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The results on the quadratic forms for both noninteracting and
interacting case can be found in:

M.Correggi, L.O., Hamiltonians for Two-Anyon Systems, Rend. Mat.

Appl. 39, 277-292 (2018).
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Heuristic Introduction
SAPIENZA

UNIVERSITA DI ROMA

Let us consider a system of two identical particles with positions
21, T2 in the 2-dimensional euclidean space.
Since

(@2, 21)]* = [ (21, 22)]%,

by the indistinguishability, then we have

P(wg, 1) = TP (21, 29), a €[0,1]. (1)
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SAPIENZA

UNIVERSITA DI ROMA

Let us consider a system of two identical particles with positions
21, T2 in the 2-dimensional euclidean space.
Since

(@2, 21)]* = [ (21, 22)]%,

by the indistinguishability, then we have

P(wg, 1) = TP (21, 29), a €[0,1]. (1)

Fundamental particles

Bosons satisfy (1) with a =0,
Fermions satisfy (1) with o = 1.
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This multivaluedness of the wave functions leads to consider a new
formulation of Quantum Mechanics which extends to non-simply
connected configuration spaces.

In our case, the N-particles configuration space 'y is

i<j

whose 1st homotopy group is the braid group of N elements By! The
wave functions are sections of a fiber bundle over I'y, in this picture.
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Bosonization Map SAPIENZA
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One can still choose to work with regular wave functions, via a
suitable gauge transformation

Indeed, one can consider the so called bosonization operator which
maps multivalued wave functions into conventional ones.

Definition

Let X = (x1,...,Xy). Set 27 := x; —fo for j=1,...,N. For any
a € (0,1] we define the bosonization operator

Uy : L2, (R*N) — L2 (R?*N) on a-anyonic function as

2 — ke ik
o) (%) i= [T 5= w0 = [T o).

j<k j<k
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Bosonization Map SAPIENZA

UNIVERSITA DI ROMA

One can still choose to work with regular wave functions, via a
suitable gauge transformation

Indeed, one can consider the so called bosonization operator which
maps multivalued wave functions into conventional ones.

Definition
Let X = (x1,...,xy). Set 2/ := z} 4ix?, for j =1,..., N. For any

a € (0,1] we define the bosonization operator

Ug : L2, (R*N) — L2, (R*N) on a-anyonic function as

J _
Uah)(X H | ; — ; —Y(X) = H emrears(=) =) ().

i<k i<k
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From Anyonic to Magnetic Gauge SAPTENZA
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This operator simplifies the phase space. On the other hand, the new

Outline . . . . P .
‘ Hamiltonian contains a singular magnetic interaction term.

Introduction
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N N
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Aharonov-Bohm Potential SAPIENZA
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Definition (Aharonov-Bohm(AB) Potential)

The Aharonov-Bohm potential of intensity o centered in xo € R? is the
function A, : R*\ {x0} — R? defined as follows:

(x —x0)"
|x —xo|? "

Ay, (x) =«
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Aharonov-Bohm Potential SAPIENZA

UNIVERSITA DI ROMA

Definition (Aharonov-Bohm(AB) Potential)

The Aharonov-Bohm potential of intensity o centered in xo € R? is the
function A, : R?\ {xo} — R? defined as follows:

(x —x0)"
|x —xo|?

Ay, (x) =«

The operator A is the multiplication operator which attaches to
each particle an AB flux:

X*Xk J‘

N
Aj(x)=a) Xxi
=

u]
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Well-posedness and self-adjointness of the Hamiltonian

N

Hy=>_

Jj=1

|

(—iV; + A (5))° + Y o(lx; — x4V (x;5)
k>3

|

even considering just one of the two potentials, are still open

questions.
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Well-posedness and self-adjointness of the Hamiltonian

N
Hy = Z |:(_Zvj +Aj(Xj))2+Z’U(|Xj —Xk|)+V(Xj):| ,

j=1 k>j

even considering just one of the two potentials, are still open
questions.

Trapping Potential




Anyons

L. Oddis

Owutline

Introduction
Intermediate
Statistics and
Magnetic
Gauge

Q.Fs. for 2
non-
interacting
anyons
Motivation
Classification
of all s.a.
realizations of
[e%
The Friedrichs
extension
Quadratic
formas:
boundedness
from below e
closedness.

