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1 Products
Consider the morphism

× : Zk(X)× Zl(Y )→ Zk+l(X × Y )

defined as [Z]× [V ] = [Z × V ].

Proposition 1.1. There are morphisms

× : Ak(X)× Al(Y )→ Ak+l(X × Y )

Bevis. The morphism above is well defined overA∗.AssumeZ ∈ Zk(X), Z = ∂W and consider
[Z × V ], for V ∈ Zl(Y ). Then [Z × V ] = p∗(Z) ∈ B∗(X × Y ), for p : X × V → X. It follows
that [Z]× [V ] ∼ 0 for all V.

Example 1.2. Consider the quadric hypersurface Q = im(P1 × P1 ⊂ P3). It is irreducible and
thus A2(Q) = Z. considering to the above map

A1(P1)× A1(P1)→ A2(P1 × P1)

we confirm that [Q] = [P1 × P1]. There also maps:

A0(P1)× A1(P1)→ A1(P1 × P1), A1(P1)× A0(P1)→ A1(P1 × P1)

showing that [pi × P1] ∼ [pj × P1] for any pi 6= pj ∈ P1 and [P1 × qi] ∼ [P1 × qj] for any
qi 6= qj ∈ P1. Finally consider the map A0(P1)×A0(P1)→ A0(Q) mapping the classes ([p], [q])
to [(p, q)].

More generally we can prove the following.

Definition 1.3. We say that a variety X has a stratification if it is a disjoint union of irreducible,
locally closed, X = ∪Ui such that Ui ∩ Uj 6= ∅ ⇒ Uj ⊆ Ui

If Ui
∼= Ck for some k then we say that X har an affine stratification. Let Yi = Ui then

Ui = Yi \
⋃

Yj⊂Yi

Yj

Example 1.4. P0 ⊂ P1 ⊂ . . . ⊂ Pn is an affine stratification of Pn with Ui = Pi \ Pi−1.

Proposition 1.5. If X is an affine stratification then A(X) is generated by the classes of the its
closed strata.

Example 1.6. Let us look again at Q. Let H0 ⊂ H1 ⊂ P1, T0 ⊂ T1 ⊂ P1 be the affine stratifica-
tions of the two factors. There is an induces affine stratification of Q given by Ti ×Hj. In fact:
Ui,j = Ti ×Hj \ (Ti−1 ×Hj ∪ Ti ×Hj−1) ∼= C1 × Cj. It follows that:

A0(Q) =< [p, q] >,A1 =< π∗
1(p) > ⊕ < π∗

2(q) >,A2(Q) =< [Q] >

Example 1.7.
A(Pn × Pm) = Z[H,T ]/(Hn+1, Tm+1).
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2 Intersection product
When the variety is smooth the Chow group can be endowed with a product that corresponds
to geometric intersection. We will assume from now on that the varieties and subvarieties are
always smooth.

Definition 2.1. Let A,B be two subvarieties of a variety X. We say that A and B intersect
trasversally at a point p ∈ A ∩B if TpA+ TpB = TpX.

We say that A and B are generically transversal if they intersect transversally at a generic
point of each component of their intersection. This implies that their intersection has the expected
codimension i.e each component has codimension codim(A) + codim(B).

If A,B are generically transversally and irreducible then we define:

[A] · [B] = [A ∩B].

This induces a map: An−k(X)× An−l(X)→ An−(k+l)(X).
One can generalize this notions to cycles in the following way. Two cycles α =

∑
miAi, β =∑

njBj intersect transversally (resp. are generically transversal) if Ai, Bj intersect transversally
(resp. are generically transversal). One can in this case define:

α · β =
∑
i,j

minj[Ai ∩Bj].

THEOREM 2.2. [FU, 11.4](Moving Lemma) Let X be a smooth (quasi) projective variety.

