•		

Zero modes of Pauli hamiltonian in 2d

$$H_P = \frac{1}{2m} \left((\vec{P} - \vec{A}) \cdot \vec{\sigma} \right)^2 = \frac{1}{2m} (\vec{P} - \vec{A})^2 - \frac{1}{2} \vec{B} \cdot \vec{\sigma}$$

Zero modes of Pauli hamiltonian in 2d

$$H_P = \frac{1}{2m} \left((\vec{P} - \vec{A}) \cdot \vec{\sigma} \right)^2 = \frac{1}{2m} (\vec{P} - \vec{A})^2 - \frac{1}{2} \vec{B} \cdot \vec{\sigma}$$

or Equivalently of Dirac hamiltonian

$$H_D = \sigma_x (P_x - A_x) + \sigma_y (P_y - A_y) \pm \sigma_z m$$

Zero modes of Pauli hamiltonian in 2d

$$H_P = \frac{1}{2m} \left((\vec{P} - \vec{A}) \cdot \vec{\sigma} \right)^2 = \frac{1}{2m} (\vec{P} - \vec{A})^2 - \frac{1}{2} \vec{B} \cdot \vec{\sigma}$$

or Equivalently of Dirac hamiltonian

$$H_D = \sigma_x (P_x - A_x) + \sigma_y (P_y - A_y) \pm \sigma_z m$$

up to identifying
$$\psi \leftrightarrow \begin{pmatrix} \psi \\ 0 \end{pmatrix}$$
 or $\psi \leftrightarrow \begin{pmatrix} 0 \\ \psi \end{pmatrix}$ we get
$$\left((P - A)_x \pm i (P - A)_y \right) \psi = 0$$

Using complex notation z = x + iy

$$\partial_z = \frac{1}{2}(\partial_x - i\partial_y), \ \bar{\partial}_z = \frac{1}{2}(\partial_x + i\partial_y)$$
$$A = \frac{1}{2}(A_x - iA_y), \ \bar{A} = \frac{1}{2}(A_x + iA_y)$$

we get

$$(\bar{\partial}_z - i\bar{A})\psi = 0$$

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:

 $\bar{\partial}_z \log \psi = i \quad \bar{A}$

Explanation:

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:

 $4\partial_z\bar{\partial}_z\log\psi = 4i\partial_z\bar{A}$

Explanation:

 $\triangle \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A}$

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:

 $\triangle \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \operatorname{div} A - \operatorname{curl} A$

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:

 $\triangle \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \operatorname{div} A - \operatorname{curl} A \longrightarrow -B$

 $\psi_0(z) = \exp\left(-\frac{1}{2\pi} \int \log|z - z'| B(z') d^2 z'\right)$

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:
$$\Delta \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \text{div} A - \text{curl} A \xrightarrow{\longrightarrow} -B$$

 $\triangle \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \operatorname{div} A - \operatorname{curl} A \longrightarrow -B$

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:
 $\triangle \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \text{div} A - \text{curl} A \longrightarrow -1$

 $\psi_0(z) = \exp\left(-\frac{1}{2\pi} \int \log|z - z'| B(z') d^2 z'\right)$

 $\psi_0(z \to \infty) \sim \exp(-\phi \log |z|) = |z|^{-\phi}$

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:

$$\Delta \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb}} -B$$

Explanation:

$$\triangle \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \text{div} A - \text{curl} A \xrightarrow[\text{coulomb gauge}]{\text{coulomb gauge}} -$$

 $\psi_0(z \to \infty) \sim \exp(-\phi \log |z|) = |z|^{-\phi}$

 $\psi_k(z) = z^k \psi_0(z)$ is also a solution $\forall k \in \mathbb{N}$.

 $\psi_0(z) = \exp\left(-\frac{1}{2\pi} \int \log|z - z'| B(z') d^2 z'\right)$

by total flux
$$\phi = \frac{1}{2\pi} \int B dx dy$$
.
Explanation:
 $\Delta \log \psi = 4 \partial_z \bar{\partial}_z \log \psi = 4 i \partial_z \bar{A} = i \text{div} A - \text{curl} A \longrightarrow -\bar{B}_z$

Explanation:
$$\triangle \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \text{div} A - \text{curl} A \xrightarrow[\text{Coulomb gauge}]{\text{Coulomb gauge}} - B$$

Explanation:

$$\Delta \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \text{div} A - \text{curl} A \xrightarrow[\text{Goulomb}]{\text{Gauge}} - \frac{1}{2} \int_{\text{Gauge}} \int_{\text{Gauge}} dz \, dz \, dz$$

 $\psi_0(z \to \infty) \sim \exp(-\phi \log |z|) = |z|^{-\phi}$

 $\psi_k(z) = z^k \psi_0(z)$ is also a solution $\forall k \in \mathbb{N}$.

