On the Average-Field Functional for Anyons

Michele Correggi

12/3/2019

Mathematical Physics of Anyons and Topological States of Matter

NORDITA

joint work with R. Duboscq (Toulouse), D. Lundholm (Stockholm) and N. Rougerie (Grenoble)
Outline

1. **Introduction:**
 - Almost-bosonic limit and the Average-Field (AF) functional [LR];
 - Minimization of the AF functional.

2. **Main results [CLR, CLR*]:**
 - Existence of the Thermodynamic Limit (TL) for homogeneous anyons;
 - Local density approximation of the AF functional for trapped anyons in terms of a Thomas-Fermi (TF) effective energy;

3. **Vortex structure (numerical simulations) [CDLR].**

Main References

- [CLR*] MC, D. Lundholm, N. Rougerie, in *Contemp. Math.*, **717** (2018);
Introduction:

- Almost-bosonic limit and the Average-Field (AF) functional \([LR]\);
- Minimization of the AF functional.

Main results \([CLR, CLR^*]\):

- Existence of the Thermodynamic Limit (TL) for homogeneous anyons;
- Local density approximation of the AF functional for trapped anyons in terms of a Thomas-Fermi (TF) effective energy;

Vortex structure (numerical simulations) \([CDLR]\).

Main References

- \([CLR^*]\) MC, D. Lundholm, N. Rougerie, in *Contemp. Math.*, 717 (2018);
Outline

1 Introduction:
 • Almost-bosonic limit and the Average-Field (AF) functional [LR];
 • Minimization of the AF functional.

2 Main results [CLR, CLR*]:
 • Existence of the Thermodynamic Limit (TL) for homogeneous anyons;
 • Local density approximation of the AF functional for trapped anyons in terms of a Thomas-Fermi (TF) effective energy;

3 Vortex structure (numerical simulations) [CDLR].

Main References

[CLR*] MC, D. Lundholm, N. Rougerie, in Contemp. Math., 717 (2018);
1 Introduction:
 - Almost-bosonic limit and the Average-Field (AF) functional [LR];
 - Minimization of the AF functional.

2 Main results [CLR, CLR*]:
 - Existence of the Thermodynamic Limit (TL) for homogeneous anyons;
 - Local density approximation of the AF functional for trapped anyons in terms of a Thomas-Fermi (TF) effective energy;

3 Vortex structure (numerical simulations) [CDLR].

Main References

[CLR*] MC, D. Lundholm, N. Rougerie, in Contemp. Math., 717 (2018);
Any anyonic wave function Ψ can be mapped onto a bosonic one $\tilde{\Psi} \in L^2_{\text{sym}}(\mathbb{R}^{2N})$ via the bosonization map

$$\Psi(x_1, \ldots, x_N) = \prod_{j<k} e^{i\alpha \phi_{jk}} \tilde{\Psi}(x_1, \ldots, x_N), \quad \phi_{jk} = \arg \frac{x_j - x_k}{|x_j - x_k|}.$$

Magnetic Gauge

On $L^2_{\text{sym}}(\mathbb{R}^{2N})$ the Schrödinger operator $\sum (-\nabla_j^2 + V(x_j))$ is mapped to

$$H_N = \sum_{j=1}^{N} \left[(-i \nabla_j + \alpha A_j)^2 + V(x_j) \right]$$

with Aharonov-Bohm magnetic potentials $A_j = A(x_j) := \sum_{k \neq j}^{N} \frac{(x_j - x_k)^\perp}{|x_j - x_k|^2}.$
Anyons

- Any anyonic wave function Ψ can be mapped onto a bosonic one $\tilde{\Psi} \in L^2_{\text{sym}}(\mathbb{R}^{2N})$ via the bosonization map

 $$\Psi(x_1, \ldots, x_N) = \prod_{j<k} e^{i\alpha \phi_{jk}} \tilde{\Psi}(x_1, \ldots, x_N), \quad \phi_{jk} = \arg \frac{x_j - x_k}{|x_j - x_k|}.$$

Magnetic Gauge

On $L^2_{\text{sym}}(\mathbb{R}^{2N})$ the Schrödinger operator $\sum (-\Delta_j + V(x_j))$ is mapped to

$$H_N = \sum_{j=1}^{N} \left[(-i\nabla_j + \alpha A_j)^2 + V(x_j) \right]$$

with Aharonov-Bohm magnetic potentials $A_j = A(x_j) := \sum_{k \neq j} \frac{(x_j - x_k)\perp}{|x_j - x_k|^2}$.
Any anyonic wave function Ψ can be mapped onto a bosonic one $\tilde{\Psi} \in L^2_{\text{sym}}(\mathbb{R}^{2N})$ via the bosonization map

$$\Psi(x_1, \ldots, x_N) = \prod_{j < k} e^{i\alpha \phi_{jk}} \tilde{\Psi}(x_1, \ldots, x_N), \quad \phi_{jk} = \arg \frac{x_j - x_k}{|x_j - x_k|}.$$

Magnetic Gauge

On $L^2_{\text{sym}}(\mathbb{R}^{2N})$ the Schrödinger operator $\sum (-\Delta_j + V(x_j))$ is mapped to

$$H_N = \sum_{j=1}^{N} \left[(-i\nabla_j + \alpha A_j)^2 + V(x_j) \right]$$

with Aharonov-Bohm magnetic potentials $A_j = A(x_j) := \sum_{k \neq j} \frac{(x_j - x_k)^\perp}{|x_j - x_k|^2}$.

AF APPROXIMATION

- If the number of anyons is larger, i.e., $N \to \infty$ but at the same time $\alpha \approx \beta N^{-1}$, then one expects a mean-field behavior, i.e.,

$$\alpha A_j = (N \alpha) \frac{1}{N} \sum_{k \neq j} (x_j - x_k) \frac{1}{|x_j - x_k|^2} \approx \beta \int_{\mathbb{R}^2} dy \frac{(x - y) \perp}{|x - y|^2} \rho(y),$$

with ρ the one-particle density associated to $\Phi \in L^2_{\text{sym}}(\mathbb{R}^{2N})$;

- We should then expect that

$$\frac{1}{N} \langle \Phi | H_N | \Phi \rangle \simeq \mathcal{E}_{\beta}^{\text{af}}[u],$$

for some $u \in L^2(\mathbb{R}^2)$ such that $|u|^2(x) = \rho(x)$ (self-consistency).

AF FUNCTIONAL

$$\mathcal{E}_{\beta}^{\text{af}}[u] = \int_{\mathbb{R}^2} dx \left\{ \left| (-i \nabla + \beta A[|u|^2]) u \right|^2 + V |u|^2 \right\}$$

with $A[\rho] = \nabla \perp (w_0 * \rho)$ and $w_0(x) := \log |x|$.
If the number of anyons is larger, i.e., \(N \to \infty \) but at the same time \(\alpha \approx \beta N^{-1} \), then one expects a mean-field behavior, i.e.,

\[
\alpha A_j = (N\alpha) \frac{1}{N} \sum_{k \neq j} \frac{(x_j - x_k) \perp}{|x_j - x_k|^2} \approx \beta \int_{\mathbb{R}^2} dy \frac{(x - y) \perp}{|x - y|^2} \rho(y),
\]

with \(\rho \) the one-particle density associated to \(\Phi \in L^2_{\text{sym}}(\mathbb{R}^{2N}) \);

We should then expect that

\[
\frac{1}{N} \langle \Phi | H_N | \Phi \rangle \approx \mathcal{E}^\text{af}_\beta[u],
\]

for some \(u \in L^2(\mathbb{R}^2) \) such that \(|u|^2(x) = \rho(x) \) (self-consistency).

