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1.1. Motivation (1/3): Black Holes (BHs)

I Thermal systems (T ,S).

I Hawking temperature

TBH ∼
1

MBH
,

I Bekenstein-Hawking entropy

SBH ∼
ABH

4
.

I BH entropy problem: microstate counting SBH = ln Ω.

I BH information paradox: pure state → mixed thermal state
(Hawking radiation) → information loss? (would violate QM’s
unitarity).

I Towards a UV-complete theory of Quantum Gravity?
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1. Motivation (2/3): Weyl semimetals (WSMs) & BHs

I WSMs:
I CM physics → Electric transport in solids:

I insulators
I conductors
I superconductors
I semiconductors
I semimetals → WSMs

I Topological materials → interesting band structure.

I WSMs & BHs
I BH analogy:

I Shape of the band structure ↔ Spacetime lightcone.
I Phases of WSMs ↔ Infalling observer crossing the horizon.
I Tilt of the Weyl cone ↔ Tilt of the lightcone of infalling observer

(timelike/spacelike) [Kedem, Bergholtz, Wilczek ’20].
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1. Motivation (3/3): Non-Hermitian (NH) systems

I NH Hamiltonians as effective descriptions for dissipative systems
(Lindbladian formalism).

I Quantum Gravity in the lab:
I Using analogue models to mimic or simulate BH physics in a

controlled setup.
I NH systems seem to be a natural candidate for an analogue model

to host dissipative processes such as Hawking radiation.

I Aim: Construct analogue NH model displaying Hawking radiation.
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2.1. BH Thermodynamics

Similar laws: BH Mechanics (70’s) & Thermodynamics
(Schwarzschild BH)

Law Thermodynamics BH Mechanics
0th T const. in thermal equilibrium surface gravity κ const.
1st δE = T δS δM = κ

8πG δA
2nd δS ≥ 0 δA ≥ 0
3rd @ physical process T → 0 @ physical process κ→ 0
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2.2. BH are not that black

I BH temperature: Black body radiation at the Hawking
temperature:

TBH =
κ

2π
.

I BH entropy: Associate an entropy from 1st law
→ Bekenstein-Hawking formula

SBH =
A

4GD
.

I Entropy not extensive (area not volume) → Holography (AdS/CFT).
I Large # dof → requirement of the CFT.
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2.3. Hawking effect

I QFT: The notion of particle is observer-dependent! (e.g. Unruh
effect).

I BHs emmit radiation: Particle production, i.e., outgoing flux of
quanta.

I Hawking’s calculation based on QFT in curved spacetime:
I Consider scalar field in curved background (also done for spin

particels, gauge fields).
I Bogiliubov transformations relating mode expansions of quantum

fields between infalling and asymptotic observer.
I Finite number of particles w.r.t. the vacuum state of the asymptotic

observer [Hawking ’75].
I Result: Thermal Panckian spectrum

N ∼ 1

e
2πω
κ − 1

∼ 1

e
βω
κ − 1

,

where β := 1/T and hence TBH = κ
2π

= 1
8πM

.
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3. Quantum tunneling

I Classically forbiden phenomenon: particles “roll” on a potential
curve.

I In QM: particles can tunnel trhough a potential barrier.

I Can be understood in terms of de Broglie’s wave-particle duality
λ = h/p.

I Simple example: particle with finite potential barrier.
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3.1. Quantum tunneling through potential barriers (1/2)

I Finite potential barrier of
height U0 and width L

U(x) = U0 θ(x)−U0 θ(x−L).

I Solve Schrödinger equation −1
2m

d2ψ(x)
dx2 + U(x)ψ(x) = Eψ(x),

for ψI (−∞ < x < 0), ψII (0 < x < L) and ψIII (L < x < +∞).

I Boundary conditions:
I continuity ψI (0) = ψII (0), ψII (L) = ψIII (L),
I smoothness ψ′I (0) = ψ′II (0), ψ′II (L) = ψ′III (L).
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3.1. Quantum tunneling through potential barriers (2/2)

I Oscillatory behavior:
I region I: Incident and reflected

wave

ψI (x) = Ae ikx + Be−ikx ,

I region III: Transmitted wave

ψIII (x) = Ce ikx ,

where k :=
√

2mE and
A,B,C ∈ C.

I Attenuating behavior, region II:

ψII (x) = De−2m(U0−E)x ,

where U0 − E > 0 and D ∈ C.

I Transmission coeficient (tunneling probability)
T (U0, L,E ) = |C |2/|A|2.
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3.2. Hawking radiation as quantum tunneling (1/4)
[Parikh, Wilczek ’99]

I Alternative derivation of the Hawking effect as a tunneling process.

