Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf, ETH Zurich

Mathematical physics of anyons and topological states of matter
Nordita
11-16 March 2019
Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf, ETH Zurich

Mathematical physics of anyons and topological states of matter
Nordita
11-16 March 2019

based on joint work with J. Shapiro, C. Tauber
Outline

Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
Topological insulators: definition stated

- **Insulator in the Bulk**: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

![Diagram showing energy levels and gap at Fermi energy μ]
Topological insulators: definition stated

- **Insulator** in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

- **Topology**: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open

μ $\rightarrow \mu'$ $\rightarrow \mu E$
Topological insulators: definition stated

- **Insulator in the Bulk**: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ.

- **Topology**: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open.
 Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void).
Topological insulators: definition stated

- **Insulator** in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

- **Topology**: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while *keeping the gap open*
 Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

- Classification by suitable indices (e.g. homotopy equivalence)
Topological insulators: definition stated

- **Insulator in the Bulk:** Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

- **Topology:** In the space of Hamiltonians, a topological insulator can **not be deformed** in an ordinary one, while **keeping the gap open**
 Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

- Classification by suitable indices (e.g. homotopy equivalence)

- Termination of **bulk** of a topological insulator implies **edge states:** Bulk index vs. edge index
Topological insulators: definition stated

- **Insulator** in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

- **Topology**: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
 Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

- Classification by suitable indices (e.g. homotopy equivalence)

- Termination of bulk of a topological insulator implies edge states: Bulk index vs. edge index

- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.
Topological insulators: definition stated

- **Insulator** in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

- **Topology**: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
 Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

- Classification by suitable indices (e.g. homotopy equivalence)

- Termination of bulk of a topological insulator implies edge states: Bulk index vs. edge index

- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.
The role of disorder

The spectrum of a single-particle Hamiltonian

- extended states (continuous spectrum)
- localized states (pure point spectrum: Anderson localization)

For a periodic (crystalline) medium:
- Method of choice: Bloch theory and vector bundles (Thouless et al.)
- Gap is spectral

For a disordered medium:
- Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
- Fermi energy may lie in a spectral gap or (better, and more generally) in a mobility gap.

μ: Fermi energy (Pauli principle)
Spectral vs. Mobility gap, technically speaking

- Hamiltonian H on $\ell^2(\mathbb{Z}^d)$
- Fermi energy μ in gap
- $P_\mu = I_{(-\infty, \mu)}(H)$: Fermi projection with matrix elements $P_\mu(x, x')$, $(x, x' \in \mathbb{Z}^d)$
Spectral vs. Mobility gap, technically speaking

- Hamiltonian H on $\ell^2(\mathbb{Z}^d)$
- Fermi energy μ in gap
- $P_\mu = I_{(-\infty, \mu)}(H)$: Fermi projection with matrix elements $P_\mu(x, x')$, $(x, x' \in \mathbb{Z}^d)$

- Spectral gap

Strong off-diagonal decay:

$$P_\mu(x, x') \lesssim e^{-\nu|x-x'|}$$
Spectral vs. Mobility gap, technically speaking

- **Spectral gap**

 ![Spectral gap diagram]

 Strong off-diagonal decay:

 \[P_\mu(x, x') \lesssim e^{-\nu|x-x'|} \]

- **Mobility Gap:** Localization holds at Fermi energy

 ![Mobility Gap diagram]

 \[
 \sup_{x' \in \mathbb{Z}^d} \sum_{x \in \mathbb{Z}^d} e^{-\varepsilon|x'|} e^{\nu|x-x'|} |P_\mu(x, x')| < \infty
 \]

 (some \(\nu > 0 \), all \(\varepsilon > 0 \))
Spectral vs. Mobility gap, technically speaking

- **Mobility Gap**: Localization holds at Fermi energy

\[
\sup_{x'\in\mathbb{Z}^d} e^{-\varepsilon|x'|} \sum_{x\in\mathbb{Z}^d} e^{\nu|x-x'|} |P_\mu(x, x')| < \infty
\]

(some \(\nu > 0\), all \(\varepsilon > 0\))

- Proven in (virtually) all cases where localization is known.
- Trivially false for extended states at \(E = \mu\).
Periodic vs. non-periodic case

Difference illustrated for the conductance σ_H of (integer) quantum Hall effect (Kubo formula)
Periodic vs. non-periodic case

Difference illustrated for the conductance σ_H of (integer) quantum Hall effect (Kubo formula)