The **AF Functional**

\[
\mathcal{E}^\text{af}_\beta[u] = \int_{\mathbb{R}^2} dx \left\{ \left| (-i \nabla + \beta A[|u|^2]) u \right|^2 + V |u|^2 \right\}
\]

with \(A[\rho] = \nabla^\perp (w_0 \ast \rho) \) and \(w_0(x) := \log |x| \).
If the number of anyons is larger, i.e., $N \to \infty$ but at the same time $\alpha \simeq \beta N^{-1}$, then one expects a mean-field behavior, i.e.,

$$\alpha A_j = (N\alpha) \frac{1}{N} \sum_{k \neq j} \frac{(x_j - x_k)^{\perp}}{|x_j - x_k|^2} \simeq \beta \int_{\mathbb{R}^2} dy \frac{(x - y)^{\perp}}{|x - y|^2} \rho(y),$$

with ρ the one-particle density associated to $\Phi \in L_{\text{sym}}^2(\mathbb{R}^{2N})$;

We should then expect that

$$\frac{1}{N} \langle \Phi | H_N | \Phi \rangle \simeq E_{\beta}^{\text{af}}[u],$$

for some $u \in L^2(\mathbb{R}^2)$ such that $|u|^2(x) = \rho(x)$ (self-consistency).

AF Functional

$$E_{\beta}^{\text{af}}[u] = \int_{\mathbb{R}^2} dx \left\{ |(-i \nabla + \beta A[|u|^2]) u|^2 + V |u|^2 \right\}$$

with $A[\rho] = \nabla^{\perp} (w_0 * \rho)$ and $w_0(x) := \log |x|$.
Minimization of E_{β}^{af} (I)

$E_{\beta}^{af}[u] = \int_{\mathbb{R}^2} dx \left\{ \left| (-i\nabla + \beta A[|u|^2]) u \right|^2 + V|u|^2 \right\}$, \quad $A[\rho] = \nabla \perp (w_0 * \rho)$

- Thanks to the symmetry $u, \beta \rightarrow u^*, -\beta$, we can assume $\beta \geq 0$;
- The domain of E_{β}^{af} is $\mathcal{D}[E_{\beta}^{af}] = H^1(\mathbb{R}^2)$, since by 3-body Hardy inequality
 \[\int_{\mathbb{R}^2} dx \ |A[|u|^2]|^2 |u|^2 \leq C \|u\|_{L^2(\mathbb{R}^2)}^4 \|\nabla |u||_{L^2(\mathbb{R}^2)}^2. \]

Proposition (Minimization [Lundholm, Rougerie ’15])

For any $\beta \geq 0$, there exists a minimizer $u_{\beta}^{af} \in \mathcal{D}[E_{\beta}^{af}]$ of the functional E_{β}^{af}:

$E_{\beta}^{af} := \inf_{\|u\|_2 = 1} E_{\beta}^{af}[u] = E_{\beta}^{af}[u_{\beta}^{af}]$.
Introduction

Minimization of $\mathcal{E}^{\text{af}}_\beta$ (I)

$\mathcal{E}^{\text{af}}_\beta[u] = \int_{\mathbb{R}^2} dx \left\{ \left| (-i\nabla + \beta A[|u|^2]) u \right|^2 + V|u|^2 \right\}, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho)$

- Thanks to the symmetry $u, \beta \rightarrow u^*, -\beta$, we can assume $\beta \geq 0$;
- The domain of $\mathcal{E}^{\text{af}}_\beta$ is $\mathcal{D}[\mathcal{E}^{\text{af}}] = H^1(\mathbb{R}^2)$, since by 3-body Hardy inequality

$$\int_{\mathbb{R}^2} dx \left| A[|u|^2] \right|^2 |u|^2 \leq C \|u\|_{L^2(\mathbb{R}^2)}^4 \|\nabla|u||_{L^2(\mathbb{R}^2)}^2.$$

Proposition (Minimization [Lundholm, Rougerie ’15])

For any $\beta \geq 0$, there exists a minimizer $u^{\text{af}}_\beta \in \mathcal{D}[\mathcal{E}^{\text{af}}_\beta]$ of the functional $\mathcal{E}^{\text{af}}_\beta$:

$$E^{\text{af}}_\beta := \inf_{\|u\|_2=1} \mathcal{E}^{\text{af}}_\beta[u] = \mathcal{E}^{\text{af}}_\beta[u^{\text{af}}_\beta].$$
Minimization of \mathcal{E}_{β}^{af} (II)

$$\mathcal{E}_{\beta}^{af}[u] = \int_{\mathbb{R}^2} dx \left\{ |(-i \nabla + \beta A[u^2]) u|^2 + V|u|^2 \right\}, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho)$$

Proposition (Minimization [Lundholm, Rougerie ’15])

For any $\beta \geq 0$, u_{β}^{af} solves the variational equation (semilinear with quintic nonlinearity in u and cubic nonlinearity in u^2 and ∇u)

$$\left[(-i \nabla + \beta A_{\beta}^{af})^2 + V - 2\beta \nabla^\perp w_0 \ast \left(\beta A_{\beta}^{af} |u_{\beta}^{af}|^2 + j_{\beta}^{af} \right) \right] u_{\beta}^{af} = \lambda u_{\beta}^{af},$$

where $A_{\beta}^{af} = A[|u_{\beta}^{af}|^2]$, $j_{\beta}^{af} = \frac{i}{2} u_{\beta}^{af} \nabla u_{\beta}^{af^*} + c.c.$ is the current and

$$\lambda = \int_{\mathbb{R}^2} dr \left\{ 1(|\nabla u_{\beta}^{af}|^2 + V|u_{\beta}^{af}|^2) + 2 \cdot 2\beta A_{\beta}^{af} \cdot j_{\beta}^{af} + 3\beta^2 |A_{\beta}^{af}|^2 |u_{\beta}^{af}|^2 \right\}.$$
Minimization of $\mathcal{E}^\text{af}_\beta$ (II)

\[\mathcal{E}^\text{af}_\beta[u] = \int_{\mathbb{R}^2} dx \left\{ \left| \left(-i \nabla + \beta A[u^2] \right) u \right|^2 + V|u|^2 \right\}, \quad A[\rho] = \nabla^\perp (w_0 * \rho) \]

Proposition (Minimization [Lundholm, Rougerie ’15])

For any $\beta \geq 0$, u^af_β solves the variational equation (semilinear with quintic nonlinearity in u and cubic nonlinearity in u^2 and ∇u)

\[\left[\left(-i \nabla + \beta A^\text{af}_\beta \right)^2 + V - 2\beta \nabla^\perp w_0 * \left(\beta A^\text{af}_\beta |u^\text{af}_\beta|^2 + j^\text{af}_\beta \right) \right] u^\text{af}_\beta = \lambda u^\text{af}_\beta, \]

where $A^\text{af}_\beta = A[|u^\text{af}_\beta|^2]$, $j^\text{af}_\beta = \frac{i}{2} u^\text{af}_\beta \nabla u^\text{af}_\beta^* + \text{c.c.}$ is the current and

\[\lambda = \int_{\mathbb{R}^2} dr \left\{ 1 \left(|\nabla u^\text{af}_\beta|^2 + V |u^\text{af}_\beta|^2 \right) + 2 \cdot 2\beta A^\text{af}_\beta \cdot j^\text{af}_\beta + 3\beta^2 |A^\text{af}_\beta|^2 |u^\text{af}_\beta|^2 \right\}. \]
Almost-bosonic Limit

- Consider $N \to \infty$ non-interacting anyons with statistics parameter $\alpha = \frac{\beta}{N-1}$ for some $\beta \in \mathbb{R}$, i.e., in the almost-bosonic limit;
- Assume that the anyons are extended, i.e., the fluxes are smeared over a disc of radius $R = N^{-\gamma}$.

Theorem (AF Approximation [Lundholm, Rougerie ’15])

Under the above hypothesis and assuming that V is trapping and $\gamma \leq \gamma_0$,

$$\lim_{N \to \infty} \frac{\inf \sigma(H_{N,R})}{N} = \inf_{\|u\|_2 = 1} E^\text{af}_\beta [u]$$

and the one-particle reduced density matrix of any sequence of ground states of $H_{N,R}$ converges to a convex combination of projectors onto AF minimizers.
Almost-bosonic Limit

- Consider $N \to \infty$ non-interacting anyons with statistics parameter $\alpha = \frac{\beta}{N - 1}$ for some $\beta \in \mathbb{R}$, i.e., in the almost-bosonic limit;
- Assume that the anyons are extended, i.e., the fluxes are smeared over a disc of radius $R = N^{-\gamma}$.

