Anyons in fractional quantum Hall models

Anne E. B. Nielsen

Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany
On leave from Department of Physics and Astronomy, Aarhus University, Denmark

This work has in part been funded by the Villum Foundation.
The fractional quantum Hall effect

The effect has been observed in semi-conductor hetero-structures

Conditions:
- 2D electron gas
- High magnetic field (~ 10 T)
- Low temperature (~ 10 mK)
- High mobility (~ $10^7 \text{ cm}^2/\text{(Vs)}$)
- Low carrier density (~ 10^{11} cm^{-2})

Some features:
- Good analytical trial wave functions
- Can host anyons
This talk: Fractional quantum Hall-like physics in lattice systems

Motivation:

- Fractional quantum Hall effect at no external magnetic field and high temperature?
- New features:
 - Bosonic systems
 - Lattice effects
- Implementation in optical lattices?
How can we obtain fractional quantum Hall-like physics in lattice systems?

Recipe 1:
Fractional Chern insulators

\[H_{\text{continuum}} \rightarrow H_{\text{lattice}} \]

Recipe 2:
Exact wave functions

\[\Psi_{\text{continuum}} \rightarrow \Psi_{\text{lattice}} \]

[Challenging] [Analytical] [Exact \(H \)]

[Kalmeyer & Laughlin]

[Schroeter, Kapit, Thomale & Greiter]
How can we obtain fractional quantum Hall-like physics in lattice systems?

Recipe 1:

Fractional Chern insulators

$H_{\text{continuum}} \rightarrow H_{\text{lattice}}$

Recipe 2:

Exact wave functions

$\Psi_{\text{continuum}}$

Analytical

Ψ_{lattice}

$H_{\text{continuum}} \rightarrow$ CFT is helpful!

Exact H

Nielsen, Cirac, Sierra, PRL 108, 257206 (2012)
Construction of lattice models with analytical ground states from conformal field theory
Interpolation between lattice and continuum

Tu, Nielsen, Cirac, Sierra, NJP 16, 033025 (2014); Glasser, Cirac, Sierra, Nielsen, PRB 94, 245104 (2016)
Construction of lattice FQH models

\[|\psi\rangle = \sum_{n_1,n_2,\ldots,n_N} \psi(n_1, n_2, \ldots, n_N)|n_1, n_2, \ldots, n_N\rangle \]

\[\Lambda_i |\psi\rangle = 0 \]

\[\psi(n_1, n_2, \ldots, n_N) \propto \langle 0 | \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N) |0\rangle \]

\[H = \sum_i \Lambda_i^\dagger \Lambda_i \]

1D:

\[\text{Im}(z_i) \]

\[\text{Re}(z_i) \]

2D:

\[\text{Im}(z_i) \]

\[\text{Re}(z_i) \]

Position

Internal state

\[\phi_{n_i}(z_i) \]
Recipe to construct the Hamiltonian

1. Choose what $\phi_{n_i}(z_i)$ should be.
2. Find a null field $\chi(z_i)$.
3. Note that $\langle 0 | \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \chi(z_i) \cdots \phi_{n_N}(z_N) | 0 \rangle = 0$.
4. Deform the integration contour.
5. Use operator product expansions.
6. Do the integrals.
7. Rewrite such that the final expression is an operator acting on the initial wavefunction.
Construction of lattice FQH models

1D:

\[
\phi_{n_j}(z_j) = e^{i(qn_j-\eta)\varphi(z_j)/\sqrt{q}}: \quad q = \text{integer} \quad n_j \in \{0,1\} \quad \text{Critical models (Haldane-Shastry for } q = 2)
\]

2D:

\[
\phi_{n_j}(z_j) = e^{i(qn_j-\eta)\varphi(z_j)/\sqrt{q}}: \quad q = \text{integer} \quad n_j \in \{0,1\} \quad \text{Laughlin state with } q \text{ flux units per particle}
\]

\[
\phi_{n_j}(z_j) = \chi(z_j)^{n_j(2-n_j)} e^{i(qn_j-\eta)\varphi(z_j)/\sqrt{q}}: \quad q = \text{integer} \quad n_j \in \{0,1\} \text{ or } n_j \in \{0,1,2\} \quad \text{Moore-Read state with } q \text{ flux units per particle}
\]

\[
\phi_{n_j}(z_j) = \kappa_{n_j} e^{i\sqrt{2} \bar{m}_{n_j} \cdot \vec{\varphi}(z_j)}: \quad n_j \in \{1,2, \ldots, n\} \quad \bar{m}_{n_j} \text{ are vectors of numbers, see NPB 886, 328 (2014)} \quad \text{Halperin states}
\]