- **Periodic case.** (Thouless et al., Avron)

\[
\sigma_H = -\frac{i}{(2\pi)^2} \int_{\mathbb{T}} d^2k \text{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])
\]

where \mathbb{T}: Brillouin zone (torus); $P(k)$ Fermi projection on the space of states of quasi-momentum $k = (k_1, k_2)$; $\partial_i = \partial/\partial k_i$
Periodic vs. non-periodic case

Difference illustrated for the conductance σ_H of (integer) quantum Hall effect (Kubo formula)

> **Periodic case.** (Thouless et al., Avron)

\[
\sigma_H = -\frac{i}{(2\pi)^2} \int_\mathbb{T} d^2k \text{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])
\]

where \mathbb{T}: Brillouin zone (torus); $P(k)$ Fermi projection on the space of states of quasi-momentum $k = (k_1, k_2)$; $\partial_i = \partial/\partial k_i$

Remark.

\[
2\pi \sigma_H = \text{ch}(P)
\]

is the Chern number (index) of the vector bundle over \mathbb{T} and fiber range $P(k)$
Periodic vs. non-periodic case

- **Periodic case.** (Thouless et al., Avron)

\[
\sigma_H = -\frac{i}{(2\pi)^2} \int_T d^2k \text{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])
\]

where \(T\): Brillouin zone (torus); \(P(k)\) Fermi projection on the space of states of quasi-momentum \(k = (k_1, k_2)\); \(\partial_i = \partial/\partial k_i\)

- **Non-periodic case.** (Bellissard et al., Avron et al.)

\[
\sigma_H = i \text{tr} P_\mu [[P_\mu, \Lambda_1], [P_\mu, \Lambda_2]]
\]

where \(\Lambda_i = \Lambda(x_i), \ (i = 1, 2)\) are switch functions

\[
\Lambda(x)
\]

\[
\Lambda(x) \uparrow 1
\]

\[
\chi
\]
Periodic vs. non-periodic case

- **Periodic case.** (Thouless et al., Avron)

 \[\sigma_H = -\frac{i}{(2\pi)^2} \int_T d^2k \text{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)]) \]

- **Non-periodic case.** (Bellissard et al., Avron et al.)

 \[\sigma_H = i \text{tr} P_\mu [[P_\mu, \Lambda_1], [P_\mu, \Lambda_2]] \]

- Alternative treatment of disorder (Thouless): Large, but finite system (square); \((k_1, k_2) \sim (\varphi_1, \varphi_2)\) phase slips in boundary conditions
Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
An experiment: Amo et al.

Figure: Zigzag chain of coupled micropillars and lasing modes (polaritons)
An experiment: Amo et al.

Figure: Lasing modes: bulk and edge
Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping

\[\psi_{n-1}^+ \xrightarrow{A_n} \psi_n^- \xleftarrow{B_n} \psi_n^+ \xrightarrow{A_n} \psi_{n+1}^- \xleftarrow{B_n} \psi_{n+1}^+ \]
The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping

\[\psi_{n-1}^+ \xleftrightarrow{A_n} \psi_n^- \xleftrightarrow{B_n} \psi_n^+ \xleftrightarrow{A_n} \psi_{n+1}^- \]

Hilbert space: sites arranged in dimers

\[\mathcal{H} = \ell^2(\mathbb{Z}, \mathbb{C}^N) \otimes \mathbb{C}^2 \ni \psi = \begin{pmatrix} \psi_n^+ \\ \psi_n^- \end{pmatrix} \quad n \in \mathbb{Z} \]

Hamiltonian

\[H = \begin{pmatrix} 0 & S^* \\ S & 0 \end{pmatrix} \]

with \(S, \ S^* \) acting on \(\ell^2(\mathbb{Z}, \mathbb{C}^N) \) as

\[(S\psi^+)_n = A_n\psi_{n-1}^+ + B_n\psi_n^+ , \quad (S^*\psi^-)_n = A^*_{n+1}\psi_{n+1}^- + B^*\psi_n^- \]

\((A_n, B_n \in \text{GL}(N) \text{ almost surely}) \)
Chiral symmetry

\[\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[\{H, \Pi\} \equiv H\Pi + \Pi H = 0 \]

hence

\[H\psi = \lambda \psi \implies H(\Pi \psi) = -\lambda (\Pi \psi) \]
Chiral symmetry

\[\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[\{H, \Pi\} \equiv H\Pi + \Pi H = 0 \]

hence

\[H\psi = \lambda \psi \implies H(\Pi \psi) = -\lambda (\Pi \psi) \]

Energy \(\lambda = 0 \) is special:

- Eigenspace of \(\lambda = 0 \) invariant under \(\Pi \)
Chiral symmetry

\[\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[\{H, \Pi\} \equiv H\Pi + \Pi H = 0 \]

hence

\[H\psi = \lambda\psi \implies H(\Pi\psi) = -\lambda(\Pi\psi) \]

