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Perspectives

Archipelagic perspectives on mathematics & physics 4/28



Math ↔ Phys

M Φ

More?
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PERCEIVABLE vs. PERCEPTIBLE [Quora]

Perceptible and perceivable both relate to perceiving (to become
aware of or become conscious of by some means). The difference is
that one of them has a mental component whereas the other
doesn’t.
Perceivable is being detectable chiefly by sight or hearing.
There is no mental or intellectual component involving the ’mind’
— just the senses.
• a silhouette perceivable through the mist

Perceptible is the one that additionally includes a ’mind’
component — capable of or easily detectable by the senses, or
easily grasped by the mind. Since this one covers both sensory
and mental means, this is always the safer bet.
• perceptible changes in behaviour — because you can ’sense’ it in

some way
• perceptible differences in the two concepts — you can mentally

grasp them
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Spectra of reality? Subjective vs. Objective
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What is real? How do you define Real?

Story time...
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Outline

1 Some preliminaries: identity, QM, observable, contextuality ...

2 Workshop info
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Perspective boils down to identity (logical or experienced)

Locally identifiable → individualized/localized
Globally unidentifiable → unified/omnipresent
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Quantum statistics: bosons – fermions – anyons

Cold bosons Cold fermions

coherence → optics Pauli’s exclusion → chemistry

“anyons”?
Math-phys problem since 1977...
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What is QM?

Contextuality: from impossible figures to quantum correlations
Pierre-Emmanuel Emeriau and Shane Mansfield

Contextuality

It is typically the case that not all properties of a quantum system may be observed
at once; so that at best we can only ever obtain partial “snapshots” of the system by
observing some of its properties at once.

Contextuality arises when these snapshots are locally consistent
—they agree wherever they overlap—

but they are nevertheless globally inconsistent.

A very useful analogy for this is the Penrose staircase, as depicted in M.C. Escher’s
famous Ascending and descending lithograph.

The Penrose Staircase

Ascending and descending, M.C. Escher

Partial snapshots

Where snapshots overlap the information is locally consistent, but if we try to piece
the snapshots together to obtain a global picture we find a global inconsistency (the
impossible staircase, left)

Another example: the tribar

A quantum experiment

measurement
device

mA ∈ {a, a′}

oA ∈ {0, 1}

measurement
device

mB ∈ {b, b′}

oB ∈ {0, 1}

preparation

Empirical data

(0, 0) (0, 1) (1, 0) (1, 1)
(a, b) 1/2 0 0 1/2
(a, b′) 1/2 0 0 1/2
(a′, b) 1/2 0 0 1/2
(a′, b′) 0 1/2 1/2 0

Probability table for empirical observations:
e.g. the top left entry tells us that there is
probability 1/2 of seeing outcomes 0 and 0
when red choses to observe a and blue to
observe b

Visualising empirical data

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

(a) (b)

• Bundle diagrams allow us to visualise empirical data in terms of which combinations
of observational events are possible and which are impossible

• Diagram (a) is a visualisation of the empirical data table above
• It tells us that when the observables are (a, b) the only possible events are (0, 0) and
(1, 1), and so on

Classical data

•a
• b

• a′
•b′
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•1

•

•

• 0
• 1

•

•
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•

•
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•b′
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•

•

• 0
• 1

•

•

(c) (d) (e)

• In the classical world, once a system is prepared its observable properties have defi-
nite values which do not depend on which observations will be made subsequently

• E.g. it might be the case that (a, a′, b, b′) all take value 0, which would correspond
to bundle diagram (c); or it might be that (a, a′, b, b′) all take value 1, which would
correspond to bundle diagram (d)

• It might even be that the preparation sometimes results in (c) and sometimes in (d) in
which case we could end up with the bundle diagram (e)

The real world is contextual?!

• The empirical data above is inconsistent with the assumption that observable proper-
ties have definite values independent of observational context—see diagram (b)!