Theorem (AF Approximation [Lundholm, Rougerie ’15])

Under the above hypothesis and assuming that V is trapping and $\gamma \leq \gamma_0$,

$$
\lim_{N \to \infty} \inf \frac{\sigma(H_{N,R})}{N} = \inf_{\|u\|_2=1} \mathcal{E}_{\alpha}^{\text{af}}[u]
$$

and the one-particle reduced density matrix of any sequence of ground states of $H_{N,R}$ converges to a convex combination of projectors onto AF minimizers.
The AF approximation is used heavily in physics literature, but typically the nonlinearity is resolved by picking a given ρ (usually the constant density);

As expected, when $\beta \to 0$, the anyonic gas behaves like a Bose gas.

More interesting is the regime $\beta \to \infty$, i.e., “less-bosonic” anyons:

- what is the energy asymptotics of E^{af}_β?
- is $|u^{af}_\beta|^2$ almost constant in the homogeneous case, i.e., for $V = 0$ and confinement to a bounded region?
- how does the inhomogeneity of V modify the density $|u^{af}_\beta|^2$?
- what is u^{af}_β like? in particular how does its phase behave?

The AF functional is not the usual mean-field-type energy (e.g., Hartree or Gross-Pitaevskii), since the nonlinearity depends on the density but acts on the phase of u via a magnetic field.
Motivations

The AF approximation is used heavily in physics literature, but typically the nonlinearity is resolved by picking a given ρ (usually the constant density);

As expected, when $\beta \to 0$, the anyonic gas behaves like a Bose gas.

More interesting is the regime $\beta \to \infty$, i.e., “less-bosonic” anyons:

- what is the energy asymptotics of E_{β}^{af}?
- is $|u_{\beta}^{af}|^2$ almost constant in the homogeneous case, i.e., for $V = 0$ and confinement to a bounded region?
- how does the inhomogeneity of V modify the density $|u_{\beta}^{af}|^2$?
- what is u_{β}^{af} like? in particular how does its phase behave?

The AF functional is not the usual mean-field-type energy (e.g., Hartree or Gross-Pitaevskii), since the nonlinearity depends on the density but acts on the phase of u via a magnetic field.
Motivations

- The AF approximation is used heavily in physics literature, but typically the nonlinearity is resolved by picking a given ρ (usually the constant density);

- As expected, when $\beta \to 0$, the anyonic gas behaves like a Bose gas.

- More interesting is the regime $\beta \to \infty$, i.e., “less-bosonic” anyons:
 - what is the energy asymptotics of E^af_β?
 - is $|u^\text{af}_\beta|^2$ almost constant in the homogeneous case, i.e., for $V = 0$ and confinement to a bounded region?
 - how does the inhomogeneity of V modify the density $|u^\text{af}_\beta|^2$?
 - what is u^af_β like? in particular how does its phase behave?

- The AF functional is not the usual mean-field-type energy (e.g., Hartree or Gross-Pitaevskii), since the nonlinearity depends on the density but acts on the phase of u via a magnetic field.
The AF approximation is used heavily in physics literature, but typically the nonlinearity is resolved by picking a given \(\rho \) (usually the constant density);

- As expected, when \(\beta \to 0 \), the anyonic gas behaves like a Bose gas.
- More interesting is the regime \(\beta \to \infty \), i.e., “less-bosonic” anyons:
 - what is the energy asymptotics of \(E^\text{af}_\beta \)?
 - is \(|u^{\text{af}}_\beta|^2 \) almost constant in the homogeneous case, i.e., for \(V = 0 \) and confinement to a bounded region?
 - how does the inhomogeneity of \(V \) modify the density \(|u^{\text{af}}_\beta|^2 \)?
 - what is \(u^{\text{af}}_\beta \) like? in particular how does its phase behave?

The AF functional is not the usual mean-field-type energy (e.g., Hartree or Gross-Pitaevskii), since the nonlinearity depends on the density but acts on the phase of \(u \) via a magnetic field.
Homogeneous Gas

- \(\Omega \subset \mathbb{R}^2 \) bounded and simply connected with Lipschitz boundary;
- We consider the following two minimization problems

\[
E_{N/D}(\Omega, \beta, M) := \inf_{u \in H^1_0(\Omega), \|u\|_2 = M} \int_{\Omega} \left| (-i \nabla + \beta A |u|^2) u \right|^2.
\]

- We want to study the limit \(\beta \to \infty \) of \(E_{N/D}(\Omega, \beta, M) / \beta \);
- The above limit is equivalent to the TD limit (\(\beta, \rho \in \mathbb{R}^+ \) fixed)

\[
\lim_{L \to \infty} \frac{E_{N/D}(L\Omega, \beta, \rho L^2 |\Omega|)}{L^2 |\Omega|}.
\]

Lemma (Scaling Laws)

For any \(\lambda, \mu \in \mathbb{R}^+ \), \(E_{N/D}(\Omega, \beta, M) = \frac{1}{\lambda^2} E_{N/D} \left(\mu \Omega, \frac{\beta}{\lambda^2 \mu^2}, \lambda^2 \mu^2 M \right) \).
Main Results – Homogeneous Gas

Homogeneous Gas

- \(\Omega \subset \mathbb{R}^2 \) bounded and simply connected with Lipschitz boundary;
- We consider the following two minimization problems

\[
E_{N/D}(\Omega, \beta, M) := \inf_{u \in H^1_0(\Omega), \|u\|_2 = M} \int_{\Omega} \left| (-i \nabla + \beta A|u|^2) u \right|^2.
\]

- We want to study the limit \(\beta \to \infty \) of \(E_{N/D}(\Omega, \beta, M)/\beta \);
- The above limit is equivalent to the TD limit (\(\beta, \rho \in \mathbb{R}^+ \) fixed)

\[
\lim_{L \to \infty} \frac{E_{N/D}(L\Omega, \beta, \rho L^2|\Omega|)}{L^2|\Omega|}.
\]

Lemma (Scaling Laws)

For any \(\lambda, \mu \in \mathbb{R}^+ \), \(E_{N/D}(\Omega, \beta, M) = \frac{1}{\lambda^2} E_{N/D} \left(\mu \Omega, \frac{\beta}{\lambda^2 \mu^2}, \lambda^2 \mu^2 M \right) \).
Main Results – Homogeneous Gas

Homogeneous Gas

- \(\Omega \subset \mathbb{R}^2 \) bounded and simply connected with Lipschitz boundary;
- We consider the following two minimization problems
 \[
 E_{N/D}(\Omega, \beta, M) := \inf_{u \in H^1_0(\Omega), \|u\|_2 = M} \int_{\Omega} dx \left| (-i \nabla + \beta A[|u|^2]) u \right|^2.
 \]
- We want to study the limit \(\beta \to \infty \) of \(E_{N/D}(\Omega, \beta, M)/\beta \);
- The above limit is equivalent to the TD limit (\(\beta, \rho \in \mathbb{R}^+ \) fixed)
 \[
 \lim_{L \to \infty} \frac{E_{N/D}(L\Omega, \beta, \rho L^2|\Omega|)}{L^2|\Omega|}.
 \]

Lemma (Scaling Laws)

For any \(\lambda, \mu \in \mathbb{R}^+ \),

\[
E_{N/D}(\Omega, \beta, M) = \frac{1}{\lambda^2} E_{N/D} \left(\mu \Omega, \frac{\beta}{\lambda^2 \mu^2}, \lambda^2 \mu^2 M \right).
\]
Heuristics ($\beta \gg 1$)

Numerical simulations: $|u^\text{af}_\beta|^2$ (square trap with Dirichlet b.c.) for $\beta = 10, 30, 120$.

