Anyons in fractional quantum Hall models

Anne E. B. Nielsen

Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany On leave from Department of Physics and Astronomy, Aarhus University, Denmark

This work has in part been funded by the Villum Foundation.

The fractional quantum Hall effect

This talk: Fractional quantum Hall-like physics in lattice systems

Motivation:

Fractional quantum Hall effect at no external magnetic field and high temperature?

New features

Bosonic systems Lattice effects

• • •

Implementation in optical lattices?

How can we obtain fractional quantum Hall-like physics in lattice systems?

Recipe 1:

Fractional Chern insulators

 $H_{\text{continuum}} \rightarrow H_{\text{lattice}}$

Recipe 2:

Exact wave functions

[Schroeter, Kapit, Thomale & Greiter]

How can we obtain fractional quantum Hall-like physics in lattice systems?

Recipe 1:

Fractional Chern insulators

Construction of lattice models with analytical ground states from conformal field theory

Interpolation between lattice and continuum

Tu, Nielsen, Cirac, Sierra, NJP 16, 033025 (2014); Glasser, Cirac, Sierra, Nielsen, PRB 94, 245104 (2016)

Construction of lattice FQH models

$$|\psi\rangle = \sum_{n_1, n_2, \dots, n_N} \psi(n_1, n_2, \dots, n_N) |n_1, n_2, \dots, n_N\rangle \qquad \qquad \Lambda_i |\psi\rangle = 0$$

 $\Lambda_i^{\dagger}\Lambda_i$

$$\psi(n_1, n_2, \dots, n_N) \propto \left\langle 0 \left| \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N) \right| 0 \right\rangle \qquad H = \sum_{i=1}^{N} \left\langle 0 \left| \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N) \right| 0 \right\rangle$$

Recipe to construct the Hamiltonian

- 1. Choose what $\phi_{n_i}(z_i)$ should be.
- 2. Find a null field $\chi(z_i)$.
- 3. Note that $\langle 0 | \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \chi(z_i) \cdots \phi_{n_N}(z_N) | 0 \rangle = 0.$
- 4. Deform the integration contour.
- 5. Use operator product expansions.
- 6. Do the integrals.
- 7. Rewrite such that the final expression is an operator acting on the initial wavefunction.

Construction of lattice FQH models

1D:

$$\phi_{n_j}(z_j) = : e^{i(qn_j - \eta)\varphi(z_j)/\sqrt{q}} : \qquad q = \text{integer} \\ n_j \in \{0,1\} \qquad \longrightarrow \qquad \text{Critical models} \\ \text{(Haldane-Shastry for } q = 2)$$

2D:

$$\phi_{n_j}(z_j) = :e^{i(qn_j - \eta)\varphi(z_j)/\sqrt{q}}: \qquad \substack{q = \text{integer}\\ n_j \in \{0,1\}} \qquad \longrightarrow \qquad \text{Laughlin state with } q \text{ flux units per particle}}$$

$$\phi_{n_j}(z_j) = \chi(z_j)^{n_j(2-n_j)}: e^{i(qn_j - \eta)\varphi(z_j)/\sqrt{q}}: \qquad \substack{q = \text{integer}\\ n_j \in \{0,1\} \text{ or}\\ n_j \in \{0,1,2\}} \qquad \longrightarrow \qquad \text{Moore-Read state with } q \text{ flux units per particle}}$$

$$\phi_{n_j}(z_j) = \kappa_{n_j}: e^{i\sqrt{2} \ \overrightarrow{m}_{n_j} \cdot \overrightarrow{\varphi}(z_j)}: \qquad \substack{n_j \in \{1,2,\dots,n\}\\ \overrightarrow{m}_{n_j} \text{ are vectors of numbers, see NPB 886, 328 (2014)} \qquad \longrightarrow \qquad \text{Halperin states}}$$

 χ : chiral part of Majorana fermion field

 ϕ : chiral part of massless free boson field

 κ_{n_j} : Klein factor

 η : number that determines the number of particles per lattice site

Construction of lattice FQH models

2D:

$$\phi_{n_j}(z_j) = :e^{i(qn_j-\eta)\varphi(z_j)/\sqrt{q}}$$

 $\phi_+(w_k) = :e^{i\varphi(w_k)/\sqrt{q}}:$

2D:

$$\phi_{n_j}(z_j) = \chi(z_j)^{n_j(2-n_j)} : e^{i(qn_j - \eta)\varphi(z_j)/\sqrt{q}} : \stackrel{q = \text{integer}}{\underset{n_j \in \{0,1\} \text{ or}}{}_{n_j \in \{0,1,2\}}} \longrightarrow \stackrel{\text{Moore-Read states with}}{\underset{quasiholes}{}}$$

