The good, the bad and the ugly: quantum tunneling, black holes and NH systems

Jorge Laraña Aragón (Stockholm University)

Outline

- 1. Motivation
- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect
- 3. Quantum tunneling
 - 3.1. Quantum tunneling through potential barriers

- 3.2. Hawking radiation as quantum tunneling
- 4. WSMs and BHs
 - 4.1. Weyl systems
 - 4.2. From Weyl sytems to BHs
- 5. Hawking radiation in analogue NH system
 - 5.1. NH model
 - 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs
- 5. Hawking radiation in analogue NH system
 - 5.1. NH model
 - 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

1.1. Motivation (1/3): Black Holes (BHs)

- Thermal systems (T, S).
- Hawking temperature

$$T_{BH} \sim rac{1}{M_{BH}} \; ,$$

Bekenstein-Hawking entropy

$$S_{BH} \sim rac{A_{BH}}{4}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1.1. Motivation (1/3): Black Holes (BHs)

- Thermal systems (T, S).
- Hawking temperature

$$T_{BH} \sim rac{1}{M_{BH}} \; ,$$

Bekenstein-Hawking entropy

$$S_{BH} \sim rac{A_{BH}}{4}.$$

- ► BH entropy problem: microstate counting $S_{BH} = \ln \Omega$.
- BH information paradox: pure state → mixed thermal state (Hawking radiation) → information loss? (would violate QM's unitarity).
- Towards a UV-complete theory of Quantum Gravity?

1. Motivation (2/3): Weyl semimetals (WSMs) & BHs

WSMs:

- ▶ CM physics → Electric transport in solids:
 - insulators
 - conductors
 - superconductors
 - semiconductors
 - $\blacktriangleright \text{ semimetals} \rightarrow \textbf{WSMs}$
- Topological materials \rightarrow interesting band structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. Motivation (2/3): Weyl semimetals (WSMs) & BHs

WSMs:

- ▶ CM physics → Electric transport in solids:
 - insulators
 - conductors
 - superconductors
 - semiconductors
- Topological materials \rightarrow interesting band structure.

WSMs & BHs

- BH analogy:
 - Shape of the band structure \leftrightarrow Spacetime lightcone.
 - Phases of WSMs \leftrightarrow Infalling observer crossing the horizon.
 - ► Tilt of the Weyl cone ↔ Tilt of the lightcone of infalling observer (timelike/spacelike) [Kedem, Bergholtz, Wilczek '20].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

1. Motivation (3/3): Non-Hermitian (NH) systems

- NH Hamiltonians as effective descriptions for dissipative systems (Lindbladian formalism).
- Quantum Gravity in the lab:
 - Using analogue models to mimic or simulate BH physics in a controlled setup.
 - NH systems seem to be a natural candidate for an analogue model to host dissipative processes such as Hawking radiation.

Aim: Construct analogue NH model displaying Hawking radiation.

2. BHs & Hawking radiation

2.1. BH Thermodynamics

2.2. BH are not that black

2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system

- 5.1. NH model
- 5.2. Spontaneous particle emission

6. Conclusions & outlook

2.1. BH Thermodynamics

<u>Similar laws</u>: BH Mechanics (70's) & Thermodynamics (Schwarzschild BH)

Law	Thermodynamics	BH Mechanics
0th	T const. in thermal equilibrium	surface gravity κ const.
1st	$\delta E = T \delta S$	$\delta M = rac{\kappa}{8\pi G} \delta A$
2nd	$\delta S \geq 0$	$\delta A \geq 0$
3rd	\nexists physical process $\mathcal{T} ightarrow 0$	$ i$ physical process $\kappa ightarrow 0$

2. BHs & Hawking radiation

2.1. BH Thermodynamics

2.2. BH are not that black

2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system

- 5.1. NH model
- 5.2. Spontaneous particle emission

6. Conclusions & outlook

2.2. BH are not that black

BH temperature: Black body radiation at the Hawking temperature:

$$T_{BH} = rac{\kappa}{2\pi}.$$

► BH entropy: Associate an entropy from 1st law → Bekenstein-Hawking formula

$$S_{BH}=rac{A}{4G_D}.$$

• Entropy not extensive (area not volume) \rightarrow Holography (AdS/CFT).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Large # dof \rightarrow requirement of the CFT.