Energy \(\lambda = 0 \) is special:

- Eigenspace of \(\lambda = 0 \) invariant under \(\Pi \)

Eigenvalue equation \(H\psi = \lambda\psi \) is

\[S\psi^+ = \lambda\psi^-, \quad S^*\psi^- = \lambda\psi^+, \quad \text{i.e.} \]

\[A_n\psi^+_{n-1} + B_n\psi^+_n = \lambda\psi^-_n, \quad A^*_n+1\psi^-_{n+1} + B^*_n\psi^-_n = \lambda\psi^+_n \]

is one 2nd order difference equation, but two 1st order for \(\lambda = 0 \)
Bulk index

Let

\[\Sigma = \text{sgn } H \]

Definition. The Bulk index is

\[\mathcal{N} = \frac{1}{2} \text{tr}(\Pi \Sigma [\Lambda, \Sigma]) \]

with \(\Lambda = \Lambda(n) \) a switch function (cf. Prodan et al.)
Edge Hamiltonian and index

\[\psi_{a-1}^+ \quad \psi_a^- \quad \psi_a^+ \quad \psi_{a+1}^- = 0 \]

Edge Hamiltonian \(H_a \) defined by restriction to \(n \leq a \) (Dirichlet boundary condition \(\psi_{a+1}^- = 0 \)). Chiral symmetry preserved.

\[\text{Definition. The Edge index is } N_a = N_a^+ - N_a^- \text{ and can be shown to be independent of } a. \text{ Call it } N^\#_a. \]
Edge Hamiltonian and index

Edge Hamiltonian H_a defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace of $\lambda = 0$ still invariant under Π.
Edge Hamiltonian and index

Edge Hamiltonian H_a defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace of $\lambda = 0$ still invariant under Π.

\[N_a^\pm := \dim \{ \psi \mid H_a\psi = 0, \Pi\psi = \pm\psi \} \]
Edge Hamiltonian and index

\[
\begin{align*}
\psi_{a-1}^+ & \quad \psi_a^- \\
\psi_a^+ & \quad \psi_{a+1}^- = 0
\end{align*}
\]

Edge Hamiltonian \(H_a \) defined by restriction to \(n \leq a \) (Dirichlet boundary condition \(\psi_{a+1}^- = 0 \)). Chiral symmetry preserved.

Eigenspace of \(\lambda = 0 \) still invariant under \(\Pi \).

\[
\mathcal{N}_a^\pm := \dim\{\psi \mid H_a\psi = 0, \Pi\psi = \pm \psi\}
\]

Definition. The Edge index is

\[
\mathcal{N}_a = \mathcal{N}_a^+ - \mathcal{N}_a^-
\]

and can be shown to be independent of \(a \). Call it \(\mathcal{N}^\# \).
Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$$
Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$$

Remarks.

- Spectral gap case ($0 \notin \sigma_{ess}(H) \supset \sigma_{ess}(H_a)$)

$$H_a = \begin{pmatrix} 0 & S_a^* \\ S_a & 0 \end{pmatrix} \quad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathcal{N}_a^\# := \dim \ker S_a - \dim \ker S_a^* = \text{ind} S_a \quad \text{(Fredholm index)}$$

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.
Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$$

Remarks.

- **Spectral gap case** $(0 \not\in \sigma_{ess}(H) \supset \sigma_{ess}(H_a))$

 $$H_a = \begin{pmatrix} 0 & S_a^* \\ S_a & 0 \end{pmatrix} \quad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $$\mathcal{N}_a^\# := \dim \ker S_a - \dim \ker S_a^* = \text{ind } S_a \quad \text{(Fredholm index)}$$

 Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

- **Supersymmetry:** Is realized as $(H_a, \Pi) = (\text{supercharge}, \text{grading})$. Then $\mathcal{N}_a^\#$ is Witten index.
Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$$

Remarks.

- Spectral gap case ($0 \notin \sigma_{\text{ess}}(H) \supset \sigma_{\text{ess}}(H_a)$)

$$H_a = \begin{pmatrix} 0 & S_a^* \\ S_a & 0 \end{pmatrix}, \quad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathcal{N}_a^\# := \dim \ker S_a - \dim \ker S_a^* = \text{ind } S_a \quad \text{(Fredholm index)}$$

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

- Supersymmetry: Is realized as $(H_a, \Pi) = (\text{supercharge}, \text{grading})$. Then $\mathcal{N}_a^\#$ is Witten index.