- In the **homogeneous** case, $|u^\text{af}_\beta|^2$ can be constant only in a very weak sense (say in L^p, $p < \infty$ not too large);
- The phase of u^af_β contains **vortices** (with $\# \sim \beta$) almost uniformly distributed with average distance $\sim \frac{1}{\sqrt{\beta}}$ (Abrikosov lattice?), in order to compensate the huge magnetic field.
Theorem (∃ TD Limit [MC, Lundholm, Rougerie ‘16])

Under the above hypothesis on Ω and for any $\beta, \rho \in \mathbb{R}^+$, the limits

$$e(\beta, \rho) := \lim_{L \to \infty} \frac{E_{N/D}(L\Omega, \beta, \rho L^2|\Omega|)}{L^2|\Omega|} = \beta|\Omega| \lim_{\beta \to \infty} \frac{E_{N/D}(\Omega, \tilde{\beta}, \rho)}{\tilde{\beta}}$$

exist, coincide and are independent of Ω. Moreover

$$e(\beta, \rho) = \beta \rho^2 e(1, 1)$$

The scaling property of $e(\beta, \rho)$ is a direct consequence of the scaling law mentioned before. Moreover $e(1, 1)$ is a finite quantity such that $e(1, 1) \geq 2\pi$.
Main Results – Homogeneous Gas

TD Limit

Theorem (∃ TD Limit [MC, Lundholm, Rougerie ‘16])

Under the above hypothesis on Ω and for any $\beta, \rho \in \mathbb{R}^+$, the limits

$$e(\beta, \rho) := \lim_{L \to \infty} \frac{E_{N/D}(L\Omega, \beta, \rho L^2|\Omega|)}{L^2|\Omega|} = \beta|\Omega| \lim_{\tilde{\beta} \to \infty} \frac{E_{N/D}(\Omega, \tilde{\beta}, \rho)}{\tilde{\beta}}$$

exist, coincide and are independent of Ω. Moreover

$$e(\beta, \rho) = \beta \rho^2 e(1, 1)$$

- The scaling property of $e(\beta, \rho)$ is a direct consequence of the scaling law mentioned before. Moreover $e(1, 1)$ is a finite quantity such that $e(1, 1) \geq 2\pi$.

M. Correggi (Roma 1) Average-Field Functional Nordita 12/3/2019
Main Results – Homogeneous Gas

Sketch of the Proof (I)

1. ∃ of TD limit when Ω is a unit square with Dirichlet b.c.;
2. $E_D(LQ, \beta, \rho L^2) - E_N(LQ, \beta, \rho L^2) = o(L^2)$ for any domain Ω (IMS);
3. ∃ of TD for general domains Ω with Dirichlet b.c..

1. TD limit for Dirichlet b.c.

- Key observation: the magnetic field generated by a bounded region can be gauged away outside (Newton’s theorem);
- Pick a smooth and radial f with $\text{supp}(f) \subset B_\delta(0)$ and $N \sim L^2$ points so that $|x_j - x_k| > 2\delta$: consider then the trial state
 \[u(x) = \sum_{j=1}^{N} f(x - x_j)e^{-i\phi_j}, \quad \|u\|^2_2 = N \|f\|^2_2; \]
- In $\{|x - x_j| \leq \delta\}$ the magnetic field generated by the other discs is
 \[\sum_{k \neq j} \nabla_{\perp} (w_0 * |f(x - x_k)|^2) \simeq \|f\|^2_2 \nabla \sum_{k \neq j} \arg(z - z_k) =: \nabla \phi_j. \]
Main Results – Homogeneous Gas

Sketch of the Proof (I)

1. \(\exists \) of TD limit when \(\Omega \) is a unit square with Dirichlet b.c.;
2. \(E_D(LQ, \beta, \rho L^2) - E_N(LQ, \beta, \rho L^2) = o(L^2) \) for any domain \(\Omega \) (IMS);
3. \(\exists \) of TD for general domains \(\Omega \) with Dirichlet b.c..

1. **TD limit for Dirichlet b.c.**

 - Key observation: the magnetic field generated by a bounded region can be gauged away outside (Newton’s theorem);
 - Pick a smooth and radial \(f \) with \(\text{supp}(f) \subset B_\delta(0) \) and \(N \sim L^2 \) points so that \(|x_j - x_k| > 2\delta \): consider then the trial state

 \[
 u(x) = \sum_{j=1}^{N} f(x - x_j) e^{-i\phi_j}, \quad \|u\|^2_2 = N \|f\|^2_2;
 \]

 - In \(\{|x - x_j| \leq \delta\} \) the magnetic field generated by the other discs is

 \[
 \sum_{k \neq j} \nabla \perp (w_0 * |f(x - x_k)|^2) \simeq \|f\|^2_2 \nabla \sum_{k \neq j} \arg(z - z_k) =: \nabla \phi_j.
 \]
SKETCH OF THE PROOF (I)

1. ∃ of TD limit when Ω is a unit square with Dirichlet b.c.;
2. $E_D(LQ, \beta, \rho L^2) - E_N(LQ, \beta, \rho L^2) = o(L^2)$ for any domain Ω (IMS);
3. ∃ of TD for general domains Ω with Dirichlet b.c..

1. TD LIMIT FOR DIRICHLET B.C.

- Key observation: the magnetic field generated by a bounded region can be gauged away outside (Newton’s theorem);
- Pick a smooth and radial f with $\text{supp}(f) \subset B_\delta(0)$ and $N \sim L^2$ points so that $|x_j - x_k| > 2\delta$: consider then the trial state
 \[
 u(x) = \sum_{j=1}^{N} f(x - x_j)e^{-i\phi_j}, \quad \|u\|_2^2 = N \|f\|_2^2;
 \]
- In $\{|x - x_j| \leq \delta\}$ the magnetic field generated by the other discs is
 \[
 \sum_{k \neq j} \nabla \perp (w_0 * |f(x - x_k)|^2) \simeq \|f\|_2^2 \nabla \sum_{k \neq j} \text{arg}(z - z_k) =: \nabla \phi_j.
 \]
Sketch of the Proof (II)

\[\mathcal{E}_\beta^{af}[u] = \int_{L\Omega} dx \left| (-i\nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho), \quad \|u\|_2^2 = \rho L^2 \]

① TD limit for squares with Dirichlet b.c.

- By testing \(\mathcal{E}_\beta^{af} \) on \(u_{\text{trial}} \), one gets the sum of the energies in each \(B_\delta(x_j) \), which yields the upper bound \(E_{N/D} \leq CL^2 \).

- A trivial lower bound is given via the inequality (for any \(u \in H^1_0(\Omega) \))

\[
\int_\Omega dx \left| (-i\nabla + \beta A) u \right|^2 \geq \beta \int_\Omega dx \text{curl} A \left| u \right|^2
\]

which leads to the lower bound \(E_D \geq 2\pi\beta\rho^2L^2 \), since

\[
\text{curl} A \left[|u|^2 \right] = 2\pi |u|^2
\]

- Decompose the square into small squares and use a trial state obtained by gluing together the Dirichlet minimizers in each smaller square.
\[\mathcal{E}_\beta^{af}[u] = \int_{L\Omega} d\mathbf{x} \left| (-i\nabla + \beta \mathbf{A}[|u|^2]) u \right|^2, \quad \mathbf{A}[\rho] = \nabla^\perp (w_0 \ast \rho), \quad \|u\|^2_2 = \rho L^2 \]

① ∃ TD limit for squares with Dirichlet b.c.

- By testing \(\mathcal{E}_\beta^{af} \) on \(u_{\text{trial}} \), one gets the sum of the energies in each \(B_\delta(x_j) \), which yields the upper bound \(E_{N/D} \leq CL^2 \).
- A trivial lower bound is given via the inequality (for any \(u \in H_0^1(\Omega) \))

\[\int_{\Omega} d\mathbf{x} \left| (-i\nabla + \beta \mathbf{A}) u \right|^2 \geq \beta \int_{\Omega} d\mathbf{x} \text{curl} \mathbf{A} |u|^2 \]

which leads to the lower bound \(E_D \geq 2\pi \beta \rho^2 L^2 \), since

\[\text{curl} \mathbf{A} \left[|u|^2 \right] = 2\pi |u|^2 \]

- Decompose the square into small squares and use a trial state obtained by gluing together the Dirichlet minimizers in each smaller square.
\[E_{\beta}^{af}[u] = \int_{L\Omega} dx \left| (-i\nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho), \quad \|u\|^2 = \rho L^2 \]

\[\exists \text{ TD limit for squares with Dirichlet b.c.} \]

- By testing \(E_{\beta}^{af} \) on \(u_{\text{trial}} \), one gets the sum of the energies in each \(B_\delta(x_j) \), which yields the upper bound \(E_{N/D} \leq CL^2 \).