 $\psi_k(z) = z^k \psi_0(z) \in L^2(\mathbb{R}^2) \iff k - \phi < -1$

 $\psi_0(z) = \exp\left(-\frac{1}{2\pi} \int \log|z - z'| B(z') d^2 z'\right)$

Explanation:
$$\Delta \log \psi = 4\partial_z \bar{\partial}_z \log \psi = 4i\partial_z \bar{A} = i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - \text{curl} A \xrightarrow{\text{Coulomb} \text{gauge}} A + i \text{div} A - i \text{div} A$$

 $\bar{\partial}_z \log \psi = i\bar{A} \text{ implies}$

- Superposition principle: $A = \sum A_a \Rightarrow \psi = \prod \psi_a$.
- ψ solution $\Rightarrow P(z)\psi$ solution \forall holomorphic P(z). (Provided $P\psi \in L^2$.)

 $\bar{\partial}_z \log \psi = i\bar{A} \text{ implies}$

- Superposition principle: $A = \sum A_a \Rightarrow \psi = \prod \psi_a$.
- ψ solution $\Rightarrow P(z)\psi$ solution \forall holomorphic P(z). (Provided $P\psi \in L^2$.)

Hence in our problem

$$\psi = P(z,t) \prod \psi_a(z - \zeta_a(t))$$

We know $\{\zeta_a(t)\}$. Need to find P(z,t).

Main example: pointlike fluxons
$$\frac{1}{2\pi}B = \sum \phi_a \delta^{(2)}(z-\zeta_a)$$

$$\psi = P(z,t) \prod (z-\zeta_a(t))^{-\phi_a} = \sum p_k(t)z^k \prod (z-\zeta_a(t))^{-\phi_a}$$

Main example: pointlike fluxons $\frac{1}{2\pi}B = \sum \phi_a \delta^{(2)}(z - \zeta_a)$

$$\psi = P(z,t) \prod (z - \zeta_a(t))^{-\phi_a} = \sum p_k(t) z^k \prod (z - \zeta_a(t))^{-\phi_a}$$

Pointlike limit makes sense if $\phi_a < 1$.

Main example: pointlike fluxons $\frac{1}{2\pi}B = \sum \phi_a \delta^{(2)}(z - \zeta_a)$

$$\psi = P(z,t) \prod (z - \zeta_a(t))^{-\phi_a} = \sum p_k(t) z^k \prod (z - \zeta_a(t))^{-\phi_a}$$

Pointlike limit makes sense if $\phi_a < 1$.

Phase or cut of $(z - \zeta_a)^{-\phi_a}$ depends on gauge.

(E.g in Coulomb gauge just replace it by absolute value.)

$$\dot{B} \neq 0 \Rightarrow E \neq 0.$$

 $\dot{B} \neq 0 \Rightarrow E \neq 0.$

 $E \sim \dot{A}$ is gauge dependent and hence clearly wrong.

 \Rightarrow need also $A_0 \neq 0$.

$$\dot{B} \neq 0 \Rightarrow E \neq 0.$$

 $E \sim \dot{A}$ is gauge dependent and hence clearly wrong.

$$\Rightarrow$$
 need also $A_0 \neq 0$.

$$A_0 = -\sum \vec{v_a} \cdot \vec{A_a}$$
 gives the correct $\vec{E} = -\sum \vec{v_a} \times \vec{A_a}$

$$\dot{B} \neq 0 \Rightarrow E \neq 0.$$

 $E \sim \dot{A}$ is gauge dependent and hence clearly wrong.

$$\Rightarrow$$
 need also $A_0 \neq 0$.

$$A_0 = -\sum \vec{v}_a \cdot \vec{A}_a$$
 gives the correct $\vec{E} = -\sum \vec{v}_a \times \vec{A}_a$

 A_0 also obtainable from \vec{A} by Lorentz Boost.

$$\dot{B} \neq 0 \Rightarrow E \neq 0.$$

 $E \sim A$ is gauge dependent and hence clearly wrong.

$$\Rightarrow$$
 need also $A_0 \neq 0$.

$$A_0 = -\sum \vec{v_a} \cdot \vec{A_a}$$
 gives the correct $\vec{E} = -\sum \vec{v_a} \times \vec{A_a}$

 A_0 also obtainable from \vec{A} by Lorentz Boost.

