

KTH Teknikvetenskap

Topics in Applied Algebraic Geometry
Lecture 4: Introduction to The Chow ring and the intersection product

1 Products

Consider the morphism

$$
\times: Z_{k}(X) \times Z_{l}(Y) \rightarrow Z_{k+l}(X \times Y)
$$

defined as $[Z] \times[V]=[Z \times V]$.
Proposition 1.1. There are morphisms

$$
\times: A_{k}(X) \times A_{l}(Y) \rightarrow A_{k+l}(X \times Y)
$$

Bevis. The morphism above is well defined over A_{*}. Assume $Z \in Z_{k}(X), Z=\partial W$ and consider $[Z \times V]$, for $V \in Z_{l}(Y)$. Then $[Z \times V]=p^{*}(Z) \in B_{*}(X \times Y)$, for $p: X \times V \rightarrow X$. It follows that $[Z] \times[V] \sim 0$ for all V.
Example 1.2. Consider the quadric hypersurface $Q=i m\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}\right)$. It is irreducible and thus $A_{2}(Q)=\mathbb{Z}$. considering to the above map

$$
A_{1}\left(\mathbb{P}^{1}\right) \times A_{1}\left(\mathbb{P}^{1}\right) \rightarrow A_{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)
$$

we confirm that $[Q]=\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right]$. There also maps:

$$
A_{0}\left(\mathbb{P}^{1}\right) \times A_{1}\left(\mathbb{P}^{1}\right) \rightarrow A_{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right), A_{1}\left(\mathbb{P}^{1}\right) \times A_{0}\left(\mathbb{P}^{1}\right) \rightarrow A_{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)
$$

showing that $\left[p_{i} \times \mathbb{P}^{1}\right] \sim\left[p_{j} \times \mathbb{P}^{1}\right]$ for any $p_{i} \neq p_{j} \in \mathbb{P}^{1}$ and $\left[\mathbb{P}^{1} \times q_{i}\right] \sim\left[\mathbb{P}^{1} \times q_{j}\right]$ for any $q_{i} \neq q_{j} \in \mathbb{P}^{1}$. Finally consider the map $A_{0}\left(\mathbb{P}^{1}\right) \times A_{0}\left(\mathbb{P}_{1}\right) \rightarrow A_{0}(Q)$ mapping the classes $([p],[q])$ to $[(p, q)]$.

More generally we can prove the following.
Definition 1.3. We say that a variety X has a stratification if it is a disjoint union of irreducible, locally closed, $X=\cup U_{i}$ such that $\overline{U_{i}} \cap U_{j} \neq \emptyset \Rightarrow U_{j} \subseteq \overline{U_{i}}$

If $U_{i} \cong \mathbb{C}^{k}$ for some k then we say that X har an affine stratification. Let $Y_{i}=\overline{U_{i}}$ then

$$
U_{i}=Y_{i} \backslash \bigcup_{Y_{j} \subset Y_{i}} Y_{j}
$$

Example 1.4. $\mathbb{P}^{0} \subset \mathbb{P}^{1} \subset \ldots \subset \mathbb{P}^{n}$ is an affine stratification of \mathbb{P}^{n} with $U_{i}=\mathbb{P}^{i} \backslash \mathbb{P}^{i-1}$.
Proposition 1.5. If X is an affine stratification then $A(X)$ is generated by the classes of the its closed strata.

Example 1.6. Let us look again at Q. Let $H_{0} \subset H_{1} \subset \mathbb{P}^{1}, T_{0} \subset T_{1} \subset \mathbb{P}^{1}$ be the affine stratifications of the two factors. There is an induces affine stratification of Q given by $T_{i} \times H_{j}$. In fact: $U_{i, j}=T_{i} \times H_{j} \backslash\left(T_{i-1} \times H_{j} \cup T_{i} \times H_{j-1}\right) \cong \mathbb{C}^{1} \times \mathbb{C}^{j}$. It follows that:

$$
A_{0}(Q)=<[p, q]>, A_{1}=<\pi_{1}^{*}(p)>\oplus<\pi_{2}^{*}(q)>, A_{2}(Q)=<[Q]>
$$

Example 1.7.

$$
A\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)=\mathbb{Z}[H, T] /\left(H^{n+1}, T^{m+1}\right)
$$

2 Intersection product

When the variety is smooth the Chow group can be endowed with a product that corresponds to geometric intersection. We will assume from now on that the varieties and subvarieties are always smooth.