- Periodic case

$$S = \int_{S^1}^{\oplus} S(k)$$

Toeplitz index theorem:

$$\mathcal{N}^\# = -\text{Wind}(k \mapsto \det S(k))$$
Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$
Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume \(\lambda = 0 \) lies in a mobility gap. Then

\[\mathcal{N} = \mathcal{N}^\# \]

Remark. Consider the dynamical system \(A_n \psi_{n-1}^+ + B_n \psi_n^+ = 0 \) with Lyaponov exponents

\[\gamma_1 \geq \ldots \geq \gamma_N \]

The assumption is satisfied if \(\gamma_i \neq 0 \); then \(\mathcal{N}^\# = \# \{ i \mid \gamma_i > 0 \} \).
Bulk-edge duality: Lyapunov exponents

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$$

Remark. Consider the dynamical system $A_n \psi_{n-1}^+ + B_n \psi_n^+ = 0$ with Lyapunov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^\# = \#\{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)
Bulk-edge duality: Lyapunov exponents

Theorem (G., Shapiro). Assume \(\lambda = 0 \) lies in a mobility gap. Then

\[
\mathcal{N} = \mathcal{N}^\#
\]

Remark. Consider the dynamical system \(A_n \psi_{n-1}^+ + B_n \psi_n^+ = 0 \) with Lyapunov exponents

\[
\gamma_1 \geq \ldots \geq \gamma_N
\]

The assumption is satisfied if \(\gamma_i \neq 0 \); then \(\mathcal{N}^\# = \#\{i \mid \gamma_i > 0\} \). Phase boundaries correspond to \(\gamma_i = 0 \) (cf. Prodan et al.)

Lyapunov spectrum of the full chain has \(2N \) exponents, spectrum is even (Example: \(N = 4 \))

- at energy \(\lambda \neq 0 \) (simple spectrum)

 ![Diagram](https://via.placeholder.com/150)

- Spectrum is simple because measure on transfer matrices is irreducible
- so \(\gamma = 0 \) is not in the spectrum; localization follows
Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^\# = \#\{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Lyapunov spectrum of the full chain has $2N$ exponents, spectrum is even (Example: $N = 4$)

- at energy $\lambda \neq 0$ (simple spectrum)

 ![Diagram](image)

- At $\lambda = 0$ chains decouple: $\mathbb{C}^N \oplus 0$ and $0 \oplus \mathbb{C}^N$ are invariant subspaces
Bulk-edge duality: Lyapunov exponents

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^\#$$

Remark. Consider the dynamical system

$$A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$$

with Lyapunov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^\# = \#\{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Lyapunov spectrum of the full chain has $2N$ exponents, spectrum is even (Example: $N = 4$)

- at energy $\lambda \neq 0$ (simple spectrum)

 ![Diagram 1](image1)

- of the upper ($+$) and lower ($-$) chains, at energy $\lambda = 0$

 ![Diagram 2](image2)

- at energy $\lambda = 0$ (phase boundary)

 ![Diagram 3](image3)
Some numerics

Left/right column: two parameterized chiral models \((N = 1)\)
upper/lower row: index and Lyapunov exponent (from Prodan et al.)
Proof

Recall $\mathcal{N}_a = \text{tr}(\Pi P_{0,a})$, where

$$1 = P_{-,a} + P_{0,a} + P_{-,a}$$

is decomposition into states of energies $< 0, = 0, > 0$
Proof

Recall $\mathcal{N}_a = \text{tr}(\prod P_{0,a})$, where

$$1 = P_{-,a} + P_{0,a} + P_{-,a}$$

is decomposition into states of energies $< 0, = 0, > 0$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^\# = \lim_{a \to +\infty} \text{tr}(\prod \Lambda P_{0,a})$$
Proof

Lemma. The common value of \(N_a \) is

\[
N^\# = \lim_{a \to +\infty} \text{tr}(\Pi \Lambda P_{0,a})
\]

Proof of Theorem. On the Hilbert space \(\mathcal{H}_a \) corresponding to \(n \leq a \)

\[
\text{tr}(\Pi \Lambda) = N \left(\sum_{n \leq a} \Lambda(n) \right) \text{tr}_{C^2} \Pi = 0
\]

though \(\|\Pi \Lambda\|_1 = \|\Lambda\|_1 \to \infty, (a \to +\infty) \)
Lemma. The common value of N_a is

$$N^{\#} = \lim_{a \to +\infty} \text{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$\text{tr}(\Pi \Lambda) = 0$$

$$\text{tr}(\Pi \Lambda) = \text{tr}(\Pi \Lambda P_{0,a}) + \text{tr}(\Pi \Lambda P_{+,a}) + \text{tr}(\Pi \Lambda P_{-,a})$$
Proof