In complex notations $A_0 = -\sum (v_a A_a + \bar{v}_a \bar{A}_a)$

Usual equation: $ker(H) \perp \frac{\partial}{\partial t} \psi$.

Usual equation: $ker(H) \perp \frac{\partial}{\partial t} \psi$. Our equation: $ker(H) \perp \left(\frac{\partial}{\partial t} - iA_0\right) \psi$.

Usual equation: $ker(H) \perp \frac{\partial}{\partial t} \psi$.

Our equation: $ker(H) \perp \left(\frac{\partial}{\partial t} - iA_0\right) \psi$.

Explicitly: $\forall Q$

$$\langle Q(z) \prod \psi_a | \frac{\partial}{\partial t} + i(v_a A_a + \bar{v}_a \bar{A}_a) | P(z, t) \prod \psi_a \rangle = 0$$

$$\langle Q(z) \prod \psi_a | \frac{\partial}{\partial t} + i(v_a A_a + \bar{v}_a \bar{A}_a) | P(z, t) \prod \psi_a \rangle = 0$$

$$\langle Q(z) \prod \psi_a | \frac{\partial}{\partial t} + i(v_a A_a + \bar{v}_a \bar{A}_a) | P(z, t) \prod \psi_a \rangle = 0$$
Using $\frac{\partial}{\partial t} \psi_a = (v_a \partial_{\zeta_a} + \bar{v}_a \bar{\partial}_{\zeta_a}) \psi_a$
and $\bar{v}_a \bar{A}_a \psi = \bar{v}_a (-i \bar{\partial}_z \psi_a) = i \bar{v}_a \bar{\partial}_{\zeta_a} \psi_a$.

$$\langle Q(z) \prod \psi_a | \frac{\partial}{\partial t} + i(v_a A_a + \bar{v}_a \bar{A}_a) | P(z, t) \prod \psi_a \rangle = 0$$

Using $\frac{\partial}{\partial t}\psi_a = (v_a\partial_{\zeta_a} + \bar{v}_a\bar{\partial_{\zeta_a}})\psi_a$ and $\bar{v}_a\bar{A}_a\psi = \bar{v}_a(-i\bar{\partial}_z\psi_a) = i\bar{v}_a\bar{\partial_{\zeta_a}}\psi_a$. We simplify the equation into:

$$\langle Q \prod \psi_a | dP \prod \psi_a \rangle + \underbrace{d\zeta_a \partial_a}_{\substack{\text{Oolbeault} \\ \text{operator}}} \langle Q \prod \psi_a | P \prod \psi_a \rangle = 0$$

$$\langle Q(z) \prod \psi_a | \frac{\partial}{\partial t} + i(v_a A_a + \bar{v}_a \bar{A}_a) | P(z, t) \prod \psi_a \rangle = 0$$

Using $\frac{\partial}{\partial t}\psi_a = (v_a\partial_{\zeta_a} + \bar{v}_a\bar{\partial_{\zeta_a}})\psi_a$ and $\bar{v}_a\bar{A}_a\psi = \bar{v}_a(-i\bar{\partial}_z\psi_a) = i\bar{v}_a\bar{\partial_{\zeta_a}}\psi_a$. We simplify the equation into:

$$\langle Q \prod \psi_a | dP \prod \psi_a \rangle + \underbrace{d\zeta_a \partial_a}_{\text{Operator}} \langle Q \prod \psi_a | P \prod \psi_a \rangle = 0$$

Only holomorphic derivatives! (no $\bar{\partial} \equiv d\bar{\zeta}_a \bar{\partial}_a$ part). Connection 1-form ω is a (1,0)-form.

$$\langle Q \prod \psi_a | dP \prod \psi_a \rangle + \partial \langle Q \prod \psi_a | P \prod \psi_a \rangle = 0$$
$$\partial = d\zeta_a \partial_a$$

Connection 1-form ω is a (1,0)-form.

$$\langle Q \prod \psi_a | dP \prod \psi_a \rangle + \partial \langle Q \prod \psi_a | P \prod \psi_a \rangle = 0$$
$$\partial = d\zeta_a \partial_a$$

Connection 1-form ω is a (1,0)-form.

Suggests that the zero-modes have a holomorphic structure preserved by the connection. (As a vector bundle over $\{(\zeta_1,...,\zeta_N)\in\mathbb{C}^N|\forall a\neq b\ \zeta_a\neq\zeta_b\}$)

A holomorphic hermitian vector bundle has a unique connection (called Chern connection) which preserves both structures.