Definition 2.1. Let A, B be two subvarieties of a variety X. We say that A and B intersect trasversally at a point $p \in A \cap B$ if $T_{p} A+T_{p} B=T_{p} X$.

We say that A and B are generically transversal if they intersect transversally at a generic point of each component of their intersection. This implies that their intersection has the expected codimension i.e each component has codimension $\operatorname{codim}(A)+\operatorname{codim}(B)$.

If A, B are generically transversally and irreducible then we define:

$$
[A] \cdot[B]=[A \cap B] .
$$

This induces a map: $A_{n-k}(X) \times A_{n-l}(X) \rightarrow A_{n-(k+l)}(X)$.
One can generalize this notions to cycles in the following way. Two cycles $\alpha=\sum m_{i} A_{i}, \beta=$ $\sum n_{j} B_{j}$ intersect transversally (resp. are generically transversal) if A_{i}, B_{j} intersect transversally (resp. are generically transversal). One can in this case define:

$$
\alpha \cdot \beta=\sum_{i, j} m_{i} n_{j}\left[A_{i} \cap B_{j}\right] .
$$

THEOREM 2.2. [FU, 11.4](Moving Lemma) Let X be a smooth (quasi) projective variety.

1. Let $[\alpha] \in A(X), B \in Z(X)$, then there exists $A \in[\alpha]$ which is generically transversal to B.
2. If $\alpha, \beta \in Z(X)$ are generically transversal then $[\alpha \cdot \beta] \in A(X)$ only depends on the class $[\alpha],[\beta] \in A(X)$.

The moving lemma gives the existence of a well defined product on $A_{*}(X)$ for which the graded group $A^{*}(X)$ becomes an associative commutative graded ring.

3 Examples

Example 3.1.

$$
\begin{gathered}
A^{*}\left(\mathbb{P}^{n}\right)=\mathbb{Z}[x] / x^{n+1} \\
A^{*}\left(\mathbb{P}^{n_{1}} \times \ldots \times\left(\mathbb{P}^{n_{k}}\right)=\mathbb{Z}\left[x_{1}, \ldots, x_{k}\right] /\left(x_{1}^{n_{1}}, \ldots, x_{k}^{n_{k}}\right) .\right.
\end{gathered}
$$

Corollary 3.2. Let $V, W \subset \mathbb{P}^{n}$ be two subvarieties of complementary dimension. Then

$$
V \cup W=\operatorname{deg}(V) \cdot \operatorname{deg}(W)
$$

Corollary 3.3. (Bezout's theorem) Let $V_{1}, \ldots, V_{k} \subset \mathbb{P}^{n}$ be subvarieties of codimension c_{i} with $\sum c_{i} \leq n$ and intersecting generically transversally. Then

$$
\operatorname{deg}\left(V_{1} \cup \ldots \cap V_{k}\right)=\Pi_{i} \operatorname{deg}\left(V_{i}\right)
$$

Example 3.4. The Veronese embedding. Consider the map $v_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, defines by

$$
\left(x_{0}: \ldots: x_{n}\right) \mapsto\left(\ldots, x^{I}, \ldots\right)
$$

where x^{I} ranges over all degree d monomials of degree $d: x^{d}=\sum_{0}^{n} x_{i}^{d_{i}}, \sum d_{i}=d$. This map is an embedding (closed immersion). consider the n-dimensional subvariety $v_{d}\left(\mathbb{P}^{n}\right) \in A_{n}\left(\mathbb{P}^{N}\right)$, where $N=\binom{n+d}{d}-1$. Then $v_{d}\left(\mathbb{P}^{n}\right)=\operatorname{deg}\left(v_{d}\left(\mathbb{P}^{n}\right)\right) \mathcal{H}^{N-n}$, where \mathcal{H} is a hyperplane in \mathbb{P}^{N}. Then $\operatorname{deg}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)=v_{d}\left(\mathbb{P}^{n}\right) \mathcal{H}^{n}$ and because the map is one-to-one $\operatorname{deg}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)=\left(v_{d}^{-1} \mathcal{H}\right)^{n}$.

Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ general hyperplanes in $\mathbb{P}^{\binom{n+d}{d}-1}$ the $v_{d}^{*}\left(\mathcal{H}_{i}\right)=d H_{i}$ generic hypersurfaces of degree d and thus

$$
\operatorname{deg}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)=d^{n}
$$

For example $v_{2}\left(\mathbb{P}^{1}\right)$ is the conic $x_{0} x_{2}=x_{1}^{2}$.
Example 3.5. There is always a map $\operatorname{deg}: A_{0}(X) \rightarrow \mathbb{Z}$ defined as $\operatorname{deg}\left(\sum n_{i} P_{i}\right)=\sum n_{i}$. For a surface $X \subset \mathbb{P}^{n}$ the map $A_{1}(X) \times A_{1}(X) \rightarrow A_{0}(X) \rightarrow \mathbb{Z}$ induces a bilinear form which gives $A_{1}(X)$ the structure of a lattice. For $Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\left[L_{1}\right]=\left[\{p\} \times \mathbb{P}^{1}\right],\left[L_{2}\right]=\left[\mathbb{P}^{1} \times\{q\}\right]$ the intersection products are given by:

$$
L_{1} \cdot L_{1}=L_{1}^{2}=x_{1}^{2}=0, L_{2} \cdot L_{2}=L_{2}^{2}=x_{2}^{2}=0, L_{1} \cdot L_{2}=[(p, q)]=1 .
$$

The last example we introduce is the dual hypersurface. Let $X \subset \mathbb{P}^{n}$ be a smooth hypersurface. Let $F\left(x_{0}, \ldots, x_{n}\right)$ be the defining equations. The the equation

$$
\sum_{0}^{n} \frac{\partial F}{\partial x_{i}}(p) x_{i}
$$

defines a hyperplane $\mathbb{P}^{n-1}=T_{p}(X) \subset \mathbb{P}^{n}$.
Consider the dual projective space $\mathbb{P}^{n *}$ i.e.

$$
\left(a_{0} x_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}=0\right) \cong \mathbb{P}^{n-1} \subset \mathbb{P}^{n} \Leftrightarrow\left[\left(a_{0}: \ldots: a_{n}\right)\right] \in \mathbb{P}^{n *}
$$

and consider the map $\gamma: X \rightarrow \mathbb{P}^{n *}$ defined by $\gamma(p)=T_{p}(X)$. The image $\gamma(X)=X^{*}$ is called the dual variety of the hypersurface X. It is a classical (not easy) fact that $\left(X^{*}\right)^{*}=X$ (biduality).
Proposition 3.6. If $\operatorname{deg}(F)>1$ then X^{*} is a hypersurface of degree $d(d-1)^{n-1}$.
Bevis. The map γ is one-to-one (biduality) and thus

$$
\operatorname{deg}\left(X^{*}\right)=\left[X^{*}\right] \cdot \Pi_{1}^{n-1}\left[H_{0}\right]=[X] \Pi_{1}^{n-1}\left[\gamma^{-1}\left(H_{i}\right)\right] .
$$

Let H_{i} be the coordinate hyperplane $x_{i}=0$, then $\gamma^{-1}(H)=\left\{p \left\lvert\, \frac{\partial F}{\partial x_{i}}(p)=0\right.\right\}$. i.e. a hypersurface of degree $d-1$. It follows that $\operatorname{deg}\left(X^{*}\right)=d(d-1)^{n-1}$.

Consider the quadric $\mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}$ then the dual is again a surface of degree 2 and in fact $X \cong X^{*}$. (Homework).

Litteraturförteckning

[FU] W. Fulton, Intersection Theory, Springer 1984
[FUintro] Introduction to Intersection Theory in Algebraic Geometry, AMS regional conference series in mathematics, no 54, 1984.
[Ha] R. Hartshorne, Algebraic Geometry, Springer 1977.

