

KTH Teknikvetenskap

Topics in Applied Algebraic Geometry
Lecture 4: Introduction to The Chow ring and the intersection product

1 Geometric reformulation

We have defined the Chow groups $A_{k}(X)$ given as equivalence classes of dimension k subvarieties. Two equivalent varieties $Z_{1} \sim Z_{2}$ are said to be rationally equivalent, because the equivalence class relation can be reformulated via a rational curve: \mathbb{P}^{1}.

The product of (affine or projective) algebraic variety, $X_{1} \times X_{2}$, is an algebraic variety defined by the Segre embedding:

$$
s: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{n m+n+m}, s\left(x_{0}: \ldots: x_{n}, y_{0}: \ldots: y_{m}\right)=\left(\ldots, x_{i} y_{j}, \ldots\right)
$$

The image $s\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)=V\left(z_{i k} z_{j l}-z_{i l} z_{j k}\right)$ where $S\left(\mathbb{P}^{n m+n+m}\right)=\mathbb{C}\left[z_{i j}\right]_{0 \leq i \leq n, 0 \leq j \leq m}$.
Definition 1.1. Let $X_{1} \subset \mathbb{P}^{n}, X_{2} \subset \mathbb{P}^{m}$ be subvarieties or open subsets. The image $s\left(X_{1} \times X_{2}\right)$ is the product variety. Notice that $\mathbb{C}^{n} \times \mathbb{C}^{m} \cong \mathbb{C}^{n+m}$.

Facts 1.2. The following is true:

1. The product of irreducible subspaces is irreducible.
2. The graph of a morphism $f: X \rightarrow Y$ is a closed subset of $X \times Y$.

Let $X \subset \mathbb{C}^{m}, Y \subset \mathbb{C}^{n}$ be affine varieties, then $f=\left(p_{1}, \ldots p_{n}\right): X \rightarrow \mathbb{C}^{n}$. Recall that $\Gamma=\left\{\left(x, f(x)=\left(p_{1}(x), \ldots, p_{m}(x)\right)\right\}\right.$. Consider the product map:

$$
f \times i d: X \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \times \mathbb{C}^{n}
$$

Then $\Gamma=(f \times i d)^{-1}(\Delta)$ where Δ is the diagonal, which is the closed subset $V\left(z_{i j}\right)_{i \leq j}$.
3. The projections $p: X \times Y \rightarrow X, q: X \times Y \rightarrow Y$ are morphisms.
4. The projection of a closed subvariety is a closed subvariety.

Consider $p: \mathbb{P}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$, and $Z=V\left(f_{i}\right), f_{i} \in \mathbb{C}\left[y_{0}: \ldots: y_{n}, x_{1}, \ldots, x_{m}\right]$ (homogeneous in the $\left.y_{i}\right), \operatorname{deg}\left(f_{i}\right)=d_{i}$. Let $x_{*} \in \mathbb{C}^{m}$, then $x_{*} \in p(Z)$ if and only if $\emptyset \neq V\left(f_{i}\left(y, x_{*}\right)\right)$. By proj. Nullstellensatz this is equivalent to $\left(y_{0}, \ldots, y_{n}\right) \not \subset \sqrt{\left(f_{i}\left(y, x_{*}\right)\right)}$ i.e. $\left(y_{0}, \ldots, y_{n}\right)^{t} \not \subset$ $\left(f_{i}\left(y, x_{*}\right)\right)$ for all t. If we denote by $H_{t}=\left\{x_{*} \in \mathbb{C}^{m}\right.$ s.t. $\left.\left(y_{0}, \ldots, y_{n}\right)^{t} \not \subset\left(f_{i}\left(y, x_{*}\right)\right)\right\}$. Then $p(Z)=\cap H_{t}$. It is then enough to show that H_{t} is closed. Let x_{*} such that $\left(y_{0}, \ldots, y_{n}\right)^{t} \subset$ $\left(f_{i}\left(y, x_{*}\right)\right)$ and consider the linear map:

$$
\oplus \mathbb{C}\left[y_{0}: \ldots: y_{n}\right]_{t-d_{i}} \rightarrow \mathbb{C}\left[y_{0}: \ldots: y_{n}\right]_{t}\left(g_{i}(y)\right) \rightarrow \sum g_{i}(y) f_{i}\left(y, x_{*}\right)
$$

This map is surjective when a maximal minor is not zero. So the complement of $p(Z)$ is an open condintion.
5. The product of two affine (resp. projective) varieties is affine (resp. projective).

Let X be an algebraic variety and let $V \subset X \times \mathbb{P}^{1}$ be a $(k+1)$-dimensional subvariety such that $p: V \rightarrow \mathbb{P}^{1}$ is dominant. Let $q: V \rightarrow X$ then $q\left(p^{-1}(0)\right), q\left(p^{-1}(\infty)\right) \in Z_{k}(X)$ are rationally equivalent. We will denote $q\left(p^{-1}(0)\right)-q\left(p^{-1}(\infty)\right)=\partial V$ and we say that $Z \sim 0$ if there exists $V_{1}, \ldots, V_{k} \in A_{k+1}\left(X \times \mathbb{P}^{1}\right)$ with dominant $p_{i}: V_{i} \rightarrow \mathbb{P}^{1}$ such that

$$
Z=\sum \partial V_{i}
$$

This is the same equivalence relation used in the previous lecture.
The Chow group of X is $A_{*}(X)=\sum_{k} A_{k}(X)$.