\(\chi\): chiral part of Majorana fermion field \quad \phi\): chiral part of massless free boson field \quad \kappa_{n_j}\): Klein factor \quad \eta\): number that determines the number of particles per lattice site
Construction of lattice FQH models

2D:

\[\phi_{n_j}(z_j) = e^{i(qn_j - \eta)\varphi(z_j)/\sqrt{q}} : \]

\[\phi_+(w_k) = e^{i\varphi(w_k)/\sqrt{q}} : \]

Laughlin states with quasiholes

2D:

\[\phi_{n_j}(z_j) = \chi(z_j)^{n_j(2-n_j)} : e^{i(qn_j - \eta)\varphi(z_j)/\sqrt{q}} : \]

\[\phi_+(w_k) = \sigma(w_k) : e^{i\varphi(w_k)/(2\sqrt{q})} : \]

Moore-Read states with quasiholes

\(\chi \): chiral part of Majorana fermion field

\(\phi \): chiral part of massless free boson field

\(\sigma \): spin field of the chiral Ising CFT

\(\eta \): number that determines the number of particles per lattice site
Laughlin states with quasiholes
Lattice Laughlin state with quasiholes

\[H(w_1, w_2, w_3) \]
\[\Psi(w_1, w_2, w_3) \]

\[\langle n_i \rangle_{\text{with}} - \langle n_i \rangle_{\text{without}} \]

Nielsen, PRB 91, 041106(R) (2015)
Exchange properties

\[H(w_1, w_2) \]
\[\Psi(w_1, w_2) \]
\[|\Psi\rangle \rightarrow e^{i\theta} |\Psi\rangle \]
\[\frac{\theta}{2\pi} = -32 + \frac{2}{3} - 0.0017(5) \]

Nielsen, PRB 91, 041106(R) (2015)
Rodriguez, Nielsen, PRB 92, 125105 (2015)
Moore-Read states with quasiholes
Anyons in lattice Moore-Read states

\[\langle n_i \rangle_{\text{with}} - \langle n_i \rangle_{\text{without}} \]

\[\langle n_i \rangle_{\text{with}} - \langle n_i \rangle_{\text{without}} \]
Laughlin and Moore-Read states with quasielectrons
How do we obtain quasielectrons?

\[|\psi_q\rangle = \sum_{n_1,n_2,...,n_N} \psi(n_1,n_2,...,n_N)|n_1,n_2,...,n_N\rangle \]

\[\psi(n_1,n_2,...,n_N) \propto \langle 0|\phi_+(w_1)\cdots\phi_+(w_Q)\phi_{n_1}(z_1)\phi_{n_2}(z_2)\cdots\phi_{n_N}(z_N)|0\rangle \]

\[\phi_+(W_k) = e^{i\varphi(z_j)/\sqrt{q}} \]

\[\phi_{n_i}(Z_i) = e^{i(qn_j-\eta)\varphi(z_j)/\sqrt{q}} \]

Position

Internal state
How do we obtain quasielectrons?

\[|\psi_q\rangle = \sum_{n_1, n_2, \ldots, n_N} \psi(n_1, n_2, \ldots, n_N) |n_1, n_2, \ldots, n_N\rangle \]

\[\psi(n_1, n_2, \ldots, n_N) \propto \langle 0 | \phi_+ (w_1) \cdots \phi_- (w_Q) \phi_{n_1} (z_1) \phi_{n_2} (z_2) \cdots \phi_{n_N} (z_N) |0 \rangle \]

\[\phi_{\pm} (w_k) = e^{\pm i \varphi(z_j)/\sqrt{q}} : \]

\[\phi_{n_i} (z_i) = e^{i(qn_j - \eta) \varphi(z_j)/\sqrt{q}} : \]
How do we obtain quasielectrons?