2. BHs & Hawking radiation

2.1. BH Thermodynamics 2.2. BH are not that black

2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system

- 5.1. NH model
- 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

2.3. Hawking effect

- QFT: The notion of particle is observer-dependent! (e.g. Unruh effect).
- BHs emmit radiation: Particle production, i.e., outgoing flux of quanta.

2.3. Hawking effect

- QFT: The notion of particle is observer-dependent! (e.g. Unruh effect).
- BHs emmit radiation: Particle production, i.e., outgoing flux of quanta.
- Hawking's calculation based on QFT in curved spacetime:
 - Consider scalar field in curved background (also done for spin particels, gauge fields).
 - Bogiliubov transformations relating mode expansions of quantum fields between infalling and asymptotic observer.
 - Finite number of particles w.r.t. the vacuum state of the asymptotic observer (Hawking '75).
 - Result: Thermal Panckian spectrum

$$N\sim rac{1}{e^{rac{2\pi\omega}{\kappa}}-1}\sim rac{1}{e^{rac{eta\omega}{\kappa}}-1},$$

where $\beta := 1/T$ and hence $T_{BH} = \frac{\kappa}{2\pi} = \frac{1}{8\pi M}$.

・ロト・日本・モート ヨー うんぐ

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs
- 5. Hawking radiation in analogue NH system
 - 5.1. NH model
 - 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

3. Quantum tunneling

- Classically forbiden phenomenon: particles "roll" on a potential curve.
- ► In QM: particles can tunnel trhough a potential barrier.
- Can be understood in terms of de Broglie's wave-particle duality λ = h/p.
- Simple example: particle with finite potential barrier.

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs
- 5. Hawking radiation in analogue NH system
 - 5.1. NH model
 - 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

3.1. Quantum tunneling through potential barriers (1/2)

イロト 不得 トイヨト イヨト

3.1. Quantum tunneling through potential barriers (1/2)

Solve Schrödinger equation $\frac{-1}{2m} \frac{d^2\psi(x)}{dx^2} + U(x)\psi(x) = E\psi(x)$, for $\psi_I(-\infty < x < 0)$, $\psi_{II}(0 < x < L)$ and $\psi_{III}(L < x < +\infty)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Boundary conditions:
 - continuity $\psi_{I}(0) = \psi_{II}(0), \ \psi_{II}(L) = \psi_{III}(L),$
 - Smoothness $\psi'_{I}(0) = \psi'_{II}(0), \psi'_{II}(L) = \psi'_{III}(L).$

3.1. Quantum tunneling through potential barriers (2/2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.1. Quantum tunneling through potential barriers (2/2)

Attenuating behavior, region II:

$$\psi_{II}(x) = De^{-2m(U_0 - E)x},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $U_0 - E > 0$ and $D \in \mathbb{C}$.

Transmission coeficient (tunneling probability) T(U₀, L, E) = |C|²/|A|².

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs
- 5. Hawking radiation in analogue NH system
 - 5.1. NH model
 - 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

[Parikh, Wilczek '99]

- Alternative derivation of the Hawking effect as a tunneling process.
- ▶ Relates Im*S* (clasically forbidden processes) to $e^{-\beta\omega}$ (Boltzmann factor characteristic of thermal systems at eq.).

[Parikh, Wilczek '99]

- Alternative derivation of the Hawking effect as a tunneling process.
- ▶ Relates Im*S* (clasically forbidden processes) to $e^{-\beta\omega}$ (Boltzmann factor characteristic of thermal systems at eq.).
- Limitations: neglecting backreaction (semiclassical) and thus considering an eq. process (slow BH evaporation, large M).
- Massless Hawking radiation: Hawking radiation can also be thought in terms of arbitrary spin massive particles and gauge fields.

[Parikh, Wilczek '99]

- Alternative derivation of the Hawking effect as a tunneling process.
- ▶ Relates Im*S* (clasically forbidden processes) to $e^{-\beta\omega}$ (Boltzmann factor characteristic of thermal systems at eq.).
- Limitations: neglecting backreaction (semiclassical) and thus considering an eq. process (slow BH evaporation, large M).
- Massless Hawking radiation: Hawking radiation can also be thought in terms of arbitrary spin massive particles and gauge fields.
- WKB approximation (semicalssical treatment): radiation modelled as s-wave (wavefunction as planar wave solution, slow-varying potential)

$$\psi(x) = e^{iS(x)} \simeq \frac{A}{\sqrt{p(x)}} e^{\pm i \int_{x_0}^x p(x')dx'},$$

where $S \in \mathbb{C}$, p(x) is the momentum and $A \in \mathbb{R}$ is const.