I Relates ImS (clasically forbidden processes) to e−βω (Boltzmann
factor characteristic of thermal systems at eq.).

I Limitations: neglecting backreaction (semiclassical) and thus
considering an eq. process (slow BH evaporation, large M).

I Massless Hawking radiation: Hawking radiation can also be thought
in terms of arbitrary spin massive particles and gauge fields.

I WKB approximation (semicalssical treatment): radiation modelled
as s-wave (wavefunction as planar wave solution, slow-varying
potential)

ψ(x) = e iS(x) ' A√
p(x)

e
±i

∫ x
x0

p(x′)dx′
,

where S ∈ C, p(x) is the momentum and A ∈ R is const.
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3.2. Hawking radiation as quantum tunneling (2/4)
I Method:

I 1) Start from 4-D Schwarszchild metric in Gustrand-Painlevé
coordinates

ds2 = −
(

1− 2M

r

)
dT 2 + 2

√
2M

r
dT dr + dr 2 + r 2dΩ2.

I 2) Radial null (outgoing/ingoing) geodesics dr
dT

= ±1−
√

2M
r

.

I 3) 2 types of contributions:
I Outgoing shell of energy ω (massless particles) M → M − ω.
I Ingoing shell of energy −ω (massless antiparticles) M → M + ω.

I 4) Compute ImS (for particles in the following)

ImS = Im

∫ rout

rin

prdr = Im

∫ M−ω

M

∫ rout

rin

dr

ṙ
dH

= Im

∫ ω

0

∫ rout

rin

dr

1−
√

2(M−ω′)
r

(−dω′),

using Hamilton’s canonical eq. ṙ = dH
dpr

, H = M − ω and the
modified radial geodesics.
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ṙ
dH

= Im

∫ ω

0

∫ rout

rin

dr

1−
√

2(M−ω′)
r

(−dω′),

using Hamilton’s canonical eq. ṙ = dH
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3.2. Hawking radiation as quantum tunneling (3/4)
I 5) Complex contour integral: ω′ → ω′ − iε to ensure positive energy

solutions decay in time.
Result:

ImS = 4πω
(
M − ω

2

)
.

I 6) It can be shown that same contribution appears from antiparticles

ImS = Im

∫ rin

rout

prdr = Im

∫ −ω
0

∫ rin

rout

dr

−1 +
√

2(M+ω′)
r

dω′

= 4πω
(
M − ω

2

)
.
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3.2. Hawking radiation as quantum tunneling (4/4)

I 7) Semiclassical emission rate: adding the two channels

Γ ∼ e2ImS = e−8πω(M−ω/2).

I From the first term, by identifying with the Boltzman factor
e−8πωM ∼ e−βω we obtain the Hawking temperature

TBH =
1

8πM
.

I The correction term with ω2 raises the effective temperature of the
BH as it radiates (accelerated evaporation).



1. Motivation

2. BHs & Hawking radiation
2.1. BH Thermodynamics
2.2. BH are not that black
2.3. Hawking effect

3. Quantum tunneling
3.1. Quantum tunneling through potential barriers
3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs
4.1. Weyl systems
4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system
5.1. NH model
5.2. Spontaneous particle emission

6. Conclusions & outlook



4.1. Weyl systems (1/2)

I Special electronic band structure
→ Weyl cone.

I Semimetal (valence and conduction
bands intersect at the Weyl point
p∗).

I Around the Weyl point: effective
low-energy description as free Weyl
fermions (HEP/CM) → Weyl
Hamiltonian (linear dispersion
relation)

H = a(p)σ0 + ~b(p) · ~σ,

with ~b(p = p∗) = 0→ 3 eqs.
(degeneracy condition).



4.1. Weyl systems (2/2)
I Tilting: ν = da(p)

dp

∣∣∣
p=p∗

I (a) Untilted (ν = 0)
I (b) Type I (|ν| < 1)
I (c) Type II (|ν| > 1)
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4.2. From Weyl sytems to BHs

I Recall tilting of the cone dispersion in WSMs: at the critical tilt the
Weyl cone resembles the (tilted) lightcone of an infalling observer in
the vicinity of a BH horizon.

I Mapping WSMs to BHs and WHs [Volovik ’16]. Mathematical mapping
between the Weyl Hamiltonian and spacetime metric via the vielbein
formalism.