\[|\psi_q\rangle = \sum_{n_1,n_2,...,n_N} \psi(n_1,n_2,...,n_N)|n_1,n_2,...,n_N\rangle \]

\[\psi(n_1,n_2,...,n_N) \propto \langle 0| \phi_+ (w_1) \cdots \phi_- (w_Q) \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N)|0\rangle \]

\[\phi_{n_i}(z_i) = e^{i(\eta n_j - \eta)\varphi(z_j)/\sqrt{q}} : \]

\[\phi_{\pm}(W_k) = e^{\pm i\varphi(z_j)/\sqrt{q}} : \]

Continuum
How do we obtain quasielectrons?

\[|\psi_q\rangle = \sum_{n_1, n_2, \ldots, n_N} \psi(n_1, n_2, \ldots, n_N)|n_1, n_2, \ldots, n_N\rangle \]

\[\psi(n_1, n_2, \ldots, n_N) \propto \langle 0 | \phi_+(w_1) \cdots \phi_-(w_Q) \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N) |0\rangle \]

Same story for Moore-Read quasielectrons!
Charge distributions of Laughlin anyons

$\frac{1}{3}$ Laughlin state

Lattice filling $= \frac{1}{2}$
Laughlin Quasiholes <-> Laughlin Quasielectrons

\[\frac{1}{3} \text{ Laughlin state} \]

\[\langle n_i \rangle_{\text{with}} - \langle n_i \rangle_{\text{without}} \]

\[\Omega_p(r) \equiv - \sum_{i \text{ inside circle}} (\langle n_i \rangle_{\text{with}} - \langle n_i \rangle_{\text{without}}) \]

Nielsen, Glasser, Rodriguez, NJP 20, 033029 (2018)
Quasiholes and quasielectrons in lattice Moore-Read states

Exchange properties are also as desired

Manna, Wildeboer, Nielsen, PRB 99, 045147 (2019)
Examples of exact parent Hamiltonians
Bosonic Laughlin model from CFT

\[\phi_{s_j}(z_j) = e^{i\pi (j-1)(s_j+1)/2} : e^{is_j\varphi(z_j)}/\sqrt{2} : \quad s_j \in \{-1,1\} \]

CFT: SU(2)_1 WZW

\[H = \frac{1}{2} \sum_{i \neq j} |w_{ij}|^2 - \frac{2i}{3} \sum_{i \neq j \neq k} \bar{w}_{ij}w_{ik} S_i \cdot (S_j \times S_k) \]
\[+ \frac{2}{3} \sum_{i \neq j} |w_{ij}|^2 S_i \cdot S_j + \frac{2}{3} \sum_{i \neq j \neq k} \bar{w}_{ij}w_{ik} S_j \cdot S_k \]
\[w_{ij} = \frac{g(z_i)}{z_i - z_j} + h(z_i) \]

\[S_i = (S_i^x, S_i^y, S_i^z), \quad [S_i^a, S_j^b] = i\delta_{ij} \varepsilon_{abc} S_i^c \]

Generalization of the Kalmeyer-Laughlin state to arbitrary lattices.
Hamiltonian for Laughlin states

\[\phi_{n_j}(z_j) = e^{i\pi(j-1)n_j} : e^{i(qn_j-1)\varphi(z_j)/\sqrt{q}} : \]

\[H = \sum_i \Lambda_i^\dagger \Lambda_i \quad \Lambda_i = \sum_{j \neq i} \frac{1}{z_i - z_j} \left(d_j - d_i (qn_j - 1) \right) \]
Can we truncate the Hamiltonians to obtain local models?
Local Hamiltonian on a square lattice

Approach: Truncate Hamiltonian, adjust, optimize.