• Observations can only give us partial snapshots of quantum reality. As with the Pen-
rose staircase, the snapshots are locally consistent, but when pieced together to form
a global picture of this underlying reality they are globally inconsistent

• It is typically the case in such a quantum experiment that one can filter out some
fraction of the data which can be explained classically, but can still be left with a large
portion of data as in the table and diagrams (a) and (b) above which cannot

Escher, Ascending and descending
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• In the classical world, once a system is prepared its observable properties have defi-
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• E.g. it might be the case that (a, a′, b, b′) all take value 0, which would correspond
to bundle diagram (c); or it might be that (a, a′, b, b′) all take value 1, which would
correspond to bundle diagram (d)

• It might even be that the preparation sometimes results in (c) and sometimes in (d) in
which case we could end up with the bundle diagram (e)

The real world is contextual?!

• The empirical data above is inconsistent with the assumption that observable proper-
ties have definite values independent of observational context—see diagram (b)!

• Observations can only give us partial snapshots of quantum reality. As with the Pen-
rose staircase, the snapshots are locally consistent, but when pieced together to form
a global picture of this underlying reality they are globally inconsistent

• It is typically the case in such a quantum experiment that one can filter out some
fraction of the data which can be explained classically, but can still be left with a large
portion of data as in the table and diagrams (a) and (b) above which cannot

Penrose-Reutersvärd tribar, 1934
“Impossibility in its purest form.”
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Observables

• information that subsystems have about each other

• observable aspect  definite value/data/outcomes (log. excl.)

A B C ∈ Ô ⊆ Â (partial) algebra of obss

   

Ψ ∈ S states

a b c ∈ O ⊆ A comm. algebra of outcomes

• obss describe possible info/knowledge obtainable from the sys.

• states describe the actual info/knowledge, i.e. current ’reality’

• “measurement” projects possibilities to actualities

P(A
Ψ
 a) = 〈Ψ|a〉〈a|Ψ〉/ ‖Ψ‖2 , Ψ 7→ |a〉〈a|Ψ

• obss A,B commensurable if [A,B] = 0 (⇒ sim. knowledge)
(uncertainty principle)
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Observables

Ex:

X = (+1)|↑〉〈↑|+ (−1)|↓〉〈↓| =
[

+1 0

0 −1

]
 x ∈ {+1,−1}

P = |↓〉〈↑|+ |↑〉〈↓| =
[

0 1

1 0

]
 p ∈ {+1,−1} = σ(P )

observables Ô = SpanR{1, X, P} ⊂ Â = C2×2

states Ψ = α|↑〉+ β|↓〉 =

[
α

β

]
∈ S = C2

non-commensurable: [X,P ] =

[
0 2

−2 0

]
/∈ Ô

Ex: position x̂ =
∫
R x|x〉〈x|dx  x ∈ R, Ψ ∈ S = L2(R)

momentum p̂ = −i∂x  p ∈ R, [x̂, p̂] = i1 (Heisenberg u. p.)
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Observables: N -particle systems

Ex: (distinguishable) x̂jk commensurable but not with Ĥ

x̂  x = (xjk)Nj=1
d

k=1
∈ RNd = σ(x̂), Ĥ =

∑
j,k

p̂2
jk = −∆ p2

Ψ ∈ L2(RNd), P(x̂
Ψ
 x) = |Ψ(x)|2

Ex: (identical)

x̂  x ∈
(
RNd \ 44

)/
SN

= σ(x̂), Ĥ = −∆A

Ψ ∈ Γ
(
E → σ(x̂);CD

)
A locally flat connection on U(D) ⇒ bosons, fermions or anyons

Archipelagic perspectives on mathematics & physics 16/28



Observables: angular momentum

L1 := x̂2p̂3 − x̂3p̂2

L2 := x̂3p̂1 − x̂1p̂3

L3 := x̂1p̂2 − x̂2p̂1

1
i [L1, L2] = L3 cycl.  {−`,−`+ 1, . . . , `}
L2 := L2

1 + L2
2 + L2

3  Crep = `(`+ 1)

spin ` ∈ Z/2

` = 1
2 : L1 = 1

2

[
0 1

1 0

]
L2 = 1

2

[
0 −i
i 0

]
L3 = 1

2

[
1 0

0 −1

]