Lemma. The common value of N_a is

$$N^\# = \lim_{a \to +\infty} \text{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space H_a corresponding to $n \leq a$

$$\text{tr}(\Pi \Lambda) = 0$$

$$\text{tr}(\Pi \Lambda) = \text{tr}(\Pi \Lambda P_{0,a}) + \text{tr}(\Pi \Lambda P_{+,a}) + \text{tr}(\Pi \Lambda P_{-,a})$$

$$\text{tr}(\Pi \Lambda P_{+,a}) = \text{tr}(P_{+,a} \Pi \Lambda P_{+,a}) = \text{tr}(\Pi P_{-,a} \Lambda P_{+,a})$$

$$= \text{tr}(\Pi P_{-,a} [\Lambda, P_{+,a}])$$
Proof

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^\# = \lim_{a \to +\infty} \text{tr}(\Pi\Lambda P_0, a)$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$\text{tr}(\Pi\Lambda) = 0$$

$$\text{tr}(\Pi\Lambda) = \text{tr}(\Pi\Lambda P_0, a) + \text{tr}(\Pi\Lambda P_+, a) + \text{tr}(\Pi\Lambda P_-, a)$$

$$\text{tr}(\Pi\Lambda P_+, a) = \text{tr}(P_+, a \Pi\Lambda P_+, a) = \text{tr}(\Pi P_-, a \Lambda P_+, a)$$

$$= \text{tr}(\Pi P_-, a [\Lambda, P_+, a]) \rightarrow \text{tr}(\Pi P_- [\Lambda, P_+]) \quad (a \to +\infty)$$
Proof

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^\# = \lim_{a \to +\infty} \text{tr}(\Pi \Lambda P_0, a)$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$\text{tr}(\Pi \Lambda) = 0$$

So,

$$\text{tr}(\Pi \Lambda) = \text{tr}(\Pi \Lambda P_0, a) + \text{tr}(\Pi \Lambda P_+, a) + \text{tr}(\Pi \Lambda P_-, a)$$

In fact by $\Sigma = P_+ - P_-$ the last expression is

$$-(1/2) \text{tr}(\Pi \Sigma [\Lambda, \Sigma]) = -\mathcal{N}$$

q.e.d.
Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
Floquet topological insulators

\[H = H(t) \text{ (bulk) Hamiltonian in the plane with period } T \]

\[H(t + T) = H(t) \]

(disorder allowed, no adiabatic setting)
Floquet topological insulators

\[H = H(t) \] (bulk) Hamiltonian in the plane with period \(T \)

\[H(t + T) = H(t) \]

(disorder allowed, no adiabatic setting)

\(U(t) \) propagator for the interval \((0, t)\)

\(\hat{U} = U(T) \) fundamental propagator
Floquet topological insulators

\[H = H(t) \text{ (bulk) Hamiltonian in the plane with period } T \]

\[H(t + T) = H(t) \]

(disorder allowed, no adiabatic setting)

\(U(t) \) propagator for the interval \((0, t)\)
\(\hat{U} = U(T) \) fundamental propagator

Assumption: Spectrum of \(\hat{U} \) has gaps:

\[\text{spec } \hat{U} \subset S^1 \]
Bulk index

Special case first: $U(t)$ periodic, i.e.

$$\hat{U} = 1$$
Bulk index

Special case first: $U(t)$ periodic, i.e.

$$\hat{U} = 1$$

Bulk index

$$\mathcal{N}_B = \frac{1}{2} \int_0^T dt \, \text{tr}(U^* \partial_t U [U^* [\Lambda_1, U], U^* [\Lambda_2, U]])$$

with $U = U(t)$ and switches $\Lambda_i = \Lambda(x_i), (i = 1, 2)$
Bulk index

Special case first: $U(t)$ periodic, i.e.

$$\hat{U} = 1$$

Bulk index

$$\mathcal{N}_B = \frac{1}{2} \int_0^T dt \, \text{tr}(U^* \partial_t U[U^*[\Lambda_1, U], U^*[\Lambda_2, U]])$$

with $U = U(t)$ and switches $\Lambda_i = \Lambda(x_i)$, ($i = 1, 2$)

Remark. Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_B = \frac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2k \, \text{tr}(U^* \partial_t U[U^* \partial_1 U, U^* \partial_2 U])$$

with $U = U(t, k)$ acting on the space of states of quasi-momentum $k = (k_1, k_2)$.
Bulk index

Special case first: $U(t)$ periodic, i.e.

$$\hat{U} = 1$$

Bulk index

$$\mathcal{N}_B = \frac{1}{2} \int_0^T dt \ tr(U^* \partial_t U[U^*[\Lambda_1, U], U^*[\Lambda_2, U]])$$

with $U = U(t)$ and switches $\Lambda_i = \Lambda(x_i), (i = 1, 2)$

Remark. Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_B = \frac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2 k \ tr(U^* \partial_t U[U^* \partial_1 U, U^* \partial_2 U])$$

with $U = U(t, k)$ acting on the space of states of quasi-momentum $k = (k_1, k_2)$.