 χ : chiral part of Majorana ϕ : chiral part of massless σ : spin field of the η : number that determines the numberfermion fieldfree boson fieldchiral Ising CFTof particles per lattice site

Laughlin states with quasiholes

Lattice Laughlin state with quasiholes

Exchange properties

Nielsen, PRB **91**, 041106(R) (2015) Rodriguez, Nielsen, PRB **92**, 125105 (2015)

Moore-Read states with quasiholes

Anyons in lattice Moore-Read states

 $\langle n_i \rangle_{with} - \langle n_i \rangle_{without}$

 $\langle n_i \rangle_{with} - \langle n_i \rangle_{without}$

0.20

0.16

0.12

0.08

0.04

0.00

-0.04

-0.08

-0.12

-0.16

-0.20

 \circ

 \circ

 \cap

 \circ

 \circ

 \bigcirc

 \circ

 \mathbf{O}

 \circ

Laughlin and Moore-Read states with quasielectrons

$$\left|\psi_{q}\right\rangle = \sum_{n_{1},n_{2},\ldots,n_{N}}\psi(n_{1},n_{2},\ldots,n_{N})|n_{1},n_{2},\ldots,n_{N}\rangle$$

$$\psi(n_1, n_2, \dots, n_N) \propto \langle 0 \big| \phi_+(w_1) \cdots \phi_+(w_Q) \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N) \big| 0 \rangle$$

$$\left|\psi_{q}\right\rangle = \sum_{n_{1},n_{2},\ldots,n_{N}}\psi(n_{1},n_{2},\ldots,n_{N})|n_{1},n_{2},\ldots,n_{N}\rangle$$

$$\psi(n_1, n_2, \dots, n_N) \propto \left\langle 0 \middle| \phi_+(w_1) \cdots \phi_-(w_Q) \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N) \middle| 0 \right\rangle$$

$$|\psi_q\rangle = \sum_{n_1, n_2, \dots, n_N} \psi(n_1, n_2, \dots, n_N) |n_1, n_2, \dots, n_N\rangle$$

$$\psi(n_1, n_2, \dots, n_N) \propto \left\langle 0 \left| \phi_+(w_1) \cdots \phi_-(w_Q) \phi_{n_1}(z_1) \phi_{n_2}(z_2) \cdots \phi_{n_N}(z_N) \right| 0 \right\rangle$$
 Continuum

Charge distributions of Laughlin anyons

 $\langle n_i \rangle_{with} - \langle n_i \rangle_{without}$

Nielsen, Glasser, Rodriguez, NJP 20, 033029 (2018)

Laughlin Quasiholes <--> Laughlin Quasielectrons

 $\frac{1}{3}$ Laughlin state $\langle n_i \rangle_{with} - \langle n_i \rangle_{without}$ 0.1 0.08 0.06 0.04 0.02 0 -0.02 -0.04-0.06 00000000000000 -0.08 -0.1

 $\Omega_{\vec{p}}(r) \equiv -\sum_{i \text{ inside circle}} (\langle n_i \rangle_{with} - \langle n_i \rangle_{without})$

Nielsen, Glasser, Rodriguez, NJP 20, 033029 (2018)

Quasiholes and quasielectrons in lattice Moore-Read states

Exchange properties are also as desired

Examples of exact parent Hamiltonians

Bosonic Laughlin model from CFT

$$\phi_{s_j}(z_j) = e^{i\pi(j-1)(s_j+1)/2} : e^{is_j\varphi(z_j)/\sqrt{2}} : s_j \in \{-1,1\}$$

CFT: $SU(2)_1$ WZW

$$H = \frac{1}{2} \sum_{i \neq j} |w_{ij}|^2 - \frac{2i}{3} \sum_{i \neq j \neq k} \overline{w}_{ij} w_{ik} S_i \cdot (S_j \times S_k)$$

+
$$\frac{2}{3} \sum_{i \neq j} |w_{ij}|^2 S_i \cdot S_j + \frac{2}{3} \sum_{i \neq j \neq k} \overline{w}_{ij} w_{ik} S_j \cdot S_k$$

$$S_i = (S_i^x, S_i^y, S_i^z), \quad [S_i^a, S_j^b] = i \delta_{ij} \varepsilon_{abc} S_i^c \qquad (g \text{ and} S_i^c)$$

$$w_{ij} = \frac{g(z_i)}{z_i - z_j} + h(z_i)$$

(g and h are arbitrary functions)

Generalization of the Kalmeyer-Laughlin state to arbitrary lattices.