2 Push forward and pull back.

Let us now see when we can define a pull back and push forward operation on cycles. Given an open $U \subset V$ it is not always the case that we can extend subvarieties (push forward), e.g. $\mathbb{C}^{n} \subset \mathbb{P}^{n}$ or $\{p t\} \in \mathbb{C}^{n}$.

2.1 Push forward.

The category of maps $f: X \rightarrow Y$ for which we can define $f_{*}: A_{k}(X) \rightarrow A_{k}(Y)$ are the proper map (universally closed).

Definition 2.1. A map $f: X \rightarrow Y$ is proper if $p^{-1}(Z)$ is compact for all compact $Z \subset Y$. equivalently if for any $g: Z \rightarrow Y$ the map f^{\prime} :

$$
f^{\prime} \begin{array}{cccc}
X \times_{Y} Z & \rightarrow & X \\
\downarrow & & \downarrow & \\
Z & \rightarrow & Y &
\end{array}
$$

maps closed subsets to closed subsets.
Facts 2.2. The following is true.

1. Let $f: X \rightarrow Y$ be a dominant morphism of varieties of the same dimension. Then $K(X)$ is a finite dimensional vector space over $K(Y)$ whose dimension is called degree of f and is equal to the number of points in a general fiber.
2. if f is proper then every fiber consists of the same number of points (counted with multiplicity).

Let $f: X \rightarrow Y$ be a proper morphism then we can define $f_{*}: Z_{k}(X) \rightarrow Z_{k}(Y)$ as

$$
f_{*}([Z])=[K(Z): K(f(Z))][f(Z)] \text { if } \operatorname{dim}(f(Z))=\operatorname{dim}(Z) \text { and } 0 \text { otherwise } .
$$

If $r \in K(X)^{*}$ then $f_{*}\left([r]_{X}\right)=[N(r)]_{Y}$ if $\operatorname{dim}(Y)=\operatorname{dim}(X)$ and 0 otherwise. The norm $N(r)$ is defined as follows. The rational function $N(r) \in K(Y)$ is the determinant of the endomorphism on the $K(Y)$-vector space $K(X)$ given by the multiplication by r. It follows that:

Proposition 2.3 (Hmw). Let $f: X \rightarrow Y$ be a proper morphism, then there are well defined push-forward maps: $f_{*}: A_{k}(X) \rightarrow A_{k}(Y)$.

Consider $r \in K(V)^{*}$ for a subvariety of X. The rational function $r: V \rightarrow \mathbb{P}^{1}$ is dominant over an open $U \subset V$. Let $W=\Gamma_{r} \subset V \times \mathbb{P}^{1}$ and $[r]=\partial \Gamma$. Viceversa consider $W \subset X \times \mathbb{P}^{1}$ such that $\partial W \sim 0$ then $p: W \rightarrow \mathbb{P}^{1}$ gives rise to a rational function $r \in K(W)^{*}$ and $\partial W=q_{*}[r]$.

Definition 2.4. Let $f: X \rightarrow Y$ be a morphism. For any point $p \in X$ the local ring \mathcal{O}_{y} is an

All fibers of a flat morphism have the same dimension, called the relative dimension of f. If f is a flat morphism of relative dimension r then we can define a pull back map:

$$
f^{*}: Z_{k}(Y) \rightarrow Z_{k+r}(X)
$$

as $f^{*}([Z])=\left[f^{-1}(Z)\right]$. The map is well defined on A_{*}. Let $Z=\partial W$ for $W \subset Y \times \mathbb{P}^{1}$ mapping dominantly $g: W \rightarrow \mathbb{P}^{1}$. Let $V=(f \times i d)^{-1}(Z) \subset X \times \mathbb{P}^{1}$, and let $h: V \rightarrow \mathbb{P}^{1}$. Denote $p: X \times \mathbb{P}^{1} \rightarrow X, q: Y \times \mathbb{P}^{1} \rightarrow Y$. then
$f^{*} Z=f^{*} q_{*}\left(\left[g^{-1}(0)\right]-\left[g^{-1}(\infty)\right]\right)=p_{*}(f \times i d)^{*}\left(\left[g^{-1}(0)\right]-\left[g^{-1}(\infty)\right]\right)=p_{*}\left(\left[h^{-1}(0)\right]-\left[h^{-1}(\infty)\right]\right)=\partial V$

Litteraturförteckning

[FU] W. Fulton, Intersection Theory, Springer 1984
[FUintro] Introduction to Intersection Theory in Algebraic Geometry, AMS regional conference series in mathematics, no 54, 1984.
[Ha] R. Hartshorne, Algebraic Geometry, Springer 1977.

