right\}, & \text{if } \beta < 0; \\ \emptyset, & \text{otherwise.} \end{cases}$$
(9)

The generalized eigenfunctions are

$$\varphi(k,\rho,\theta) = \sum_{m=-\infty}^{m=+\infty} J_{2m+\alpha}(k\rho)e^{im\theta},$$
(10)

where J_{α} is the first Bessel function of order α .

L. Oddis

Q.Fs. for 2

 H_{α}

Quadratic forms: boundedness from below e closedness.

2 interacting

Remarks

- The domains of the self-adjoint operators are all different and no one is contained in any other.
- The domains of the forms are the same except for the Friedrichs form
- $\beta < 0$ corresponds to an attractive interaction at the origin, while $\beta \geqslant 0$ to a repulsive one. In the former case there is a negative eigenvalue.

L. Oddis

 H_{α}

Quadratic forms: boundedness from below e closedness.

2 interacting

Remarks

- The domains of the self-adjoint operators are all different and no one is contained in any other.
- The domains of the forms are the same except for the Friedrichs form.
- $\beta < 0$ corresponds to an attractive interaction at the origin, while $\beta \geqslant 0$ to a repulsive one. In the former case there is a negative eigenvalue.

L. Oddis

Outline

Introducti

Intermediate Statistics an Magnetic Gauge

Q.Fs. for 2

anyons

Motivation

Classification of all s.a.

 H_{lpha} The Friedrichs

The Friedrichs
extension

Ouadratic

Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction

_ ..

Remarks

- The domains of the self-adjoint operators are all different and no one is contained in any other.
- The domains of the forms are the same except for the Friedrichs form.
- β < 0 corresponds to an attractive interaction at the origin, while $\beta \geqslant 0$ to a repulsive one. In the former case there is a negative eigenvalue.

Interaction Potential

Anyons

L. Oddis

 H_{α}

2 interacting Interaction Potential

Let us specify the assumptions we make on the interaction:

Assumption (Interaction potential V)

Let V = V(r) be a real radial function and let V_+ denote the positive and negative parts of V, respectively, i.e., $V = V_+ - V_-$. Then, we assume that

- $\blacksquare V_+ \in L^2_{loc}(\mathbb{R}^+) \cap L^{\infty}([0,\varepsilon));$
- $V_- \in L^{\infty}(\mathbb{R}^+)$.

Regular extension

Anyons

L. Oddis

 H_{α}

2 interacting Interaction

Potential

By analogy with the noninteracting case, we call the Friedrichs form the following quantity

$$\mathcal{F}_{\alpha,F,V}[\psi] := \mathcal{F}_{\alpha,F}[\psi] + \int_{\mathbb{R}^2} d\mathbf{r} \ V(r) \left| \psi \right|^2, \tag{11}$$

with domain

$$\mathscr{D}\left[\mathcal{F}_{\alpha,F,V}\right] := \overline{C_0^{\infty}(\mathbb{R}^2 \setminus \{0\})}^{\|\cdot\|_{\alpha,V}} \cap L_{\text{even}}^2, \tag{12}$$

where $\|\psi\|_{\alpha,V}^2 := \mathcal{F}_{\alpha,F,V}[\psi] + V_0 \|\psi\|_2^2$, and

$$V_0 := \sup_{r \in \mathbb{R}^+} V_-(r). \tag{13}$$

L. Oddis

 H_{α}

2 interacting

Interaction Potential

We have the following

Proposition (Friedrichs extension)

Let the assumptions on V hold true. Then, the quadratic form $\mathcal{F}_{\alpha,F,V}$ is closed and bounded from below on $\mathscr{D}[\mathcal{F}_{\alpha,F,V}]$ for any $\alpha \in [0,1]$. Furthermore, for any $\alpha \in (0,1)$,

$$\mathscr{D}[\mathcal{F}_{\alpha,\mathrm{F},V}] \subset H^1(\mathbb{R}^2). \tag{14}$$

The associated self-adjoint operator $H_{\alpha,F,V}$ acts as $H_{\alpha,V}$ on the domain

$$\mathscr{D}(H_{\alpha,F,V}) = \left\{ \psi \in \mathscr{D}(H_{\alpha,F}) \mid V\psi \in L^2 \right\}. \tag{15}$$

L. Oddis

Outlin

Introduction

Introductio

Statistics an Magnetic Gauge

Gauge

Q.Fs. for non-

interactin

17 4: 4:

Motivation

of all s.a. realization

 H_{α} The Fried

The Friedric

forms: boundedness from below closedness.

2 interacting anyons

Interaction Potential

Perenectines

We set for $\alpha \in (0,1)$ and $\beta \in \mathbb{R}$

$$\mathcal{F}_{\alpha,\beta,V}[\psi] = \mathcal{F}_{\alpha,V}[\phi_{\lambda}] + \lambda^{2} \|\phi_{\lambda}\|_{2}^{2} - \lambda^{2} \|\psi\|_{2}^{2} + (\beta + c_{\alpha}\lambda^{2\alpha}) |q|^{2},$$

where ψ belongs to the domain

$$\mathscr{D}[\mathcal{F}_{\alpha,\beta,V}] = \left\{ \psi \in L^2_{\text{even}} \mid \psi = \phi_{\lambda} + qG_{\lambda}, \phi_{\lambda} \in \mathscr{D}[\mathcal{F}_{\alpha,F,V}], q \in \mathbb{C} \right\}.$$

Interaction Potential

Anyons

L. Oddis

 H_{α}

2 interacting Interaction

Potential

Theorem (Closedness and bouldedness from below of $\mathcal{F}_{\alpha,\beta,V}$)