2 interacting
anyons
Interaction

Potential

Perspectives
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Consider a system of N non relativistic spinless identical particles
with anyonic statistics in two dimensions, consider the Hilbert Space

fj::L?

sym

(R*Y),

and the operator defined on smooth functions supported away from
the coincidence hyperplanes

D(Ha) :=C2(TN)
N
Heo = Z(D£)2v

where DJ := —iV + A,

u]
]
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Since R?N \ I'y has Lebesgue measure zero, H,, is a densely defined
symmetric operator = it is closable.

Furthermore H,, is positive and thus there 3 self-adjoint extensions of
He.

In particular, the Friedrichs extension can be considered, by taking
the closure of the quadratic form associated to H,,.

The case with N = 2 can also be studied by means of Von

Neumann's theory of the self-adjoint extensions of a symmetric
densely defined operator.
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symmetric operator = it is closable.

Furthermore H,, is positive and thus there 3 self-adjoint extensions of
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Since R?N \ I'y has Lebesgue measure zero, H,, is a densely defined
symmetric operator = it is closable.

Furthermore H,, is positive and thus there 3 self-adjoint extensions of
He.

In particular, the Friedrichs extension can be considered, by taking
the closure of the quadratic form associated to #,,.

The case with N = 2 can also be studied by means of Von
Neumann's theory of the self-adjoint extensions of a symmetric
densely defined operator.
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Set N = 2. Our configuration space is
F2:R4\{X1:X2}. (2)

In any inertial reference frame, with coordinates x; = (1, 1),
xo = (27, 23), two particles are described by the operator

Ha - (—le + A1)2 + (72V2 + A2)2, (3)

here A = —x)t —x)2. A _ o (xe—x)
where A (x) = a(x) — x2)~|(x1 — x2)]%, Aa(x) T

QR

11 /42
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Extraction of the Center of Mass

SAPIENZA

UNIVERSITA DI ROMA

The extraction of the center of mass leads to a major simplification
By changing coordinates to

X = X1+X2
. 2
ri=X; — X,

the operator splits

(4)

A
Ha = _TX + 2(_7/Vr + Arel(r))27 (5)
where
rJ_
Arel(r) o

«O» «Fr «

1PN G4
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UNIVERSITA DI ROMA

The extraction of the center of mass leads to a major simplification.
By changing coordinates to

L X1+Xo
X o=t

(4)

ri=X; — X,

the operator splits

A
Ha = _TX + 2(_7/Vr + Arel(r))27 (5)

where

rt

A(r) =




A Single Particle in an AB Flux @) SaviENzA

UNIVERSITA DI ROMA

Anyons
. ;ddis A particle subject to the Aharonov-Bohm potential
In [Adami, Teta, 1998] the problem of self-adjointness of the
Quttine Hamiltonian of a particle on the plane subject to an AB potential is
frroduetien s studied.
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1-Particle Hamaltonian SAPIENZA
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The Hamiltonian reads

D(Ha) = C‘?’°(Rz \ {0})
-l o2
Heo = —A —2i ‘ |2V+‘ 2
where the o depends both on the charge of the particle and the flux
generated by the solenoid. This operator defined on smooth functions
is only symmetric and it admits a 4-parameter family of s.a.
extensions.

2 Anyons

One has to take into account the symmetry constraints imposed by
the indistinguishability of the two particles!

14 /42
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Von Neumann Theory

We return to our problem.
The starting operator, in polar coordinates, reads

D(Ha) := CF(RY) @ L2, ([0, 27)),
Ho = =02 — 20, + 2 (0, — a)?,

where L?

e'uen([o, 27?']) 1= spanc {e2inw}

neN’

SAPIENZA

UNIVERSITA DI ROMA

Qe

15/ 42



Anyons

L. Oddis

Owutline

Introduction
Intermediate
Statistics and
Magnetic
Gauge

interacting
anyons
Motivation
Classification
of all s.a.
realizations of
[e%
The Friedrichs
eztension
Quadratic
formas:
boundedness
from below e
closedness.