- A trivial lower bound is given via the inequality (for any \(u \in H^1_0(\Omega) \))

\[
\int_{\Omega} dx \left| (-i\nabla + \beta A[|u|^2]) u \right|^2 \geq 2\pi\beta \int_{\Omega} dx |u|^4
\]

which leads to the lower bound \(E_D \geq 2\pi\beta \rho^2 L^2 \), since

\[
\text{curl} A[|u|^2] = 2\pi |u|^2
\]

- Decompose the square into small squares and use a trial state obtained by gluing together the Dirichlet minimizers in each smaller square.
Sketch of the Proof (II)

\[\mathcal{E}_{\beta}^{af}[u] = \int_{L\Omega} dx \left| (-i\nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho), \quad \|u\|^2_2 = \rho L^2 \]

1. **TD limit for squares with Dirichlet b.c.**

 - By testing \(\mathcal{E}_{\beta}^{af} \) on \(u_{\text{trial}} \), one gets the sum of the energies in each \(B_\delta(x_j) \), which yields the upper bound \(E_{N/D} \leq CL^2 \).
 - A trivial lower bound is given via the inequality (for any \(u \in H^1_0(\Omega) \))
 \[\int_{\Omega} dx \left| (-i\nabla + \beta A[|u|^2]) u \right|^2 \geq 2\pi\beta L^{-2} \|u\|^4_2 \]

 which leads to the lower bound \(E_D \geq 2\pi\beta \rho^2 L^2 \), since
 \[\text{curl} A[|u|^2] = 2\pi |u|^2 \]

 - Decompose the square into small squares and use a trial state obtained by gluing together the Dirichlet minimizers in each smaller square.
Main Results – Homogeneous Gas

Sketch of the Proof (III)

\[E_{\beta}^{af}[u] = \int_{L\Omega} dx \left| (-i\nabla + \beta A[|u|^2])u \right|^2, \quad A[\rho] = \nabla \perp (w_0 * \rho), \quad \|u\|_2^2 = \rho L^2 \]

2 Dirichlet vs. Neumann in squares

- Use a refined version of the IMS formula to estimate the mass well inside the square and the contribution of the boundary layer, to get a bound matching the obvious \(E_N \leq E_D \).
- Error of order \(L^{12/7 + \epsilon} \ll L^2 \) but \(\gg L \) (not optimal).

3 General domains

- Tile the domain with squares and use the Dirichlet minimizers in the upper bound (gauging away the magnetic field as before) and the Neumann minimizer in the lower bound.
Sketch of the Proof (III)

\[\mathcal{E}_\beta^{af}[u] = \int_{L\Omega} dx \left| (-i\nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 * \rho), \quad \|u\|^2_2 = \rho L^2 \]

2. Dirichlet vs. Neumann in squares

- Use a refined version of the IMS formula to estimate the mass well inside the square and the contribution of the boundary layer, to get a bound matching the obvious \(E_N \leq E_D \).
- Error of order \(L^{12/7+\epsilon} \ll L^2 \) but \(\gg L \) (not optimal).

3. General domains

- Tile the domain with squares and use the Dirichlet minimizers in the upper bound (gauging away the magnetic field as before) and the Neumann minimizer in the lower bound.
Sketch of the Proof (III)

\[E_{\beta}^{af}[u] = \int_{L\Omega} dx \left| (-i\nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla_{\perp} (w_0 \ast \rho), \quad \|u\|^2_2 = \rho L^2 \]

2 Dirichlet vs. Neumann in squares

- Use a refined version of the IMS formula to estimate the mass well inside the square and the contribution of the boundary layer, to get a bound matching the obvious \(E_N \leq E_D \).
- Error of order \(L^{12/7+\varepsilon} \ll L^2 \) but \(\gg L \) (not optimal).

3 General domains

- Tile the domain with squares and use the Dirichlet minimizers in the upper bound (gauging away the magnetic field as before) and the Neumann minimizer in the lower bound.
Bounds on $e(1, 1)$

- It is easy to see that $e(1, 1)$ is bounded.
- The inequality $\|(-i\nabla + A |u|^2) u\|_2^2 \geq 2\pi$ implies that $e(1, 1) \geq 2\pi$.
Bounds on $e(1,1)$

- It is easy to see that $e(1,1)$ is bounded.
- The inequality $\left\| \left(-i \nabla + A \left[|u|^2 \right] \right) u \right\|_2 \geq 2\pi$ implies that $e(1,1) \geq 2\pi$.
Main Results – Homogeneous Gas

\[e(1, 1) \]

Bounds on \(e(1, 1) \)

- It is easy to see that \(e(1, 1) \) is bounded.
- The inequality \(\| (-i \nabla + A [|u|^2]) u \|_2^2 \geq 2\pi \) implies that \(e(1, 1) \geq 2\pi \).

Numerical computation of \(e(1, 1)/(2\pi) \) using harmonically trapped anyons for increasing values of \(\beta \).
Main Results – Trapped Gas

Trapped Anyons

\[\mathcal{E}^{af}_\beta[u] = \int_{\mathbb{R}^2} dx \left\{ \left| (-i \nabla + \beta A[|u|^2]) u \right|^2 + V|u|^2 \right\}, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho) \]

- Let \(V(x) \) be a smooth **homogenous** potential of degree \(s \geq 1 \), i.e.,
 \[V(\lambda x) = \lambda^s V(x), \quad V \in C^\infty(\mathbb{R}^2), \]
 and such that \(\min_{|x| \geq R} V(x) \xrightarrow{R \to \infty} +\infty \) (**trapping potential**).

- We consider the minimization problem for \(\beta \gg 1 \)
 \[E^{af}_\beta = \inf_{u \in \mathcal{D}[\mathcal{E}^{af}], \|u\|_2=1} \mathcal{E}^{af}_\beta[u], \]
 with \(\mathcal{D}[\mathcal{E}^{af}] = H^1(\mathbb{R}^2) \cap \{ V|u|^2 \in L^1(\mathbb{R}^2) \} \) and \(u^{af}_\beta \) any minimizer.

- Since \(B(x) = \beta \text{curl} A[\rho] = 2\pi \beta \rho(x) \), if one could minimize the magnetic energy alone, the effective functional for \(\beta \gg 1 \) should be
 \[\int_{\mathbb{R}^2} dx \{ B(x) + V(x) \} \rho = \int_{\mathbb{R}^2} dx \left[2\pi \beta \rho^2 + V(x) \rho \right]. \]
Trapped Anyons

\[\mathcal{E}_{\beta}^{af}[u] = \int_{\mathbb{R}^2} \text{d}x \left\{ \left| \left(-i \nabla + \beta A[|u|^2] \right) u \right|^2 + V|u|^2 \right\}, \quad A[\rho] = \nabla^\perp (w_0 * \rho) \]

- Let \(V(x) \) be a smooth homogenous potential of degree \(s \geq 1 \), i.e.,
 \[V(\lambda x) = \lambda^s V(x), \quad V \in C^\infty(\mathbb{R}^2), \]
 and such that \(\min_{|x| \geq R} V(x) \xrightarrow{R \to \infty} +\infty \) (trapping potential).

- We consider the minimization problem for \(\beta \gg 1 \)
 \[E_{\beta}^{af} = \inf_{u \in \mathcal{D}[\mathcal{E}^{af}], \|u\|_2=1} \mathcal{E}_{\beta}^{af}[u], \]
 with \(\mathcal{D}[\mathcal{E}^{af}] = H^1(\mathbb{R}^2) \cap \{ V|u|^2 \in L^1(\mathbb{R}^2) \} \) and \(u^{af}_\beta \) any minimizer.