A holomorphic hermitian vector bundle has a unique connection (called Chern connection) which preserves both structures.

Indeed preserving the hermitian metric g requires

$$dg - \underbrace{g\omega}_{\partial g} - \underbrace{\omega^{\dagger}g}_{\bar{\partial}g} = 0$$

hence $D = d + \omega$, $\omega = g^{-1}\partial g$.

In general $\mathcal{R} = d\omega + \omega \wedge \omega = \bar{\partial}(g^{-1}\partial g) \neq 0$.

In general $\mathcal{R} = d\omega + \omega \wedge \omega = \bar{\partial}(g^{-1}\partial g) \neq 0$. Curvature vanish iff $g = \Upsilon^{\dagger}\Upsilon$ where $\Upsilon = \Upsilon(\zeta)$ is a (locally) holomorphic invertible matrix.

In general $\mathcal{R} = d\omega + \omega \wedge \omega = \bar{\partial}(g^{-1}\partial g) \neq 0$. Curvature vanish iff $g = \Upsilon^{\dagger}\Upsilon$ where $\Upsilon = \Upsilon(\zeta)$ is a (locally) holomorphic invertible matrix.

Indeed $g = \Upsilon^{\dagger}(\bar{\zeta})\Upsilon(\zeta) \Rightarrow \omega = g^{-1}\partial g = \Upsilon^{-1}d\Upsilon$ is pure gauge.

In general $\mathcal{R} = d\omega + \omega \wedge \omega = \bar{\partial}(g^{-1}\partial g) \neq 0$.

Curvature vanish iff $g = \Upsilon^{\dagger} \Upsilon$ where $\Upsilon = \Upsilon(\zeta)$ is a (locally) holomorphic invertible matrix.

Indeed $g = \Upsilon^{\dagger}(\bar{\zeta})\Upsilon(\zeta) \Rightarrow \omega = g^{-1}\partial g = \Upsilon^{-1}d\Upsilon$ is pure gauge.

The holonomy along a path is given by how $\Upsilon(\zeta)$ changes along it.

holonomy = $\Upsilon^{-1}(\zeta_f)\Upsilon(\zeta_i)$.

nection. In general $\mathcal{R} = d\omega + \omega \wedge \omega = \bar{\partial}(q^{-1}\partial q) \neq 0$.

In general $\mathcal{K} = d\omega + \omega \wedge \omega = \partial(g^{-\gamma}\partial g) \neq 0$. Curvature vanish iff $g = \Upsilon^{\dagger}\Upsilon$ where $\Upsilon = \Upsilon(\zeta)$ is a (locally) holomorphic invertible matrix.

Indeed $g = \Upsilon^{\dagger}(\bar{\zeta})\Upsilon(\zeta) \Rightarrow \omega = g^{-1}\partial g = \Upsilon^{-1}d\Upsilon$ is pure gauge.

The holonomy along a path is given by how $\Upsilon(\zeta)$ changes along it.

holonomy =
$$\Upsilon^{-1}(\zeta_f)\Upsilon(\zeta_i)$$
.

Pointlike fluxons:
$$\psi_k = z^k \prod (z - \zeta_a)^{-\phi_a}$$

 $g_{ij} = \langle \psi_i | \psi_j \rangle = \frac{i}{2} \int \bar{\psi}_i(\bar{z}) \psi_j(z) dz \wedge d\bar{z} = -\frac{i}{2} \int d\bar{\Psi}_i \wedge d\Psi_j$

where Ψ_i is the primitive integral of ψ_i .

For single valued ψ this would vanish by Stokes:

For single valued
$$\psi$$
 this would vanish by Stokes $\int d\bar{\Psi} \cdot \wedge d\Psi \cdot - \int d(\bar{\Psi} \cdot \wedge d\Psi \cdot) = 0$