2 interacting
anyons
Interaction

Potential

Perspectives

Von Neumann Theory SAPIENZA

UNIVERSITA DI ROMA

We return to our problem.
The starting operator, in polar coordinates, reads
D(HG) = CEC(R+) ® szen([07 27T])a
. 2
H,, = —8?) — %8,, + p% (10y — )",

where L2, ([0, 27]) := spanc {eQinw}

cven _ neN’
This operator is densely defined and symmetric
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Von Neumann Theory SAPIENZA
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We return to our problem.
The starting operator, in polar coordinates, reads
D(HG) = CEC(R+) ® szen([07 27T])a
. 2
H,, = —8?) — %8,, + p% (10y — )",
where L2 .. (]0,27]) := spanc {e2i”“}neN.
This operator is densely defined and symmetric — it is closable.
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Von Neumann Theory

We return to our problem.
The starting operator, in polar coordinates, reads

D(HG) = CSC(R+) ® szen([07 27T])a
. 2
H,, = —8/2) — %8,, + p% (10y — )",
where L2 (]0,27]) := spanc {e2i”“}neN.
This operator is densely defined and symmetric — it is
Let . be its closure.

SAPIENZA

UNIVERSITA DI ROMA

closable.
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B The symmetry constraint actually leads to a different (smaller) family
T of self-adjoint realizations of the AB-like Hamiltonian.
tics and
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VN’s Approach to the Ertensions SAPIENZA

UNIVERSITA DI ROMA

One finds that both deficiency indeces are d+- = 1. The normalized
solutions are

Ui = NaKalpe %), 9= Nae T Ko(pe'?),  (6)

where N, := 7V2u:mg> and K, is the modified Bessel function or
Macdonald function.




Deficiency Functions SAPIENZA
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Az The deficiency functions have a singularity at the origin, their
magnetic gradient D, is not a square-integrable function. Indeed,

L. Oddis
when z — 0, Vo & —N:
Outline
(o 2(1—1 (1 =oc «@
]'n%'/‘(u[u‘ctkr(rwl KQ(Z) _ ((V) o ( (Y)Z + 0(22—u)-

2z a2o+1

Classification

of all s.a.

realizations of
a

‘closedness.

2 interacting
L Plot of [0+ |* = [N1 K1 (pe™"%)?
Perspectives 4
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Comparison between Different Statistics SAPIENZA
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If we consider the relative Hamiltonian with the symmetry constraints
Bosons
d+ =d_=1 w+ = NOKO(pe_’Z), P = NOKO(pe"Z),

Anyons
dy =d_=1 Yy = NaKa(peii%)v Yo = Naeia%Ka(pei%)a

Fermions
di =d_ =0 (essential self-adjointness)




Hence we have that 7, admits a 1-parameter family of s.a.
extensions,

D(Ha,p) = D(Ha) @ spanc{vy + Py}
={ = ¢+ (s +ePY_)|¢p € D(H,), v € C},
Hapth = Hat + vy — ivePip_

=Hao + ivNaKa(pe_i%) - i’yei(ﬁ"'o‘%)NaKa(pei%"),
with 5 € [—m, 7.
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In terms of the chosen parametrization, the Friedrichs extension is
the one corresponding to 5 = 7. (see below)

Owutline

Introduction

Since the symmetric operator H,, is positive, the existence of the

Friedrichs extension is guaranteed. One can find it among the others
Q.Fs. for 2 . . . . . . .
extensions. by imposing that its domain must be contained in the
interacting

g form domain. The form domain is the set of function which have a
; . square-integrable magnetic gradient D,,. Let the form be

D (Qq) = {0 € L*(R?)|Da¢ € L*(R?)*},

Q. 9] = | Dag|l?. (7)
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Adrgers The first order terms in the expansion of K, cancel out and it
L. Oddis remains a function in the form domain D (Q,,).
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The expectation value of the operator #, g suggests a possible
expression of the quadratic form.

Outline We write a parametrization which relies upon the knowledge of the
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The expectation value of the operator #, g suggests a possible
expression of the quadratic form.