- Method:
 - 1) Start from 4-D Schwarszchild metric in Gustrand-Painlevé coordinates

$$ds^2 = -\left(1-\frac{2M}{r}\right)dT^2 + 2\sqrt{\frac{2M}{r}}dT dr + dr^2 + r^2d\Omega^2.$$

- Method:
 - 1) Start from 4-D Schwarszchild metric in Gustrand-Painlevé coordinates

$$ds^2 = -\left(1-\frac{2M}{r}\right)dT^2 + 2\sqrt{\frac{2M}{r}}dT dr + dr^2 + r^2d\Omega^2.$$

▶ 2) Radial null (outgoing/ingoing) geodesics $\frac{dr}{dT} = \pm 1 - \sqrt{\frac{2M}{r}}$.

- Method:
 - 1) Start from 4-D Schwarszchild metric in Gustrand-Painlevé coordinates

$$ds^2 = -\left(1-\frac{2M}{r}\right)dT^2 + 2\sqrt{\frac{2M}{r}}dT dr + dr^2 + r^2d\Omega^2.$$

- ▶ 2) Radial null (outgoing/ingoing) geodesics $\frac{dr}{dT} = \pm 1 \sqrt{\frac{2M}{r}}$.
- 3) 2 types of contributions:
 - Outgoing shell of energy ω (massless particles) $M \rightarrow M \omega$.
 - Ingoing shell of energy $-\omega$ (massless antiparticles) $M \to M + \omega$.

- Method:
 - 1) Start from 4-D Schwarszchild metric in Gustrand-Painlevé coordinates

$$ds^2 = -\left(1-\frac{2M}{r}\right)dT^2 + 2\sqrt{\frac{2M}{r}}dT dr + dr^2 + r^2d\Omega^2.$$

- ▶ 2) Radial null (outgoing/ingoing) geodesics $\frac{dr}{dT} = \pm 1 \sqrt{\frac{2M}{r}}$.
- 3) 2 types of contributions:

I

- Outgoing shell of energy ω (massless particles) $M \to M \omega$.
- Ingoing shell of energy $-\omega$ (massless antiparticles) $M \to M + \omega$.

4) Compute ImS (for particles in the following)

$$mS = \operatorname{Im} \int_{r_{in}}^{r_{out}} p_r dr = \operatorname{Im} \int_{M}^{M-\omega} \int_{r_{in}}^{r_{out}} \frac{dr}{\dot{r}} dH$$
$$= \operatorname{Im} \int_{0}^{\omega} \int_{r_{in}}^{r_{out}} \frac{dr}{1 - \sqrt{\frac{2(M-\omega')}{r}}} (-d\omega'),$$

using Hamilton's canonical eq. $\dot{r} = \frac{dH}{dn_{c}}$, $H = M - \omega$ and the modified radial geodesics. ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► 5) Complex contour integral: ω' → ω' − iϵ to ensure positive energy solutions decay in time. Result:

$$\mathrm{Im}S=4\pi\omega\left(M-\frac{\omega}{2}\right).$$

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

► 5) Complex contour integral: ω' → ω' − iϵ to ensure positive energy solutions decay in time. Result:

$$\mathrm{Im}S=4\pi\omega\left(M-\frac{\omega}{2}\right).$$

▶ 6) It can be shown that same contribution appears from antiparticles

$$ImS = Im \int_{r_{out}}^{r_{in}} p_r dr = Im \int_0^{-\omega} \int_{r_{out}}^{r_{in}} \frac{dr}{-1 + \sqrt{\frac{2(M+\omega')}{r}}} d\omega'$$
$$= 4\pi\omega \left(M - \frac{\omega}{2}\right).$$

7) Semiclassical emission rate: adding the two channels

$$\Gamma \sim e^{2\mathrm{Im}S} = e^{-8\pi\omega(M-\omega/2)}.$$

From the first term, by identifying with the Boltzman factor $e^{-8\pi\omega M} \sim e^{-\beta\omega}$ we obtain the Hawking temperature

$$T_{BH}=\frac{1}{8\pi M}.$$

- ロ ト - 4 回 ト - 4 □

The correction term with ω² raises the effective temperature of the BH as it radiates (accelerated evaporation).