U: 3-torus \rightarrow unitary group \mathcal{U}, $(t, k) \mapsto U(t, k)$:

$$\pi_3(\mathcal{U}) = \mathbb{Z}$$
Bulk index

Special case first: $U(t)$ periodic, i.e.

$$\hat{U} = 1$$

Bulk index

$$\mathcal{N}_B = \frac{1}{2} \int_0^T dt \, \text{tr}(U^* \partial_t U[U^*[\Lambda_1, U], U^*[\Lambda_2, U]])$$

with $U = U(t)$ and switches $\Lambda_i = \Lambda(x_i), (i = 1, 2)$

Remark. Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_B = \frac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2 k \, \text{tr}(U^* \partial_t U[U^* \partial_1 U, U^* \partial_2 U])$$

with $U = U(t, k)$ acting on the space of states of quasi-momentum $k = (k_1, k_2)$.

U: 3-torus \rightarrow unitary group $\mathcal{U}, (t, k) \mapsto U(t, k)$:

$$\pi_3(\mathcal{U}) = \mathbb{Z}$$
Edge index

$H_E(t)$ restriction of $H(t)$ to right half-space $x_1 > 0$

\hat{U}_E corresponding fundamental propagator
Edge index

$H_E(t)$ restriction of $H(t)$ to right half-space $x_1 > 0$

\hat{U}_E corresponding fundamental propagator

In general: $\hat{U}_E \neq 1$
Edge index

$H_E(t)$ restriction of $H(t)$ to right half-space $x_1 > 0$

\hat{U}_E corresponding fundamental propagator

In general: $\hat{U}_E \neq 1$

Edge index

$$\mathcal{N}_E = \text{tr}(\hat{U}_E^*[\Lambda_2, \hat{U}_E]) = \text{tr}(\hat{U}_E^*\Lambda_2\hat{U}_E - \Lambda_2)$$

Remarks.

- The trace is well-defined
Edge index

$H_E(t)$ restriction of $H(t)$ to right half-space $x_1 > 0$

\hat{U}_E corresponding fundamental propagator

In general: $\hat{U}_E \neq 1$

Edge index

$$\mathcal{N}_E = \text{tr}(\hat{U}_E^*[\Lambda_2, \hat{U}_E]) = \text{tr}(\hat{U}_E^*\Lambda_2 \hat{U}_E - \Lambda_2)$$

Remarks.

- The trace is well-defined

 \mathcal{N}_E is charge that crossed the line $x_2 = 0$ during a period.

 \mathcal{N}_E is independent of Λ_2 and an integer.
General case: Pair of Hamiltonians

\[\hat{U} \neq 1 \]
General case: Pair of Hamiltonians

\[\hat{U} \neq 1 \]

Pair of periodic Hamiltonians \(H_i(t), (i = 1, 2) \) with

\[\hat{U}_1 = \hat{U}_2 \]
General case: Pair of Hamiltonians

\[\hat{U} \neq 1 \]

Pair of periodic Hamiltonians \(H_i(t), (i = 1, 2) \) with

\[\hat{U}_1 = \hat{U}_2 \]

Define Hamiltonian \(H(t) \) with period \(2T \) by

\[
H(t) = \begin{cases}
H_1(t) & (0 < t < T) \\
-H_2(-t) & (-T < t < 0)
\end{cases}
\]
General case: Pair of Hamiltonians

\[\hat{U} \neq 1 \]

Pair of periodic Hamiltonians \(H_i(t), (i = 1, 2) \) with

\[\hat{U}_1 = \hat{U}_2 \]

Define Hamiltonian \(H(t) \) with period \(2T \) by

\[
H(t) = \begin{cases}
H_1(t) & (0 < t < T) \\
-H_2(2T - t) & (T < t < 2T)
\end{cases}
\]

Then

\[
U(t) = \begin{cases}
U_1(t) & (0 < t < T) \\
U_2(2T - t) & (T < t < 2T)
\end{cases}
\]

has \(\hat{U} = 1 \).
General case: Pair of Hamiltonians

\[\hat{U} \neq 1 \]