We write a parametrization which relies upon the knowledge of the
asymptotics of the eigenvalue near the origin. We start from the form
associated to the Friedrichs extension:

Friedrichs’ Form
We define the quadratic form

Fart)] = Fol¢] = /ﬂ_\;Q dr

with domain

D Far] = Co@®\ (0D ™ N L2,
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Proposition (Friedrichs extension)

The quadratic form F,, r is closed and positive on 2| F, x| for any
« € [0,1]. Furthermore, for any o € (0,1),

9[}—&3] C Hl(RQ).
The associated self-adjoint operator H,,  acts as H,, on the domain
P (Harp) ={¢ € PD[Foyr]|Hoto € L*}
= {0 ] ¥hy, € F2®), v 20

o € H*(R*\ {0}) N H'(R?), yo(r) ~ %+ o(r)} :

r—0

Qe
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p— All the other forms are defined decomposing the wave function in a
regular part and in a singular one.

foo The family of quadratic forms 7, 5[], a € (0,1) and 3 € R, is
Outline defined as
Introduction
T Faslt] = Faldr] = 2X°Rq ($21Gx) + [6+ (1 — @) caX**] Jgf*
Q.Fs. for 2
ZZ;;"Z‘;“’LQ @[]:a,ﬁ} _ {’l/} c Lgven | 1b = (b/\ + qG)\,(b)\ € Q[IQ,FLQ S (C} P

Motivation

P and G, , )\ € Rt is the defect function

of all s.a.
realizations of

H

Th‘j Friedrichs G)\ (r) = A(YKQ(A’I’)’

extension

Quadratic . e ) ) .

s - with K, the modified Bessel function of index «.. The coefficient ¢,

from below e

ot is given by
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]
I
ul
i

Perspectives o




Closedness and Boundedness
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The forms can be rewritten as

Foplt] = Faldal + X lloally = X 95 + (8 + car®) |,
The Friedrichs form F, r is included in the family and formally

recovered for 5 = 400, in which case ¢ = 0 and

9[-7:04,+00] o @[}—Q,F]'

«O» «F>r «=»

<

i
v

1PN G4
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The forms can be rewritten as

Fosl] = Faloa] + A2 a3 = A2 [0]l5 + (B + car®®) al?,

The Friedrichs form F, r is included in the family and formally
recovered for 5 = +oo, in which case ¢ = 0 and

EQLFﬁf+OO]:: QZLFLgF}
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Introduction Theorem (M.Correggi, L.O. ‘18)

For any a € (0,1) and any 3 € R, the quadratic form F, g is closed
Gl i 2 and bounded from below on the domain 2|F, g]. Furthermore,

interacting
anyons

Motivation 07 If-B > 0,
‘F(x,ﬂwj]

= sin(ma) \ @ 8
102 —(M) B <. ®

Q=

T2
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@il First, one drops the summands F,[¢,] and A2 ||¢,] ; then

Introduction

Fogl] = =N ||]5 + (B + cad®) |q]?,

G ge

Q.Fs. for 2 which implies that if 5 > 0 the form is positive when one takes A
STt arbitrarily small.

anyons

If 3 < 0, one can exploit the freedom in the choice of A\ and get that

A= (1)

Faslth] = =22 |02

2 interacting
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Perspectives o = DA C
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Anyons ~
’ We investigate the form F, 5[v] := Fo g[v] + A? |[¢[[5-
L. Oddis
Iottli:e . With the choice of A made before, one has

Intermediate

Tgagnmc fa,ﬁ [wn - wm] 2 ]:a,F [(bn - ¢m]+)‘2 ||¢n - ¢m|‘§+cmﬁ|Q7l_Qm|2>
o7 if we now take a sequence in Z[F, 5] sit.

interacting
anyons

lim  Fop [thn — ¥m] =0,

lim ||t — Pmll5 =0,
7,M—00 7,M—00

by positivity we find

Un —— Ox + 4G € D[Fa ],
. ) n— 00

2 interacting

anyons

mteraction ¢, q being the limit respectively of {¢,,},{¢.}.
Perspectives o = = = = QR
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Corollary (Self-adjoint operators H, s)

The one-parameter family of self-adjoint operators associated to the
forms F, 3, a € (0,1) and B € R, is given by

(Hap +A°) ¢ = (Ho + A?) ¢,
D (Hog) = {6 € Loy |¥n € Z (Hop) ¥ £ 05 0 = 61+ 4Gx,

2°T(a+1) .. ¢a(r)

(ZSA S Q@(H()n,F)v q=

where \ > 0 is free to choose provided 3 + c,\*>* # 0.
Furthermore, the operators H, 3 extend H,, i.e., H,
and, conversely, any self-adjoint extension of H, is included in the
family H, 3, € R.