Works also on kagome lattice, but not on triangular lattice.

\[H = J_2 \sum_{\langle n,m \rangle} \hat{S}_n \cdot \hat{S}_m + J'_2 \sum_{\langle\langle n,m \rangle\rangle} 2\hat{S}_n \cdot \hat{S}_m - J_3 \sum_{\langle n,m,p \rangle} 4\hat{S}_n \cdot (\hat{S}_m \times \hat{S}_p) \]

Nielsen, Sierra, Cirac, Nat. Commun. 4, 2864 (2013).
Local Hamiltonian

\[H = J_2 \sum_{\langle n,m \rangle} 2 \hat{S}_n \cdot \hat{S}_m + J'_2 \sum_{\langle n,m \rangle} 2 \hat{S}_n \cdot \hat{S}_m - J_3 \sum_{\langle n,m,p \rangle} 4 \hat{S}_n \cdot (\hat{S}_m \times \hat{S}_p) \]

\[J_2 = \cos(\phi_1)\cos(\phi_2), \quad J'_2 = \sin(\phi_1)\cos(\phi_2), \quad J_3 = \sin(\phi_2) \]

Overlap with CFT state on 4 \times 5 lattice

Total Chern number of ground states on the torus

\[J_2 = 1, \quad J'_2 = 0, \quad J_3 = 1/2 \]

Nielsen, Sierra, Cirac, Nat. Commun. 4, 2864 (2013).
Is the ground state degeneracy correct?

Nielsen, Sierra, Cirac, Nat. Commun. 4, 2864 (2013).
Can we do something more well-defined?

\[H = \sum_i \Lambda_i^\dagger \Lambda_i \quad \Lambda_i = \sum_{j(\neq i)} \frac{1}{z_i - z_j} \left(d_j - d_i (q \eta_j - 1) \right) \]

Approach: Truncate \(\Lambda_i \) operator directly.

Advantages:

- The \(\Lambda_i \) operator is simpler to truncate than the Hamiltonian.
- The result of the truncation does not depend on the number of sites in the lattice.
- It is clear how to obtain models with periodic boundary conditions.
- No optimization needed.

Nandy, Srivatsa, Nielsen, arXiv:1902.09017
Results for $q = 2$ and $q = 4$

Square lattice

<table>
<thead>
<tr>
<th>$L_x \times L_y$</th>
<th>$q = 2$</th>
<th>$q = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ</td>
<td>$\Delta^{1/N}$</td>
</tr>
<tr>
<td>3×4</td>
<td>0.8679</td>
<td>0.9883</td>
</tr>
<tr>
<td>4×4</td>
<td>0.9692</td>
<td>0.9980</td>
</tr>
<tr>
<td>4×5</td>
<td>0.9239</td>
<td>0.9961</td>
</tr>
<tr>
<td>4×6</td>
<td>0.9226</td>
<td>0.9966</td>
</tr>
<tr>
<td>5×6</td>
<td>0.9164</td>
<td>0.9971</td>
</tr>
</tbody>
</table>

Triangular lattice

<table>
<thead>
<tr>
<th>$L_x \times L_y$</th>
<th>$q = 2$</th>
<th>$q = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ</td>
<td>$\Delta^{1/N}$</td>
</tr>
<tr>
<td>3×4</td>
<td>0.8400</td>
<td>0.9856</td>
</tr>
<tr>
<td>4×4</td>
<td>0.9507</td>
<td>0.9968</td>
</tr>
<tr>
<td>4×5</td>
<td>0.9098</td>
<td>0.9953</td>
</tr>
<tr>
<td>4×6</td>
<td>0.8913</td>
<td>0.9952</td>
</tr>
<tr>
<td>5×6</td>
<td>0.8210</td>
<td>0.9934</td>
</tr>
</tbody>
</table>

Nandy, Srivatsa, Nielsen, arXiv:1902.09017
Is the ground state degeneracy correct?

Nandy, Srivatsa, Nielsen, arXiv:1902.09017
Conclusion
Conclusion

• We have constructed families of lattice models with analytical ground states and few-body Hamiltonians and investigated their properties.

• We have shown how to construct trial wavefunctions and parent Hamiltonians for Laughlin and Moore-Read quasiholes and quasielectrons in lattices.

• We have investigated different ways to use the exact Hamiltonians as a starting point to find local, few-body Hamiltonians with almost the same ground states.
Thank you!

MPQ collaborators:
Ignacio Cirac
Ivan Glasser
Hong-Hao Tu
Benedikt Herwerth
Ivan D. Rodriguez

UAM collaborators:
German Sierra

Sourav Manna
Dillip K. Nandy

Julia Wildeboer
Srivatsa N.S