 $\int d\bar{\Psi}_i \wedge d\Psi_j = \int d(\bar{\Psi}_i \wedge d\Psi_j) = 0.$

$$\frac{\int \left((\overline{\Psi}_i \psi_j)_- - (\overline{\Psi}_i \psi_j)_+\right) dz = \int \overline{\Psi_i(\zeta_a)} \left(\psi_j(z_-) - \psi_j(z_+)\right) dz = \overline{\Psi_i(\zeta_a)} \left(\Psi_j(\infty_-) - \Psi_j(\infty_+)\right) =$$

$$\underline{\int \left((\overline{\Psi}_{i} \psi_{j})_{-} - (\overline{\Psi}_{i} \psi_{j})_{+} \right) dz} = \underline{\int \overline{\Psi}_{i} (\zeta_{a})} \left(\psi_{j} (z_{-}) - \psi_{j} (z_{+}) \right) dz = \underline{\Psi}_{i} (\zeta_{a}) \left(\Psi_{j} (\infty_{-}) - \Psi_{j} (\infty_{+}) \right) = \underline{\Psi}_{i} (\zeta_{a}; \zeta_{1}, ..., \zeta_{N}) \left(\Psi_{j} (\infty_{a-}; \zeta_{1}, ..., \zeta_{N}) - \Psi_{j} (\infty_{a+}; \zeta_{1}, ..., \zeta_{N}) \right)$$

$$\underbrace{\frac{\int \left((\overline{\Psi}_{i}\psi_{j})_{-} - (\overline{\Psi}_{i}\psi_{j})_{+}\right) dz}_{\Psi_{i}(\zeta_{a})} \left(\psi_{j}(z_{-}) - \psi_{j}(z_{+})\right) dz}_{\Psi_{i}(\zeta_{a})} \left(\Psi_{j}(\infty_{-}) - \Psi_{j}(\infty_{+})\right) = \underbrace{\overline{\Psi_{i}(\zeta_{a}; \zeta_{1}, ...\zeta_{N})}}_{antiholomorphic} \underbrace{\left(\Psi_{j}(\infty_{a-}; \zeta_{1}, ...\zeta_{N}) - \Psi_{j}(\infty_{a+}; \zeta_{1}, ...\zeta_{N})\right)}_{holomorphic}$$

$$\underbrace{\int \left((\overline{\Psi}_{i} \psi_{j})_{-} - (\overline{\Psi}_{i} \psi_{j})_{+} \right) dz}_{A} = \int \overline{\Psi_{i}(\zeta_{a})} \left(\psi_{j}(z_{-}) - \psi_{j}(z_{+}) \right) dz}_{\Psi_{i}(\zeta_{a})} \left(\Psi_{j}(\infty_{-}) - \Psi_{j}(\infty_{+}) \right) = \underbrace{\overline{\Psi_{i}(\zeta_{a}; \zeta_{1}, ...\zeta_{N})}}_{antiholomorphic} \underbrace{\left(\Psi_{j}(\infty_{a-}; \zeta_{1}, ...\zeta_{N}) - \Psi_{j}(\infty_{a+}; \zeta_{1}, ...\zeta_{N}) \right)}_{holomorphic}$$

More symmetric form $\sim \overline{\Upsilon}_{ai} \Upsilon_{aj}$. Summing \sum_{a} leads to $g = \Upsilon^{\dagger} \Upsilon$ with $\Upsilon(\zeta)$ holomorphic. $\exists \Upsilon^{-1}$? Requires Υ a square matrix.

 $\exists \Upsilon^{-1}$? Requires Υ a square matrix. Holds $\Leftrightarrow \#(\text{Zero-modes}) = \#(\text{Cuts}) - 1$ Both determined by the fluxes $\{\phi_a\}$. $\Rightarrow \text{Condition } \sum (1 - \phi_a) < 1$. $\exists \Upsilon^{-1}$? Requires Υ a square matrix. Holds $\Leftrightarrow \#(\text{Zero-modes}) = \#(\text{Cuts}) - 1$ Both determined by the fluxes $\{\phi_a\}$. $\Rightarrow \text{Condition } \sum (1 - \phi_a) < 1$.

 \equiv Condition for unitarity of the Gassner representation (with parameters $t_a = e^{i\phi_a}$) of the braid group. (Identical flxons \Rightarrow Gassner \equiv Burau representation.) One may check that the holonomy(=multivaluedness of $\Upsilon_{aj}(\zeta) \sim \Psi_i(\zeta_a; \zeta_1, ..., \zeta_N)$) satisfies this representation.

$$\begin{pmatrix} \Upsilon_{bi}' \\ \Upsilon_{ai}' \end{pmatrix} = \begin{pmatrix} 1 - e^{i\phi_b} & e^{i\phi_b} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Upsilon_{bi} \\ \Upsilon_{ai} \end{pmatrix}$$

Burau representation

$$\Upsilon' = \begin{pmatrix} 1 & & & & \\ & & 1 - e^{i\phi_b} & e^{i\phi_b} & \\ & & 1 & 0 & \end{pmatrix} \Upsilon$$