- Since \(B(x) = \beta \text{curl} A[\rho] = 2\pi \beta \rho(x) \), if one could minimize the magnetic energy alone, the effective functional for \(\beta \gg 1 \) should be
 \[\int_{\mathbb{R}^2} \text{d}x \left[B(x) + V(x) \right] \rho = \int_{\mathbb{R}^2} \text{d}x \left[2\pi \beta \rho^2 + V(x)\rho \right]. \]
TF APPROXIMATION

TF FUNCTIONAL

The limiting functional for \mathcal{E}_β^{af} is

$$
\mathcal{E}_\beta^{TF}[\rho] := \int_{\mathbb{R}^2} dx \left[e(1, 1) \beta \rho^2(x) + V(x) \rho(x) \right]
$$

with ground state energy $E^{TF}_\beta := \inf_{\|\rho\|_1=1} \mathcal{E}_\beta^{TF}[\rho]$ and minimizer $\rho_{\beta}^{TF}(x)$.

- Under the hypothesis we made on V, we have
 $$
 E^{TF}_\beta = \beta^{s+2} E^{TF}_1, \quad \rho^{TF}_\beta(x) = \beta^{-\frac{2}{s+2}} \rho^{TF}_1 \left(\beta^{-\frac{1}{s+2}} x \right).
 $$

- Given the chemical potential $\mu^{TF}_1 := E^{TF}_1 + e(1, 1) \|\rho^{TF}_1\|_2^2$, we have
 $$
 \rho^{TF}_1(x) = \frac{1}{2e(1,1)} \left[\mu^{TF}_1 - V(x) \right]_+.
 $$
TF Approximation

TF Functional

The limiting functional for \mathcal{E}_{β}^{af} is

$$\mathcal{E}_{\beta}^{TF}[\rho] := \int_{\mathbb{R}^2} dx \left[e(1, 1) \beta \rho^2(x) + V(x) \rho(x) \right]$$

with ground state energy $E_{\beta}^{TF} := \inf_{\|\rho\|_1=1} \mathcal{E}_{\beta}^{TF}[\rho]$ and minimizer $\rho_{\beta}^{TF}(x)$.

- Under the hypothesis we made on V, we have
 $$E_{\beta}^{TF} = \beta^{s+2} E_{1}^{TF}, \quad \rho_{\beta}^{TF}(x) = \beta^{-\frac{2}{s+2}} \rho_{1}^{TF} \left(\beta^{-\frac{1}{s+2}} x \right).$$

- Given the chemical potential $\mu_{1}^{TF} := E_{1}^{TF} + e(1, 1) \|\rho_{1}^{TF}\|_2^2$, we have
 $$\rho_{1}^{TF}(x) = \frac{1}{2e(1,1)} \left[\mu_{1}^{TF} - V(x) \right]_+.$$
Local Density Approximation (I)

Theorem (TF Approx. [MC, Lundholm, Rougerie ‘16])

Under the hypothesis on V and for any $R > 0$

\[
\lim_{\beta \to \infty} \frac{E_{\beta}^{af}}{\beta s + 2 E_{1}^{TF}} = 1, \quad \beta s + 2 |u_{\beta}^{af}|^2 \left(\beta \frac{1}{s+2} x \right) \xrightarrow{\beta \to \infty} \rho_{1}^{TF}(x)
\]

in the dual space of Lipschitz functions $C_{0,1}^{0,1}(\mathcal{B}_R)$ vanishing on $\partial \mathcal{B}_R$.

- The result applies to more general potentials, e.g., asymptotically homogeneous potentials;
- The homogeneous case (confinement to Ω, $V = 0$) is included: we recover the asymptotics $E_{N/D}(\Omega, \beta, 1)/\beta \to e(1, 1)/|\Omega|$ and

\[
|u_{\beta}^{af}|^2 (x) \xrightarrow{\beta \to \infty} \rho_{1}^{TF}(x) \equiv |\Omega|^{-1/2}.
\]
Local Density Approximation (I)

Theorem (TF Approx. [MC, Lundholm, Rougerie ’16])

Under the hypothesis on V and for any $R > 0$

\[
\lim_{\beta \to \infty} \frac{E_{\beta}^{af}}{\beta^{\frac{s}{s+2}} E_{1}^{TF}} = 1, \quad \beta^{\frac{2}{s+2}} |u_{\beta}^{af}|^{2} \left(\beta^{\frac{1}{s+2}} x \right) \frac{(C_{0,1}^{0,1}(B_{R}))^{*}}{\beta \to \infty} \to \rho_{1}^{TF}(x)
\]

in the dual space of Lipschitz functions $C_{0,1}^{0,1}(B_{R})$ vanishing on ∂B_{R}.

- The result applies to more general potentials, e.g., asymptotically homogeneous potentials;
- The homogeneous case (confinement to Ω, $V = 0$) is included: we recover the asymptotics $E_{N/D}(\Omega, \beta, 1)/\beta \to e(1, 1)/|\Omega|$ and

\[
|u_{\beta}^{af}|^{2} (x) \to \frac{(C_{0,1}^{0,1}(\Omega))^{*}}{\beta \to \infty} \rho_{1}^{TF}(x) \equiv |\Omega|^{-1/2}.
\]
Theoretical (red) and numerical (blue) density profiles for $V(x) = |x|^2$, $\beta = 90$ (left) and $V(x) = |x|^4$, $\beta = 140$ (right).
Average Density

Theoretical (red) and numerical (blue) density profiles for $V(x) = |x|^2$, $\beta = 90$ (left) and $V(x) = |x|^4$, $\beta = 140$ (right).
Main Results – Trapped Gas

Local Density Approximation (II)

\[\mathcal{E}_{\beta}^{af}[u] = \int_{\Omega} dx \left| (-i \nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho), \quad \|u\|_{2}^2 = 1 \]

Theorem (LDA [MC, Lundholm, Rougerie '16])

In the homogeneous case, for any \(x_0 \in \Omega^\circ \) and any \(R > 0 \),

\[\left| u_{\beta, N/D}^{af} (x_0 + \beta^{-\eta} \cdot) \left(C_{0,1}^0(\mathcal{B}_R)^* \right) \right|_{\beta \to +\infty} \xrightarrow{\beta \to +\infty} \left| \Omega \right|^{-1/2}, \quad \text{for any } 0 < \eta < \frac{1}{14}. \]

- We conjecture that \(\rho_{\beta}^{af} \) is well approximated in weak sense by a constant on any scale smaller than 1 up to \(1/\sqrt{\beta} \);
- Analogous result for trapped anyons...
Local Density Approximation (II)

\[\mathcal{E}^{\text{af}}[u] = \int_{\Omega} dx \left| (-i \nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 \ast \rho), \quad \|u\|_2^2 = 1 \]

Theorem (LDA [MC, Lundholm, Rougerie ‘16])

In the homogeneous case, for any \(x_0 \in \Omega^o \) and any \(R > 0 \),

\[\left| u^{\text{af}}_{\beta, \text{N/D}} (x_0 + \beta^{-\eta} \cdot) \right| \xrightarrow{\beta \to +\infty} \left| \Omega \right|^{-1/2}, \quad \text{for any } 0 < \eta < \frac{1}{14}. \]

- We conjecture that \(\rho^{\text{af}}_{\beta} \) is well approximated in weak sense by a constant on any scale smaller than 1 up to \(1/\sqrt{\beta} \);
- Analogous result for trapped anyons...
In presence of a large magnetic field of order $\beta \gg 1$, vortices can compensate for it: where $|u| \neq 0$, we can set $u = |u|e^{i\phi}$ and

$$|(-i\nabla + \beta A[|u|^2])u|^2 = |\nabla|u|^2| + |u|^2|\nabla\phi + \beta A|^2.$$

Hence several point singularities of ϕ can “reconstruct” βA;

- Since $|u^\text{af}_\beta|$ is approx. constant (on the scale 1), vortices must be uniformly distributed (on a smaller scale) in the homogeneous case.
- The number of vortices is $\sim \beta$ and their average distance is $\sim 1/\sqrt{\beta}$.
- In presence of a trapping potential some inhomogeneity in the vortex distribution should appear.
Vortex Structure of u^af_β (I)

$$\mathcal{E}^\text{af}_\beta[u] = \int_\Omega \text{d}x \left| (-i\nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 * \rho), \quad ||u||_2^2 = 1$$

Why vortices?