` = 1 : L1 = i

0 0 0

0 0 −1

0 1 0

 L2 = i

 0 0 1

0 0 0

−1 0 0

 L3 = i

0 −1 0

1 0 0

0 0 0


L2

1 =

0 0 0

0 1 0

0 0 1

 L2
2 =

1 0 0

0 0 0

0 0 1

 L2
3 =

1 0 0

0 1 0

0 0 0


[L2

j , L
2
k] = 0 ∀j, k only for ` ∈ {0, 1

2 , 1}
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Bell-Kochen-Specker paradox
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Bell-Kochen-Specker paradox

Family of obss: S2 3 e 7→ Le = e1L1 + e2L2 + e3L3, L
2
e

A function f : E ⊆ S2 → {0, 1} has the 101 property if

• f(e) = f(−e) ∀e ∈ E,

• for any orthonormal frame {e1, e2, e3} ⊆ E in R3,(
f(e1), f(e2), f(e3)

)
∈
{

(0, 1, 1), (1, 0, 1), (1, 1, 0)
}

Theorem (BKS paradox): Let E ⊂ S2, |E/∼| = 33, be the
Peres subset of directions. There exists no function f : E → {0, 1}
with the 101 property.

⇒ no hidden variables! / no objective reality!

hidden variables :⇔ ∃ imbedding of p.a. Â ↪→ comm.a. A
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Contextuality [Abramsky,Barbosa,Mansfield,2017]

(X,M, O):
measurements X = {a, α, b, β}, outcomes O = {0, 1},
measurement contexts C ∈M =

{
{a, b}, {a, β}, {α, b}, {α, β}

}
(commensurable measurements, i.e. can be performed together)

empirical model e : C 7→ eC :
probability dist. on meas. outcomes: OC 3 t 7→ eC(t) ∈ [0, 1]
marginalization: for U ⊆ C, t ∈ OU ,

eC |U (t) :=
∑

s∈OC , s|U=t

eC(s)

demand compatibility of all marginals: (cf. sheaf)

∀C,C ′ ∈M eC |C∩C′ = eC′ |C∩C′
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Contextuality [Abramsky,Barbosa,Mansfield,2017]

noncontextual: ∃ global assignment of outcomes to all meass
(h.v.)

∃d ∈ OX s.t. ∀C ∈M d|C = eC

strongly contextual: @g ∈ OX s.t. ∀C ∈M eC(g|C) > 0
(non)contextual fraction can be computed via linear prog.:

e = (1− λ)eNC + λeSC , λ ∈ [0, 1]

Bell inequality:
∑

C∈M, t∈OC

a(C,t)eC(t) ≤ R

Theorem: Contextuality must be present in an empirical model
whenever it admits a nonlinear function to be computed with a
sufficiently large probability of success. The higher the desired
success probability, the larger the contextual fraction must be.
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Reality is

Locally Globally

flat curved

linear / chronological nonlinear / kairological

unentangled entangled

individualized unified

noncontextual contextual

logically consistent logically inconsistent

subjective approximately objective?

Consciousness as a flow towards objectivity / logical consistency?
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Satire on false perspective

“Whoever makes a Design
without the Knowledge of
Perspective will be liable
to such Absurdities as are
shewn in this Frontispiece.”
William Hogarth, 1754
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Strange loop / Self-entanglement

0 → ∞ →
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Strange loop / Self-entanglement
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This workshop

A forum for exchanging and discussing the most interesting ideas
we have come across — with great setting & minimal constraints!
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Important this week

• Staff: Lena (here), Johanna Danielsson (there)

• Operator 08-571 490 60

• Access

• Breakfasts

• Lunches

• Dinners

• Facilities

• Work
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Schedule updates

• Monday:

• Tuesday:

• Wednesday:

• Thursday:

• Friday:

Enjoy!
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