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

4.1. Weyl systems

4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system

- 5.1. NH model
- 5.2. Spontaneous particle emission

6. Conclusions & outlook

4.1. Weyl systems (1/2)

- Special electronic band structure → Weyl cone.
- Semimetal (valence and conduction bands intersect at the Weyl point p*).
- ► Around the Weyl point: effective low-energy description as free Weyl fermions (HEP/CM) → Weyl Hamiltonian (linear dispersion relation)

$$H = a(p)\sigma_0 + \vec{b}(p) \cdot \vec{\sigma},$$

with $\vec{b}(p = p_*) = 0 \rightarrow 3$ eqs. (degeneracy condition).

4.1. Weyl systems (2/2)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs
- 5. Hawking radiation in analogue NH system
 - 5.1. NH model
 - 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

4.2. From Weyl sytems to BHs

- Recall tilting of the cone dispersion in WSMs: at the critical tilt the Weyl cone resembles the (tilted) lightcone of an infalling observer in the vicinity of a BH horizon.
- Mapping WSMs to BHs and WHs [Volovik '16]. Mathematical mapping between the Weyl Hamiltonian and spacetime metric via the vielbein formalism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4.2. From Weyl sytems to BHs

- Recall tilting of the cone dispersion in WSMs: at the critical tilt the Weyl cone resembles the (tilted) lightcone of an infalling observer in the vicinity of a BH horizon.
- Mapping WSMs to BHs and WHs [Volovik '16]. Mathematical mapping between the Weyl Hamiltonian and spacetime metric via the vielbein formalism.
- ► In GR: relation between a metric describing curved spacetime g_{ij} and Minkowski spacetime $\eta_{\mu\nu}$ in terms of vielbeins (frame fields) e^{α}_{μ}

$$g_{ij}=\eta_{\mu
u}e^{\mu}{}_{i}e^{
u}{}_{j}$$
 .

- The vielbeins result in the same ones of the Gullstrand-Painlevé metric describing a Schwarzschild BH.
- Aim: extend this to NH systems.

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system

- 5.1. NH model
- 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

5. Hawking radiation in analogue NH system

"Artificial Hawking radiation in Non-Hermitian Parity-Time symmetric systems"

[Stålhammar, JLA, Rødland, Kunst, arXiv:2106.05030].

- Question: are NH systems better suited to display analogue Hawking radiation?
- NH Weyl-like Hamiltonian representing a two-band system linear in momentum.
- Recall analogy between band structures and artificial event horizons in Hermitian systems (Weyl cone/lightcone).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5. Hawking radiation in analogue NH system

"Artificial Hawking radiation in Non-Hermitian Parity-Time symmetric systems"

[Stålhammar, JLA, Rødland, Kunst, arXiv:2106.05030].

- Question: are NH systems better suited to display analogue Hawking radiation?
- NH Weyl-like Hamiltonian representing a two-band system linear in momentum.
- Recall analogy between band structures and artificial event horizons in Hermitian systems (Weyl cone/lightcone).
- Weyl point \rightarrow Exceptional points (forming a cone).
- Exceptional points identified as BH horizon.
- Inspired by the computation of Hawking radiation from quantum tunneling à la Parikh-Wilczek, we interpret dissipative behavior as the creation and emission of light-like particle-antiparticle pairs.

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system 5.1. NH model

5.2. Spontaneous particle emission

6. Conclusions & outlook

5.1. NH model (1/2)

Our NH (tilted) Weyl-like PT symmetric 2-band model

$$H = k_x \sigma_x + k_y \sigma_y + i(k_z - \kappa k_x) \sigma_z.$$

- Energy levels given by $E_{\pm} = \pm \sqrt{k_x^2 + k_y^2 (k_z \kappa k_x)^2} := \pm \sqrt{D}$.
- Exceptional cone (EC): $D = 0 \rightarrow k_z = \kappa k_x \pm \sqrt{k_x^2 + k_y^2}$.