- In presence of a large magnetic field of order $\beta \gg 1$, vortices can compensate for it: where $|u| \neq 0$, we can set $u = |u|e^{i\phi}$ and

$$\left| (-i\nabla + \beta A) u \right|^2 = |\nabla u|^2 + |u|^2 |\nabla \phi + \beta A|^2.$$

 Hence several point singularities of ϕ can “reconstruct” βA;

- Since $|u^\text{af}_\beta|$ is approx. constant (on the scale 1), vortices must be uniformly distributed (on a smaller scale) in the homogeneous case.

- The number of vortices is $\sim \beta$ and their average distance is $\sim 1/\sqrt{\beta}$.

- In presence of a trapping potential some inhomogeneity in the vortex distribution should appear.
Vortex Structure of u^{af}_{β} (I)

$$\mathcal{E}^{\text{af}}_{\beta}[u] = \int_{\Omega} dx \left| (-i \nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla \perp (w_0 \ast \rho), \quad ||u||^2_2 = 1$$

Why vortices?

- In presence of a large magnetic field of order $\beta \gg 1$, vortices can compensate for it: where $|u| \neq 0$, we can set $u = |u| e^{i\phi}$ and
 $$\left| (-i \nabla + \beta A) u \right|^2 = |\nabla |u||^2 + |u|^2 |\nabla \phi + \beta A|^2.$$
 Hence several point singularities of ϕ can “reconstruct” βA;

- Since $|u^{\text{af}}_{\beta}|$ is approx. constant (on the scale 1), vortices must be uniformly distributed (on a smaller scale) in the homogeneous case.

- The number of vortices is $\sim \beta$ and their average distance is $\sim 1/\sqrt{\beta}$.

- In presence of a trapping potential some inhomogeneity in the vortex distribution should appear.
Vortex Structure of u^{af}_β (I)

$$\mathcal{E}^{af}_\beta[u] = \int_\Omega dx \left| (-i \nabla + \beta A[|u|^2]) u \right|^2, \quad A[\rho] = \nabla^\perp (w_0 * \rho), \quad ||u||_2^2 = 1$$

Why vortices?

- In presence of a large magnetic field of order $\beta \gg 1$, vortices can compensate for it: where $|u| \neq 0$, we can set $u = |u|e^{i\phi}$ and

$$\left| (-i \nabla + \beta A) u \right|^2 = |\nabla |u||^2 + |u|^2 |\nabla \phi + \beta A|^2.$$

Hence several point singularities of ϕ can “reconstruct” βA;

- Since $|u^{af}_\beta|$ is approx. constant (on the scale 1), vortices must be uniformly distributed (on a smaller scale) in the homogeneous case.

- The number of vortices is $\sim \beta$ and their average distance is $\sim 1/\sqrt{\beta}$.

- In presence of a trapping potential some inhomogeneity in the vortex distribution should appear.
Modulus and phase of u^a_f in a square trap with Dirichlet boundary conditions for $\beta = 130$.
Modulus and phase of u_{af}^β in a square trap with Dirichlet boundary conditions for $\beta = 230$.
Modulus and phase of u^a_{β} in a harmonic trap for $\beta = 25$.
Modulus and phase of u^a_{β} in a harmonic trap for $\beta = 140$.
Modulus and phase of u^a_f in a quartic trap for $\beta = 90$.
Modulus and phase of u_{β}^{af} in a quartic trap for $\beta = 195$.
It is clear from these numerical experiments that u^af_{β} is expected to carry a large number of vortices.

Vortices are expected to be distributed according to the density $|u^\text{af}_{\beta}|^2$ and therefore their distribution is inhomogeneous in presence of a trapping potential.

To check whether our expectations fit with the numerical data we can compare the number of vortices $N^\text{num}_v(r)$ in a disc of radius r (counting the zeros of the wave function) with the expected value...

Minimizing the kinetic term $\rho |\nabla \phi + \beta A[\rho]|^2$ yields a vorticity density

$$\mu_v = \text{curl} \nabla \phi \simeq -2\pi \beta |u^\text{af}_{\beta}|^2,$$

which implies

$$N^\text{th}_v(r) = 4\pi^2 \beta \int_0^r dr \ r \ \rho^\text{TF}_\beta(r).$$
It is clear from these numerical experiments that u^af_β is expected to carry a large number of vortices.

Vortices are expected to be distributed according to the density $|u^\text{af}_\beta|^2$ and therefore their distribution is inhomogeneous in presence of a trapping potential.

To check whether our expectations fit with the numerical data we can compare the number of vortices $N_v^{\text{num}}(r)$ in a disc of radius r (counting the zeros of the wave function) with the expected value...

Minimizing the kinetic term $\rho |\nabla \phi + \beta A[\rho]|^2$ yields a vorticity density

$$\mu_v = \text{curl} \nabla \phi \simeq -2\pi \beta |u^\text{af}_\beta|^2,$$

which implies

$$N_v^{\text{th}}(r) = 4\pi^2 \beta \int_0^r dr \ r \ \rho_T^\text{TF}(r).$$
It is clear from these numerical experiments that u^af_β is expected to carry a large number of vortices.

Vortices are expected to be distributed according to the density $|u^\text{af}_\beta|^2$ and therefore their distribution is inhomogeneous in presence of a trapping potential.

To check whether our expectations fit with the numerical data we can compare the number of vortices $N_v^\text{num}(r)$ in a disc of radius r (counting the zeros of the wave function) with the expected value...

Minimizing the kinetic term $\rho |\nabla \phi + \beta A[\rho]|^2$ yields a vorticity density

$$\mu_v = \text{curl} \nabla \phi \simeq -2\pi \beta |u^\text{af}_\beta|^2,$$

which implies

$$N_v^{\text{th}}(r) = 4\pi^2 \beta \int_0^r dr \, r \, \rho^{\text{TF}}_{\beta}(r).$$
It is clear from these numerical experiments that u_{β}^{af} is expected to carry a large number of vortices.

Vortices are expected to be distributed according to the density $|u_{\beta}^{af}|^2$ and therefore their distribution is inhomogeneous in presence of a trapping potential.

To check whether our expectations fit with the numerical data we can compare the number of vortices $N_v^{num}(r)$ in a disc of radius r (counting the zeros of the wave function) with the expected value...

Minimizing the kinetic term $\rho |\nabla \phi + \beta A[\rho]|^2$ yields a vorticity density $\mu_v = \text{curl} \nabla \phi \simeq -2\pi \beta |u_{\beta}^{af}|^2$, which implies

$$N_v^{th}(r) = 4\pi^2 \beta \int_0^r dr \ r \ \rho_{\beta}^{TF}(r).$$
It is clear from these numerical experiments that u^af_β is expected to carry a large number of vortices.

Vortices are expected to be distributed according to the density $|u^\text{af}_\beta|^2$ and therefore their distribution is inhomogeneous in presence of a trapping potential.

To check whether our expectations fit with the numerical data we can compare the number of vortices $N^\text{num}_v(r)$ in a disc of radius r (counting the zeros of the wave function) with the expected value...

Minimizing the kinetic term $\rho |\nabla \phi + \beta A[\rho]|^2$ yields a vorticity density

$$\mu_v = \text{curl} \nabla \phi \simeq -2\pi \beta |u^\text{af}_\beta|^2,$$

which implies

$$N^\text{th}_v(r) = 4\pi^2 \beta \int_0^r dr \ r \ \rho^\text{TF}_\beta(r).$$
VORTEX STRUCTURE OF u_{β}^af (II)

Theoretical (red) and numerical (blue) vortex density for $V(x) = |x|^2$, $\beta = 140$ (left) and $V(x) = |x|^4$, $\beta = 195$ (right).
Theoretical (red) and numerical (blue) vortex density for $V(x) = |x|^2$, $\beta = 140$ (left) and $V(x) = |x|^4$, $\beta = 195$ (right).
Aabrikosov-like problem?

