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Zero modes of Pauli hamiltonian in 2d

or Equivalently of Dirac hamiltonian

Hp = o04(Pr — Az) + oy(Py — Ay)

up to identitying ¢ <+ (g)

(P—A)y+i(P—A)y)p=0

we get



Using complex notation z = x + 1y

9, = (a —i0,).
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Aharonov-Casher(79):Number of zero modes determined
by total flux ¢ = ﬁ [ Bdudy.
Explanation:

Alogv = 40,0, log ) = 4i0,A = idivA—curlA — —B

Coulomb
gauge

Po(z) = exp (—%/log |z — z/\B(z/)dzz/)

s
Yo(z = 00) ~ exp(—=glog |2]) = |2| ¢

Wi(2) = 2F9pg(2) is also a solution Vk € N.

Vi(z) = M(2) € L*(R?) & k—o <1
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0, log 1 = i A implies
e Superposition principle: A =>" A, = ¥ =[] ¢q.
e ¢/ solution = P(z)y solution V holomorphic P(z).
(Provided Py € L?)
Hence in our problem

Y= P(z,t) | | valz = Gal®))
We know {(4(t)}. Need to find P(z,1).
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Main example: pointlike fluxons 27TB > bad ( —Ca)

=Pz, t) [ [(z=Ca(t) "% = pp(t)2" T [ (s

Pointlike limit makes sense it ¢, < 1.
Phase or cut of (z — Ca)_% depends on gauge.
(E.g in Coulomb gauge just replace it by absolute value.)
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Adiabatic evolution:
B+#0= E #0.
E ~ A is gauge dependent and hence clearly wrong.
= need also Ay # 0.

Ag=—> Uy- A, gives the correct E=— > Uy X A,

Aq also obtainable from A by Lorentz Boost.
In complex notations Ay = — > (vgAq + VaAq)
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Adiabatic evolution:
Usual equation: ker(H) L %w.

Our equation: ker(H) L (% — iAO) Y.
Explicitly: V@

Z)H¢a\%+i(va o+ UgA Hwa ) =0
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Z)Hwa]%w%(fua o+ Vg A Hwa ) =0

Using $pba = (vad, + @aagam )
al’ld Q_]a,Aaw — @a<_lazwa) — i@aa<a¢a.
We simplify the equation into:

Q] waldP || va)+ d¢a0y QT walP ] wa) =0

Dolbeault
operator

Only holomorphic derivatives | (no 0 = d(,0, part).
Connection 1-form w is a (1,0)-form.
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<QH¢a’dPH¢a> T @<QH¢Q‘PH¢Q> =0
0 = d(q0q

Connection 1-form w is a (1,0)-form.

Suggests that the zero-modes have a holomorphic struc-
ture preserved by the connection. (As a vector bundle

over {((y,...,(n) € CNWCL #b (o # ()
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A holomorphic hermitian vector bundle has a unique
connection (called Chern connection) which preserves
both structures.

Indeed preserving the hermitian metric g requires

dg — gw —wlg =
g qw w_g 0
dg dg

hence D =d+w, w=g¢ 'dg.
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Want holonomy to be topological, i.c. to have a flat con-
nection.
In general R = dw +w A w = d(g~dg) # 0.
Curvature vanish iff g = YTT where T = T(¢) is a
(locally) holomorphic invertible matrix.
Indeed g = THOT(C) = w = g7ldg = T7HTY is
pure gauge.
The holonomy along a path is given by how T(¢) changes
along it.
holonomy = Tfl((f)T(C,'). E’

L
-

2 §

dY =Tw



Pointlike fluxons: 1, = P [1(z — ¢g) ™%
I / L W AN — L T,
g1 = Wiy} = 5 [ Gz dands = =3 [ atina,
where W; is the primitive integral of ;.
For single valued ) this would vanish by Stokes:
f d‘I’Ij A\ d\Ifj = f d(\lfl' A\ d\PJ‘) =

In our case integral is a sum over cuts contributions.

Y f Wi A d‘l’jzzaf U, Vidz







[ (@it~ = (Withj)4) dz = [ Wilda) (85(2-) = wy(z4)) dz =
i(Ga) (Tj(00-) = ¥j(c0y)) =

\
\Ija(C{l Cl? y Cﬂ-'?) (lpj(ooﬁ-—; Cl: CI\I) o 11{} (OO(H—; Cl: Ci\r))




Wi(Ga) (W(00-) — Wj(001)) =
E’i(({h (1, --'CN) (lllj(oca__; (1, C?\I) — q}j(oou-—i—; LT C*\“))

o A\ >4

e

S
antiholomorphic holomorphic




[ (W)= — (Wihi)4) dz = [W;(Ca) (¥j(2—) — ¥j(z4)) dz =
Wi(Ca) (Wj(00—) — Wj(o04)) =
Wi(Ca; €1y --CN), (P5(00a—; €1, -+ Cn) — W (00045 €1, -C))

o\
-

antiholgf/rnorphic holomorphic

More symmetric form ~ TaiTaj-

Summing » . leadsto g = YTTY with T(¢) holomorphic.
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3Y~1 ? Requires T a square matrix.
Holds <#(Zero-modes)=#(Cuts)
Both determined by the fluxes {¢q}.
=Condition » (1 — ¢q) < 1.

= (Condition for unitarity of the Gassner representation
(with parameters ¢, = e'®) of the braid group.
(Identical fixons = Gassner= Burau representation.)
One may check that the holonomy(=multivaluedness
of Ty i(¢) ~ W;i(CaiC1s .-, Cv)) satisfies this represen-

tation.



Y ~¥

ai I

&
Y, () > ¥(E)

() - Q) +e*(HD-¥L))

Y\ {1 AN
Ya'i - 1 0 Y,
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