Let the assumptions on V hold true. Then, for any $\alpha \in (0,1)$ and any $\beta \in \mathbb{R}$, the quadratic form $\mathcal{F}_{\alpha,\beta,V}$ is closed and bounded from below on the domain $\mathscr{D}[\mathcal{F}_{\alpha,\beta,V}]$. Furthermore,

$$\frac{\mathcal{F}_{\alpha,\beta,V}[\psi]}{\|\psi\|_2^2} \geqslant \begin{cases}
-V_0, & \text{if } \beta \geqslant 0; \\
-\left(\frac{|\beta|}{c_\alpha}\right)^{\frac{1}{\alpha}} - V_0, & \text{if } \beta < 0.
\end{cases}$$
(16)

L. Oddis

 H_{α}

2 interacting

Interaction Potential

Corollary (Self-adjoint operators $H_{\alpha,\beta,V}$)

Let Ass. 1 hold true. Then, the one-parameter family of self-adjoint operators associated to the forms $\mathcal{F}_{\alpha,\beta,V}$, $\alpha \in (0,1)$, $\phi_{\lambda} \in \mathcal{D}(H_{\alpha \to V})$ and $\beta \in \mathbb{R}$, is given by

$$(H_{\alpha,\beta,V} + \lambda^{2}) \psi = (H_{\alpha,V} + \lambda^{2}) \phi_{\lambda},$$

$$\mathscr{D}(H_{\alpha,\beta,V}) = \left\{ \psi \mid \psi_{n} \in \mathscr{D}(H_{\alpha,F,V}), \forall n \neq 0; \ \psi_{0} = \phi_{\lambda} + qG_{\lambda}, \right.$$

$$q = \frac{1}{\beta + c_{\alpha}\lambda^{2\alpha}} \left[\langle G_{\lambda} | V | \phi_{\lambda} \rangle - \Gamma(\alpha + 1) 2^{\alpha} \lim_{r \to 0^{+}} \frac{\phi_{\lambda}(r)}{r^{\alpha}} \right] \right\},$$

where $\lambda > 0$ is free to choose provided $\beta + c_{\alpha}\lambda^{2\alpha} \neq 0$. Furthermore, the operators $H_{\alpha,\beta,V}$ extend $H_{\alpha,V}$, i.e., $H_{\alpha,V}|_{\mathscr{D}(H_{\alpha,V})} = H_{\alpha,V}$.

L. Oddis

Introducti

Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. for 2

noninteractina

anyons

Motivation

Olassification
of all s.a.
realizations

Ha

The Friedrich extension Quadratic forms: boundedness from below e

2 interacting anyons Interaction

Perspectives

For the N-anyon system the analysis is much more complicated.

We aim at finding extensions with the same asymptotics on the coincidence hyperplanes in the 2-particle channels.

The extensions are to be compared with the so called local extensions for fermions/bosons. The idea is to impose

$$\psi(X) = \frac{A_{i,j}}{|x_i - x_j|^{\alpha}} + B_{i,j}|x_i - x_j|^{\alpha} + o(|x_i - x_j|^{\alpha}), \tag{17}$$

when $x_i \to x_j$, where the coefficients $A_{i,j}$ are the same of the singular terms of the 2-particle wave function, while $B_{i,j}$ is more involved, since it must take all the other charges into account.

Bibliography

Anyons

L. Oddis

Outlin

Intermediate
Statistics and
Magnetic

Q.Fs. for a

anyons Motivation

Classification of all s.a. realizations of H_{α}

The Friedrich extension
Quadratic forms:
boundedness from below e closedness.

2 interacting anyons Interaction

Perspectives

- M. Abramovitz, I.A. Stegun: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover, New York, (1964).
- R. Adami, A. Teta: On the Aharonov-Bohm Hamiltonian. *Lett. Math. Phys.* **43**, 43–54 (1998).
- S. Arovas, J.R. Schrieffer, F. Wilczek: Fractional statistics and the quantum Hall effect. *Phys. Rev. Lett.* **53**, 722–723 (1984).
- M. Bourdeau, R. D. Sorkin: When can identical particles collide?. *Phys. Rev. D* **45**, 687–696 (1992).
 - G. Dell'Antonio, R. Figari, A. Teta: Hamiltonians for system of N particles interacting through point interactions, *Annales de l'I.H.P., Section A* **60**, 253–290.
 - G. Dell'Antonio, R. Figari, A. Teta: Statistics in Space Dimension Two, *Lett. Math. Phys* **40**, 235–256 (1997).

Bibliography

Anyons

L. Oddis

Outlin

Intermediate
Statistics and

Magnetic Gauge

noninteracting

anyons Motivation

Classification of all s.a. realizations of H_{lpha}

The Friedrich extension Quadratic forms: boundedness from below e closedness.

2 interacting anyons Interaction Potential

Perspectives

- D. Lundholm, N. Rougerie: The average field approximation for almost bosonic extended anyons. *J. Stat. Phys.* **161**, 1236–1267 (2015).
- D. Lundholm, J.P. Solovej: Local Exclusion and Lieb-Thirring Inequalities for Intermediate and Fractional Statistics. *Ann. H. Poincaré* **15**, 1061–1107 (2013).
- C. Manuel, R. Tarrach: Contact interactions of anyons. *Phys. Lett. B* **286**, 222-226 (1991).

L. Oddis

Outline

7 4 7 4

Introduction

Statistics and

Magnetic

Q.Fs. for 2

non-

interacting

anyons

Motivation

Classification

H_{α}

The Friedrichs

extension

Quadratic

boundednes.

from below closedness.

2 interacting anyons

Interaction

Potential

Perspectives

Thanks for your attention!