Pair of periodic Hamiltonians \(H_i(t), (i = 1, 2) \) with

\[\hat{U}_1 = \hat{U}_2 \]

Define Hamiltonian \(H(t) \) with period \(2T \) by

\[
H(t) = \begin{cases}
H_1(t) & (0 < t < T) \\
-H_2(2T - t) & (T < t < 2T)
\end{cases}
\]

Then

\[
U(t) = \begin{cases}
U_1(t) & (0 < t < T) \\
U_2(2T - t) & (T < t < 2T)
\end{cases}
\]

has \(\hat{U} = 1 \). Define \(\mathcal{N}, \mathcal{N}_E \) (for the pair) as before.
General case: Pair of Hamiltonians

$\hat{U} \neq 1$

Pair of periodic Hamiltonians $H_i(t), (i = 1, 2)$ with

$\hat{U}_1 = \hat{U}_2$

Define Hamiltonian $H(t)$ with period $2T$ by

$$H(t) = \begin{cases}
H_1(t) & (0 < t < T) \\
-H_2(2T - t) & (T < t < 2T)
\end{cases}$$

Then

$$U(t) = \begin{cases}
U_1(t) & (0 < t < T) \\
U_2(2T - t) & (T < t < 2T)
\end{cases}$$

has $\hat{U} = 1$. Define $\mathcal{N}, \mathcal{N}_E$ (for the pair) as before.

Theorem (G., Tauber) $\mathcal{N} = \mathcal{N}_E$
Duality in time and space

Let the interface Hamiltonian $H_1(t)$ be a bulk Hamiltonian with

$$H_1(t) = \begin{cases} H_1(t) \\ H_2(t) \end{cases}$$

on states supported on large $\pm x_1$

(still assuming $\hat{U}_1 = \hat{U}_2 =: \hat{U}_\bullet$)
Duality in time and space

Let the interface Hamiltonian \(H_I(t) \) be a bulk Hamiltonian with

\[
H_I(t) = \begin{cases}
H_1(t) & \text{on states supported on large } \pm x_1 \\
H_2(t) &
\end{cases}
\]

(still assuming \(\hat{U}_1 = \hat{U}_2 =: \hat{U}_\bullet \))

Interface index

\[
\mathcal{N}_I = \text{tr}(\hat{U}_\bullet^* \hat{U}_I[\Lambda_2, \hat{U}_\bullet^* \hat{U}_I])
\]
Duality in time and space

Let the interface Hamiltonian \(H_I(t) \) be a bulk Hamiltonian with

\[
H_I(t) = \begin{cases}
H_1(t) & \text{on states supported on large } \pm x_1 \\
H_2(t) &
\end{cases}
\]

(still assuming \(\hat{U}_1 = \hat{U}_2 =: \hat{U}_\bullet \))

Interface index

\[
N_I = \text{tr}(\hat{U}_\bullet \hat{U}_I [\Lambda_2, \hat{U}_\bullet \hat{U}_I])
\]

Theorem (G., Tauber) The indices for the two diagrams agree:

\[
(\mathcal{N} =) N_E = N_I
\]
Back to single Hamiltonian

\[\hat{U} \neq 1 \]

\[\text{spec } \hat{U} \subset S^1 \]
Back to single Hamiltonian

\[\hat{U} \neq 1 \]

Let \(\alpha \in \mathbb{R} \) and \(\omega = e^{i\alpha} \). For \(z \notin \omega \mathbb{R}_+ \) (ray) define the branch

\[\log_\alpha z = \log |z| + i \arg_\alpha z \]

by \(\alpha - 2\pi < \arg_\alpha z < \alpha \).
Back to single Hamiltonian

\[\hat{U} \neq 1 \]

Let \(\alpha \in \mathbb{R} \) and \(\omega = e^{i\alpha} \). For \(z \notin \omega \mathbb{R}_+ \) (ray) define the branch

\[\log_{\alpha} z = \log |z| + i \arg_{\alpha} z \]

by \(\alpha - 2\pi < \arg_{\alpha} z < \alpha \).

Comparison Hamiltonian \(H_\alpha \): For \(\omega = e^{i\alpha} \notin \text{spec} \hat{U} \) set

\[-i H_\alpha T := \log_{\alpha} \hat{U} \]

So,

\[\hat{U}_\alpha = \hat{U} \]
Back to single Hamiltonian

\[\hat{U} \neq 1 \]

Let \(\alpha \in \mathbb{R} \) and \(\omega = e^{i\alpha} \). For \(z \notin \omega \mathbb{R}_+ \) (ray) define the branch

\[\log_{\alpha} z = \log |z| + i \arg_{\alpha} z \]

by \(\alpha - 2\pi < \arg_{\alpha} z < \alpha \).