- Typically in BECs or superconductors the vortex core is much smaller than the vortex mean distance \Rightarrow the density is approx. constant with isolated zeros (scale separation).

- There is a regime in BECs and superconductors where the core and mean distance are of the same order (no scale separation) \Rightarrow Abrikosov problem: minimize the energy of a periodic distribution of vortices \Rightarrow triangular lattice with energy e_A [Aftalion, Blanc ‘07; Fournais, Kachmar ‘11; Sandier, Serfaty ‘12].

- In $\varepsilon^\text{af}_\beta$ there is only one asymptotic parameter \Rightarrow no scale separation and core \sim mean distance.

- It seems natural to compare $e(1, 1)$ with $e_A \approx 1.1596$, but not only $e(1, 1) > 2\pi$, apparently also $e(1, 1) > e_A$...
In Progress – Vortex Structure

Vortex Structure of u^af_β (III)

Abrikosov-like problem?

- Typically in BECs or superconductors the vortex core is much smaller than the vortex mean distance \Longrightarrow the density is approx. constant with isolated zeros (scale separation).
- There is a regime in BECs and superconductors where the core and mean distance are of the same order (no scale separation) \Longrightarrow Abrikosov problem: minimize the energy of a periodic distribution of vortices \Longrightarrow triangular lattice with energy e_A [Aftalion, Blanc ‘07; Fournais, Kachmar ‘11; Sandier, Serfaty ‘12].
- In $\mathcal{E}^\text{af}_\beta$ there is only one asymptotic parameter \Longrightarrow no scale separation and core \sim mean distance.
- It seems natural to compare $e(1, 1)$ with $e_A \simeq 1.1596$, but not only $e(1, 1) > 2\pi$, apparently also $e(1, 1) > e_A$...
Abrikosov-like problem?

- Typically in BECs or superconductors the vortex core is much smaller than the vortex mean distance \(\Rightarrow \) the density is approx. constant with isolated zeros (scale separation).

- There is a regime in BECs and superconductors where the core and mean distance are of the same order (no scale separation) \(\Rightarrow \) Abrikosov problem: minimize the energy of a periodic distribution of vortices \(\Rightarrow \) triangular lattice with energy \(e_A \) [Aftalion, Blanc ‘07; Fournais, Kachmar ‘11; Sandier, Serfaty ‘12].

- In \(\mathcal{E}_{\beta}^{af} \) there is only one asymptotic parameter \(\Rightarrow \) no scale separation and core \(\sim \) mean distance.

- It seems natural to compare \(e(1, 1) \) with \(e_A \simeq 1.1596 \), but not only \(e(1, 1) > 2\pi \), apparently also \(e(1, 1) > e_A \)…
Abrikosov-like problem?

- Typically in BECs or superconductors the vortex core is much smaller than the vortex mean distance \Rightarrow the density is approx. constant with isolated zeros (scale separation).
- There is a regime in BECs and superconductors where the core and mean distance are of the same order (no scale separation) \Rightarrow Abrikosov problem: minimize the energy of a periodic distribution of vortices \Rightarrow triangular lattice with energy e_A [Aftalion, Blanc ‘07; Fournais, Kachmar ‘11; Sandier, Serfaty ‘12].
- In $\mathcal{E}^\text{af}_\beta$ there is only one asymptotic parameter \Rightarrow no scale separation and core \sim mean distance.
- It seems natural to compare $e(1, 1)$ with $e_A \approx 1.1596$, but not only $e(1, 1) > 2\pi$, apparently also $e(1, 1) > e_A$...
Abrikosov-like problem?

- Typically in BECs or superconductors the vortex core is much smaller than the vortex mean distance \Rightarrow the density is approx. constant with isolated zeros (scale separation).

- There is a regime in BECs and superconductors where the core and mean distance are of the same order (no scale separation) \Rightarrow Abrikosov problem: minimize the energy of a periodic distribution of vortices \Rightarrow triangular lattice with energy e_A [Aftalion, Blanc '07; Fournais, Kachmar '11; Sandier, Serfaty '12].

- In \mathcal{E}_{β}^{af} there is only one asymptotic parameter \Rightarrow no scale separation and core \sim mean distance.

- It seems natural to compare $e(1, 1)$ with $e_A \simeq 1.1596$, but not only $e(1, 1) > 2\pi$, apparently also $e(1, 1) > e_A$...
Vortex Structure of u^A_{β} (III)

Abrikosov-like problem?

- Typically in BECs or superconductors the vortex core is much smaller than the vortex mean distance \Rightarrow the density is approx. constant with isolated zeros (scale separation).

- There is a regime in BECs and superconductors where the core and mean distance are of the same order (no scale separation) \Rightarrow Abrikosov problem: minimize the energy of a periodic distribution of vortices \Rightarrow triangular lattice with energy e_A [Aftalion, Blanc '07; Fournais, Kachmar '11; Sandier, Serfaty '12].

- In \mathcal{E}^A_{β} there is only one asymptotic parameter \Rightarrow no scale separation and core \sim mean distance.

- It seems natural to compare $e(1, 1)$ with $e_A \approx 1.1596$, but not only $e(1, 1) > 2\pi$, apparently also $e(1, 1) > e_A$...
$e(1, 1)$
Perspectives

- **AF functional:**
 - Obtain more information about $e(1, 1)$;
 - Investigate the vortex structure of u^af_β, at least with numerical simulations;
 - Find an estimate of the critical value of β for the occurrence of vortices;
 - Prove that the vorticity is uniformly distributed for β large in the homogenous case.

- **Anyon gas:**
 - Recover the behavior $\beta \to \infty$ at the many-body level, in a limit $N \to \infty$, $\alpha = \alpha(N)$;
 - Prove the existence of the thermodynamic limit in the same setting.
PERSPECTIVES

- **AF functional:**
 - Obtain more information about $e(1, 1)$;
 - Investigate the vortex structure of u_{β}^{af}, at least with numerical simulations;
 - Find an estimate of the **critical value** of β for the occurrence of vortices;
 - Prove that the vorticity is uniformly distributed for β large in the homogenous case.

- **Anyon gas:**
 - Recover the behavior $\beta \rightarrow \infty$ at the many-body level, in a limit $N \rightarrow \infty$, $\alpha = \alpha(N)$;
 - Prove the existence of the thermodynamic limit in the same setting.
AF functional:
- Obtain more information about $e(1, 1)$;
- Investigate the vortex structure of u^af_β, at least with numerical simulations;
- Find an estimate of the critical value of β for the occurrence of vortices;
- Prove that the vorticity is uniformly distributed for β large in the homogenous case.

Anyon gas:
- Recover the behavior $\beta \to \infty$ at the many-body level, in a limit $N \to \infty$, $\alpha = \alpha(N)$;
- Prove the existence of the thermodynamic limit in the same setting.
Perspectives

- **AF functional:**
 - Obtain more information about $e(1, 1)$;
 - Investigate the vortex structure of u_{β}^{af}, at least with numerical simulations;
 - Find an estimate of the critical value of β for the occurrence of vortices;
 - Prove that the vorticity is uniformly distributed for β large in the homogenous case.

- **Anyon gas:**
 - Recover the behavior $\beta \to \infty$ at the many-body level, in a limit $N \to \infty$, $\alpha = \alpha(N)$;
 - Prove the existence of the thermodynamic limit in the same setting.
PERSPECTIVES

- AF functional:
 - Obtain more information about $e(1, 1)$;
 - Investigate the vortex structure of u_{β}^{af}, at least with numerical simulations;
 - Find an estimate of the critical value of β for the occurrence of vortices;
 - Prove that the vorticity is uniformly distributed for β large in the homogenous case.

- Anyon gas:
 - Recover the behavior $\beta \to \infty$ at the many-body level, in a limit $N \to \infty$, $\alpha = \alpha(N)$;
 - Prove the existence of the thermodynamic limit in the same setting.

Thank you for the attention!