1. Let [α] ∈ A(X), B ∈ Z(X), then there exists A ∈ [α] which is generically transversal to
B.

2. If α, β ∈ Z(X) are generically transversal then [α · β] ∈ A(X) only depends on the class
[α], [β] ∈ A(X).

The moving lemma gives the existence of a well defined product on A∗(X) for which the
graded group A∗(X) becomes an associative commutative graded ring.

3 Examples
Example 3.1.

A∗(Pn) = Z[x]/xn+1.

A∗(Pn1 × . . .× (Pnk) = Z[x1, . . . , xk]/(xn1
1 , . . . , x

nk
k ).

Corollary 3.2. Let V,W ⊂ Pn be two subvarieties of complementary dimension. Then

V ∪W = deg(V ) · deg(W ).
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Corollary 3.3. (Bezout’s theorem) Let V1, . . . , Vk ⊂ Pn be subvarieties of codimension ci with∑
ci ≤ n and intersecting generically transversally. Then

deg(V1 ∪ . . . ∩ Vk) = Πi deg(Vi)

Example 3.4. The Veronese embedding. Consider the map vd : Pn → P(n+d
d )−1, defines by

(x0 : . . . : xn) 7→ (. . . , xI , . . .)

where xI ranges over all degree d monomials of degree d : xd =
∑n

0 x
di
i ,
∑
di = d. This map

is an embedding (closed immersion). consider the n-dimensional subvariety vd(Pn) ∈ An(PN),
where N =

(
n+d
d

)
− 1. Then vd(Pn) = deg(vd(Pn))HN−n, whereH is a hyperplane in PN . Then

deg(vd(Pn)) = vd(Pn)Hn and because the map is one-to-one deg(vd(Pn)) = (v−1
d H)n.

Let H1, . . . ,Hn general hyperplanes in P(n+d
d )−1 the v∗d(Hi) = dHi generic hypersurfaces of

degree d and thus
deg(vd(Pn)) = dn.

For example v2(P1) is the conic x0x2 = x21.

Example 3.5. There is always a map deg : A0(X)→ Z defined as deg(
∑
niPi) =

∑
ni. For a

surface X ⊂ Pn the map A1(X) × A1(X) → A0(X) → Z induces a bilinear form which gives
A1(X) the structure of a lattice. For Q ∼= P1 × P1 and [L1] = [{p} × P1], [L2] = [P1 × {q}] the
intersection products are given by:

L1 · L1 = L2
1 = x21 = 0, L2 · L2 = L2

2 = x22 = 0, L1 · L2 = [(p, q)] = 1.

The last example we introduce is the dual hypersurface. Let X ⊂ Pn be a smooth hypersurfa-
ce. Let F (x0, . . . , xn) be the defining equations. The the equation

n∑
0

∂F

∂xi
(p)xi

defines a hyperplane Pn−1 = Tp(X) ⊂ Pn.
Consider the dual projective space Pn∗ i.e.

(a0x0 + a1x1 + . . .+ anxn = 0) ∼= Pn−1 ⊂ Pn ⇔ [(a0 : . . . : an)] ∈ Pn∗

and consider the map γ : X → Pn∗ defined by γ(p) = Tp(X). The image γ(X) = X∗ is called
the dual variety of the hypersurfaceX. It is a classical (not easy) fact that (X∗)∗ = X (biduality).

Proposition 3.6. If deg(F ) > 1 then X∗ is a hypersurface of degree d(d− 1)n−1.

Bevis. The map γ is one-to-one (biduality) and thus

deg(X∗) = [X∗] · Πn−1
1 [H0] = [X]Πn−1

1 [γ−1(Hi)].

LetHi be the coordinate hyperplane xi = 0, then γ−1(H) = {p | ∂F
∂xi

(p) = 0}. i.e. a hypersurface
of degree d− 1. It follows that deg(X∗) = d(d− 1)n−1.

Consider the quadric P1 × P1 ⊂ P3 then the dual is again a surface of degree 2 and in fact
X ∼= X∗. (Homework).
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