Comparison Hamiltonian \(H_{\alpha} \): For \(\omega = e^{i\alpha} \notin \text{spec } \hat{U} \) set

\[-iH_{\alpha} T := \log_{\alpha} \hat{U} \]

So,

\[\hat{U}_{\alpha} = \hat{U} \]; so define \(\mathcal{N}_{B,\alpha} \) based on the pair \((H, H_{\alpha}) \)
Back to single Hamiltonian

\[\hat{U} \neq 1 \]

Let \(\alpha \in \mathbb{R} \) and \(\omega = e^{i\alpha} \). For \(z \notin \omega \mathbb{R}_+ \) (ray) define the branch

\[\log_{\alpha} z = \log |z| + i \arg_{\alpha} z \]

by \(\alpha - 2\pi < \arg_{\alpha} z < \alpha \).

Comparison Hamiltonian \(H_\alpha \): For \(\omega = e^{i\alpha} \notin \text{spec} \hat{U} \) set

\[-iH_\alpha T := \log_{\alpha} \hat{U} \]

So,

- \(\hat{U}_\alpha = \hat{U} \); so define \(\mathcal{N}_{B,\alpha} \) based on the pair \((H, H_\alpha)\)
- \(U_{\alpha+2\pi}(t) = U_{\alpha}(t)e^{2\pi it/T} \)
Back to single Hamiltonian

\[\hat{U} \neq 1 \]

Comparison Hamiltonian \(H_\alpha \): For \(\omega = e^{i\alpha} \notin \text{spec} \hat{U} \) set

\[-iH_\alpha T := \log_\alpha \hat{U} \]

So,

- \(\hat{U}_\alpha = \hat{U} \); so define \(N_{\text{B},\alpha} \) based on the pair \((H, H_\alpha) \)
- \(U_{\alpha+2\pi}(t) = U_\alpha(t)e^{2\pi it/T} \)
- \(N_{\text{B},\alpha+2\pi} = N_{\text{B},\alpha} =: N_\omega \) by

\[N_{\text{B}} = \frac{1}{2} \int_0^T dt \tr (U^* \partial_t U [U^* [\Lambda_1, U], U^* [\Lambda_2, U]]) \]
Back to single Hamiltonian

\[\hat{U} \neq 1 \]

Comparison Hamiltonian \(H_\alpha \): For \(\omega = e^{i\alpha} \notin \text{spec} \hat{U} \) set

\[-iH_\alpha T := \log_\alpha \hat{U}\]

Theorem (Rudner et al.; G., Tauber) For \(\omega, \omega' \) in gaps

\[N_{\omega'} - N_\omega = i \text{ tr } P[[P, \Lambda_1], [P, \Lambda_2]] \]

where \(P = P_{\omega, \omega'} \) is the spectral projection associated with \(\text{spec} \hat{U} \) between \(\omega, \omega' \) (counter-clockwise)
Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
 Definitions and results
 Some numerics
Bulk and Edge spectrum

Bulk spectrum
$J = 5.30, \delta = 6.28, \gamma = 7.85, N=M=40$

Edge spectrum
$J = 5.30, \delta = 6.28, \gamma = 7.85, N=M=40$
Computing the edge index

Edge index $N_{E,\alpha}$ based on the pair (H, H_{α}) (with $\alpha = \pi$)

$$N_{E,\alpha} = \text{tr} A \quad A = \hat{U}_{E}^{\ast} \Lambda_{2} \hat{U}_{E} - \hat{U}_{\alpha,E}^{\ast} \Lambda_{2} \hat{U}_{\alpha,E}$$

The diagonal integral kernel $A(x, x)$ as $\log |A(x, x)|$

Boundary conditions:
- Vertical edges: Dirichlet
- Horizontal edges: Periodic
Computing the edge index

Edge index $N_{E,\alpha}$ based on the pair (H, H_α) (with $\alpha = \pi$)

\[N_{E,\alpha} = \text{tr} A \quad A = \hat{U}_E^* \Lambda_2 \hat{U}_E - \hat{U}_{\alpha,E}^* \Lambda_2 \hat{U}_{\alpha,E} \]

The diagonal integral kernel $A(x, x)$ as $\log |A(x, x)|$

Boundary conditions:
- Vertical edges: Dirichlet
- Horizontal edges: Periodic
The transition

Invariant wrt J for d = 3.14, \(dr=3.14\)

- **L=24**
- **L=32**
- **L=40**
Summary

- Chiral symmetry
- Floquet topological insulator
Summary

- Chiral symmetry
- Floquet topological insulator

Thank you for your attention!