() = Ha

D QR
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Spectral Properties SAPIENZA
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. ou Proposition (Spectral properties of H, 3)
cue For any a € (0,1) and any 3 € R,
Introduction

0(Hag) = 0pp (Hap) UCac (Hap), with o,c (Hy p) = RT and

Intermediate
Statistics and

Magnetic

e . 1

Q.Fs. for 2 _ M @ ,fﬁ <0

:L:tz:r‘actzng Opp (Ha,ﬂ) — 2 ) 5 (9)
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Motivation @ R otherwise.
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realizations of
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The Friedrichs The generalized eigenfunctions are
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Quadratic

Forms:

boundedness m:+oo

from below e rm6

closedness. @(k, P, 0) = E J27n+a (kl))elm ’ (10)
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Remarks

m The domains of the self-adjoint operators are all different and no
one is contained in any other.

m The domains of the forms are the same except for the Friedrichs
form.

m 3 < 0 corresponds to an attractive interaction at the origin,

while 3 > 0 to a repulsive one. In the former case there is a
negative eigenvalue.
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m The domains of the self-adjoint operators are all different and no

one is contained in any other.

m The domains of the forms are the same except for the Friedrichs

form.

m 3 < 0 corresponds to an attractive interaction at the origin,
while 5 > 0 to a repulsive one. In the former case there is a
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Let us specify the assumptions we make on the interaction:
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Statisics and Assumption (Interaction potential V')
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S Let V =V (r) be a real radial function and let V.. denote the

interacting

anyons positive and negative parts of V', respectively, i.e., V =V, —V_.
S Then, we assume that
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By analogy with the noninteracting case, we call the Friedrichs form
the following quantity

Farwlili=Farlil+ [ @V

with domain

oo v ol ey
P Farv] = Cr@\(0)) ™ 112, (12)
where [|9)[|2 | := Fop v [] + Vo [[¢]3, and
Vo := sup V_(r). (13)
reR+
Or B> «=» «2» T 9DaQC
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We have the following

Proposition (Friedrichs extension)

Let the assumptions on V' hold true. Then, the quadratic form
Far,v is closed and bounded from below on 2| F, v v] for any
a € [0, 1]. Furthermore, for any o € (0, 1),

D[ Furv] C H'(R?). (14)

The associated self-adjoint operator H,, v acts as H, v on the
domain
Q(Hu,F,V) = {Y/) S -@(H(Y,F) | V?/) S L2} . (15)
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We set for a € (0,1) and § € R

where 1) belongs to the domain

Fop vl = Fayloal + X2 oall; — A2 [¢l5 + (B + car?®) |qf?,

DN Fapv]={teL?

even

|¢=¢A+qG>\a¢A 69|:]:¢;y,F,V:|7qE(C}'

«O» «F>r «=»
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i
v
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Theorem (Closedness and boudedness from below of Fy v )

Let the assumptions on V hold true. Then, for any « € (0,1) and
any € R, the quadratic form F, 3 v is closed and bounded from
below on the domain 2(F, g v]. Furthermore,

Fa,ﬁ,VQ[lp] > |ﬂ‘ é - (16)
TR - () vy B <0,
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Corollary (Self-adjoint operators Hy g v )

Let Ass. 1 hold true. Then, the one-parameter family of self-adjoint
operators associated to the forms F, 5y, a € (0,1),
or € D (Hop,v) and B € R, is given by

(HQ,B,V + )‘2) ’(/) - (Hoz,V + )‘2) ¢/\7

D (Hapv) = {0 | ¥n € 9 (Hav) ,¥n £ 0 o = 6 + 4G,

1
oo | (Ga V1o ~ Tt 02t 20},

q=

where )\ > 0 is free to choose provided 3 + co \** # 0. Furthermore,
the operators H, g extend H, v, i.e., HO(7V|~@(H0',V) =H,y.
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fio Qddis For the N-anyon system the analysis is much more complicated.
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Magnesi coincidence hyperplanes in the 2-particle channels.

Q.Fs. for 2 The extensions are to be compared with the so called local extensions
interacting for fermions/bosons. The idea is to impose
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Thanks for your attention!
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