I In GR: relation between a metric describing curved spacetime gij and
Minkowski spacetime ηµν in terms of vielbeins (frame fields) eαµ

gij = ηµνe
µ
ie
ν
j .

I The vielbeins result in the same ones of the Gullstrand-Painlevé
metric describing a Schwarzschild BH.

I Aim: extend this to NH systems.
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5. Hawking radiation in analogue NH system

“Artificial Hawking radiation in Non-Hermitian Parity-Time symmetric
systems”
[St̊alhammar, JLA, Rødland, Kunst, arXiv:2106.05030].

I Question: are NH systems better suited to display analogue Hawking
radiation?

I NH Weyl-like Hamiltonian representing a two-band system linear in
momentum.

I Recall analogy between band structures and artificial event horizons
in Hermitian systems (Weyl cone/lightcone).

I Weyl point → Exceptional points (forming a cone).

I Exceptional points identified as BH horizon.

I Inspired by the computation of Hawking radiation from quantum
tunneling à la Parikh-Wilczek, we interpret dissipative behavior as
the creation and emission of light-like particle-antiparticle pairs.
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tunneling à la Parikh-Wilczek, we interpret dissipative behavior as
the creation and emission of light-like particle-antiparticle pairs.



1. Motivation

2. BHs & Hawking radiation
2.1. BH Thermodynamics
2.2. BH are not that black
2.3. Hawking effect

3. Quantum tunneling
3.1. Quantum tunneling through potential barriers
3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs
4.1. Weyl systems
4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system
5.1. NH model
5.2. Spontaneous particle emission

6. Conclusions & outlook



5.1. NH model (1/2)
I Our NH (tilted) Weyl-like PT symmetric 2-band model

H = kxσx + kyσy + i(kz − κkx)σz .

I Energy levels given by E± = ±
√

k2
x + k2

y − (kz − κkx)2 := ±
√
D.

I Exceptional cone (EC): D = 0→ kz = κkx ±
√

k2
x + k2

y .



5.1. NH model (2/2)

I Problem! The vielbein formalism to obtain the analogue spacetime
metric can only be done for Hermitian systems.

I Trick: We can think of kz as the eigenvalue of a (Hermitian)
Dirac-like operator

k̂z = κkxσ0 + kxσx + kyσy .

I The EC gives rise to an analogue metric

ds2 = −(1− κ2)dt2 + dx2 + dy2 + 2κdxdt,

resembling the previous metric of a Schwarzschild BH in
Gullstrand-Painlevé coordinates if dy = dΩ = 0 and making the
identifications

x ∼ r , t ∼ T , κ ∼
√

2M

r
.

I We have extended the relation between Hermitian Weyl cones and
artificial lightcones in the vicinity of a BH to ECs in NH
PT-symmetric systems.
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5.2. Spontaneous particle emission

Following the Parikh-Wilczek method:

I Evaluate the Im part of the action on the EC

ImS = 4πM|kz |.

I Semi-classical emission rate

Γ ∼ e−8πM|kz |,

which is highly suppressed for high |kz | since M � 1 (semiclass.
limit), meaning that the tunneling process is more likely for |kz |
small.
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6. Conclusions & outlook

I Particle emission as dissipation: we relate the spontaneous particle
emission with the presence of bulk Fermi states (BFSs) which are
dissipative states characteristic of NH systems. In our model they
correspond to D ≤ 0 (interior of the EC).

I Dissipative behavior at kz = 0 can be regarded as spontaneous
tunneling of light-like quasi-particles giving the leading order
contribution to Hawking radition.

I There is also dissipation for finite kz 6= 0 and perhaps it could be
related to massive modes contributing to the total Hawking
radiation process.

I The role of PT symmetry: broken and unbroken symmetry phases →
Hermitian/non-Hermitian sectors.

I Investigate the possible connection between the entropy of the
analogue black hole and the entanglement entropy of the model.

I Experimental relevance: towards modelling black hole evaporation in
an analogue physical system.
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THE END

Thank you for your attention!

Questions?



7. Neglecting commutator contributions*

When κ→ κ(r) we neglected commutator contributions:

[H, κ(r)] ∝ [kr , κ(r)] ,

and
[H, kr ] ∝ [kr , κ(r)] ,

and evaluates to

[kr , κ(r)] ∝ ∂κ(r)

∂r
∝ M0

r2

√
2M0

r

.

I When moving away from the horizon this goes as r−3/2, and thus
decays for increasing r .

I At the horizon, the commutator is

[kr , κ(r)]|r=2M0
∝ M−1

0 . (1)

As we assumed M0 � 1, this contribution indeed disappears.
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