Hamiltonian for Laughlin states

$$\phi_{n_j}(z_j) = e^{i\pi(j-1)n_j} : e^{i(qn_j-1)\varphi(z_j)/\sqrt{q}} :$$

$$H = \sum_{i} \Lambda_{i}^{\dagger} \Lambda_{i} \qquad \Lambda_{i} = \sum_{j(\neq i)} \frac{1}{z_{i} - z_{j}} \left(d_{j} - d_{i} (qn_{j} - 1) \right)$$

Can we truncate the Hamiltonians to obtain local models?

Local Hamiltonian on a square lattice

Approach: Truncate Hamiltonian, adjust, optimize.

Works also on kagome lattice, but not on triangular lattice.

$$H = J_2 \sum_{\langle n,m \rangle} 2\vec{S}_n \cdot \vec{S}_m + J'_2 \sum_{\ll n,m \gg} 2\vec{S}_n \cdot \vec{S}_m - J_3 \sum_{\langle n,m,p \rangle_{\mathcal{O}}} 4\vec{S}_n \cdot \left(\vec{S}_m \times \vec{S}_p\right)$$

Nielsen, Sierra, Cirac, Nat. Commun. 4, 2864 (2013).

Nielsen, Sierra, Cirac, Nat. Commun. 4, 2864 (2013).

Is the ground state degeneracy correct?

Nielsen, Sierra, Cirac, Nat. Commun. 4, 2864 (2013).

Can we do something more well-defined?

$$H = \sum_{i} \Lambda_{i}^{\dagger} \Lambda_{i} \qquad \Lambda_{i} = \sum_{j(\neq i)} \frac{1}{z_{i} - z_{j}} \left(d_{j} - d_{i} (qn_{j} - 1) \right)$$

Approach: Truncate Λ_i operator directly.

Advantages:

- The Λ_i operator is simpler to truncate than the Hamiltonian.
- The result of the truncation does not depend on the number of sites in the lattice.
- It is clear how to obtain models with periodic boundary conditions.
- No optimization needed.

Exact			Truncated									
•	•	•	•	•	•		0	0	0	0	0	0
•	•	•	•	•	•		0	0	0	0	0	0
•	•	•	•	•	•	_	0	0	•	0	0	0
•	•	\mathbf{O}^i	•	•	•	~	0	•	\mathbf{O}^i	•	0	0
•	•	•	•	•	•		0	0	•	0	0	0
•	•	•	•	•	•		0	0	0	0	0	0
Exact Truncated					ted							

Results for q = 2 and q = 4

Square lattice

TABLE I. Overlap Δ and overlap per site $\Delta^{1/N}$ between the exact state on the torus and the lowest energy eigenstate of H^{Local} for the square lattice with $L_x \times L_y$ unit cells.

$L_x \times L_y$	<i>q</i> =	= 2	<i>q</i> =	q = 4			
	Δ	$\Delta^{1/N}$	Δ	$\Delta^{1/N}$			
3×4	0.8679	0.9883	0.8317	0.9848			
4×4	0.9692	0.9980	0.9431	0.9963			
4×5	0.9239	0.9961	0.9122	0.9954			
4×6	0.9226	0.9966	0.7657	0.9889			
5×6	0.9164	0.9971					

Triangular lattice

TABLE II. Overlap Δ and overlap per site $\Delta^{1/N}$ between the exact state on the torus and the lowest energy eigenstate of H^{Local} for the triangular lattice with $L_x \times L_y$ unit cells.

$L_x \times L_y$	q = 2		q = 4		
	Δ	$\Delta^{1/N}$	Δ	$\Delta^{1/N}$	
3×4	0.8400	0.9856	0.9317	0.9941	
4×4	0.9507	0.9968	0.8710	0.9913	
4×5	0.9098	0.9953	0.7512	0.9857	
4×6	0.8913	0.9952	0.6827	0.9842	
5×6	0.8210	0.9934			

Is the ground state degeneracy correct?

Eigenstates

Nandy, Srivatsa, Nielsen, arXiv:1902.09017

Conclusion

Conclusion

- We have constructed families of lattice models with analytical ground states and few-body Hamiltonians and investigated their properties.
- We have shown how to construct trial wavefunctions and parent Hamiltonians for Laughlin and Moore-Read quasiholes and quasielectrons in lattices.
- We have investigated different ways to use the exact Hamiltonians as a starting point to find local, few-body Hamiltonians with almost the same ground states.

Thank you!

Sourav Manna

Dillip K. Nandy

Julia Wildeboer

Srivatsa N.S

MPQ collaborators:

Ignacio Cirac Ivan Glasser Hong-Hao Tu Benedikt Herwerth Ivan D. Rodriguez

UAM collaborators: German Sierra