5.1. NH model (2/2)

- Problem! The vielbein formalism to obtain the analogue spacetime metric can only be done for Hermitian systems.
- Trick: We can think of k_z as the eigenvalue of a (Hermitian) Dirac-like operator

$$\hat{k}_z = \kappa k_x \sigma_0 + k_x \sigma_x + k_y \sigma_y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5.1. NH model (2/2)

- Problem! The vielbein formalism to obtain the analogue spacetime metric can only be done for Hermitian systems.
- Trick: We can think of k_z as the eigenvalue of a (Hermitian) Dirac-like operator

$$\hat{k}_z = \kappa k_x \sigma_0 + k_x \sigma_x + k_y \sigma_y.$$

The EC gives rise to an analogue metric

$$ds^{2} = -(1 - \kappa^{2})dt^{2} + dx^{2} + dy^{2} + 2\kappa dx dt,$$

resembling the previous metric of a Schwarzschild BH in Gullstrand-Painlevé coordinates if $dy = d\Omega = 0$ and making the identifications

$$x \sim r, t \sim T, \kappa \sim \sqrt{\frac{2M}{r}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We have extended the relation between Hermitian Weyl cones and artificial lightcones in the vicinity of a BH to ECs in NH PT-symmetric systems.

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system

- 5.1. NH model
- 5.2. Spontaneous particle emission
- 6. Conclusions & outlook

5.2. Spontaneous particle emission

Following the Parikh-Wilczek method:

Evaluate the Im part of the action on the EC

$$\mathrm{Im}S=4\pi M|k_z|.$$

Semi-classical emission rate

$$\Gamma \sim e^{-8\pi M|k_z|},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

which is highly suppressed for high $|k_z|$ since $M \gg 1$ (semiclass. limit), meaning that the tunneling process is more likely for $|k_z|$ small.

- 2. BHs & Hawking radiation
 - 2.1. BH Thermodynamics
 - 2.2. BH are not that black
 - 2.3. Hawking effect

3. Quantum tunneling

3.1. Quantum tunneling through potential barriers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.2. Hawking radiation as quantum tunneling

4. WSMs and BHs

- 4.1. Weyl systems
- 4.2. From Weyl sytems to BHs

5. Hawking radiation in analogue NH system

- 5.1. NH model
- 5.2. Spontaneous particle emission

6. Conclusions & outlook

6. Conclusions & outlook

- Particle emission as dissipation: we relate the spontaneous particle emission with the presence of bulk Fermi states (BFSs) which are dissipative states characteristic of NH systems. In our model they correspond to D ≤ 0 (interior of the EC).
- Dissipative behavior at k_z = 0 can be regarded as spontaneous tunneling of light-like quasi-particles giving the leading order contribution to Hawking radition.
- ► There is also dissipation for finite k_z ≠ 0 and perhaps it could be related to massive modes contributing to the total Hawking radiation process.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

6. Conclusions & outlook

- Particle emission as dissipation: we relate the spontaneous particle emission with the presence of bulk Fermi states (BFSs) which are dissipative states characteristic of NH systems. In our model they correspond to D ≤ 0 (interior of the EC).
- Dissipative behavior at k_z = 0 can be regarded as spontaneous tunneling of light-like quasi-particles giving the leading order contribution to Hawking radition.
- ▶ There is also dissipation for finite $k_z \neq 0$ and perhaps it could be related to massive modes contributing to the total Hawking radiation process.
- ► The role of PT symmetry: broken and unbroken symmetry phases → Hermitian/non-Hermitian sectors.
- Investigate the possible connection between the entropy of the analogue black hole and the entanglement entropy of the model.
- Experimental relevance: towards modelling black hole evaporation in an analogue physical system.

THE END

Thank you for your attention!

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

7. Neglecting commutator contributions*

When $\kappa \to \kappa(r)$ we neglected commutator contributions: $[H, \kappa(r)] \propto [k_r, \kappa(r)]$,

and

$$[H,k_r]\propto [k_r,\kappa(r)],$$

and evaluates to

$$[k_r,\kappa(r)]\propto \frac{\partial\kappa(r)}{\partial r}\propto \frac{M_0}{r^2\sqrt{\frac{2M_0}{r}}}.$$

- When moving away from the horizon this goes as r^{-3/2}, and thus decays for increasing r.
- At the horizon, the commutator is

$$[k_r,\kappa(r)]|_{r=2M_0} \propto M_0^{-1}.$$
(1)

As we assumed $M_0 \gg 1$, this contribution indeed disappears.