

KTH Teknikvetenskap

Topics in Applied Algebraic Geometry
 Lecture 3: Introduction to The Chow group of a variety

We will introduce the basics of intersection theory and the Chow group of an algebraic variety. We start by stating the basic notations and facts.

1 Notation

We refer to [Ha, chap I] for more details. $X \subseteq \mathbb{C}^{n}$ denotes an algebraic variety (reduced and irreducible scheme), i.e. the variety defined by a prime ideal $I(X) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. The quotient ring $A(X)=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I(X)$ is the coordinate ring A projective variety $Y \subseteq \mathbb{P}^{n}$ is defined by a homogeneous prime ideal of the graded ring $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and its coordinate ring is $S(Y)=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / I(Y)$. Recall that a projective variety Y is covered by affine patches $U=\cup Y_{i}$ for $i=0, \ldots n$, and $A\left(Y_{i}\right)=\cong(Y)_{\left(x_{i}\right)}$.

A function $f: Y \rightarrow \mathbb{C}$ is regular at a point $p \in Y$ if there exist an open U containing p and two polynomials $g, h \in S$ of the same degree such that $f=g / h$ on U. A function is regular on Y if it is regular at every point. We will denote by $\mathcal{O}(Y)$ the ring of regular functions on Y.

Let $p \in Y$. A pair (U, f) where f is a regular function at p and U is the corresponding open set is called a germ of f near p. Two germs $(U, f)=(V, g)$ are equal if $f=g$ on $U \cap V$ (eq. relation). The local ring \mathcal{O}_{p} is the the ring of equivalence classes of germs, its maximal ideal m_{p} is the ideal of germs vanishing at p. More generally, given $(U, f),(V, g)$ where f (resp g) is regular on U (resp V) one defines the equivalence relation $(U, f)=(V, g)$ if $f=g$ on $U \cap V$ and the ring of eq. classes $K(Y)$ is called the function field of Y and its elements are rational functions.

Recall the following facts [Ha, Thm 3.2, Thm 3.4]

- If $X \subseteq \mathbb{C}^{n}$ then $A(X)=\mathcal{O}(X), \mathcal{O}_{p}=A(X)_{\left(m_{p}\right)}$ and $K(X)=Q(A(X))$.
- $Y \subseteq \mathbb{P}^{n}$ then $\mathcal{O}(Y)=\mathbb{C}, \mathcal{O}_{p}=S(X)_{\left(m_{p}\right)}$ and $K(X)=S(X)_{((0))}$

Example 1.1. - $K\left(\mathbb{P}^{n}\right)=\left\{f / g, f, g \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]\right.$ homogeneous of the same degree $\}$.

-

Recall that a variety $X \subseteq \mathbb{C}^{n}$ defined by $I(X)=\left(f_{1}, \ldots, f_{k}\right)$ is $s m o o t h$ (non singular) at $p \in X$ if the Jacobian matrix $\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right]$ has maximal rank. Equivalently if the local ring \mathcal{O}_{p} is regular, i.e. $\operatorname{dim}\left(m_{p} / m_{p}^{2}\right)=\operatorname{dim}(X)$.

Let $Y \subseteq \mathbb{P}^{n}$, a subvariety $Z \subseteq Y$ is a variety defined by a prime ideal of the ring $S(Y)$. The local ring of Z on Y is the ring of equivalence classes of (U, f) where f is reg U and $U \cap Z \neq \emptyset$ and it is denoted by $\mathcal{O}_{Z, Y}$. If Z is a point p it coincides with \mathcal{O}_{p}. Note also that if X is affine then the defining ideal $I_{Z, Y}=\left\{f \in \mathcal{O}_{Z, X}\right.$ s.t.f $\left.\in I(X)\right\}$.

Given an affine algebraic variety $X \subseteq \mathbb{C}^{n}$ its dimension is defined as

- The maximal length och chains of subvarities:

$$
\emptyset=V_{0} \subset V_{1} \subset \ldots \subset V_{k}=X
$$

- Equivalentily $\operatorname{dim}(X)=\operatorname{dim}(A(X))$.

The codimension of a subvariety $Z \subseteq Y$ is:

- The maximal length och chains of subvarities:

$$
Z=V_{0} \subset V_{1} \subset \ldots \subset V_{k}=X
$$

- Equivalentily $\operatorname{codim}_{X}(Z)=\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Z, Y}\right)$.

2 Weil divisors

Let $Z \subset Y$ be a subvariety of codimension 1 then locally $\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Z, Y_{i}}\right)$ is one and thus $I_{Z, Y_{i}}=$ $\left(f_{i}\right)$, where $f_{i} \in Q\left(\mathcal{O}_{Z, Y_{i}}\right)$. Moreover $Q\left(\mathcal{O}_{Z, Y_{i}}\right)=K\left(Y_{i}\right)$.
Let us recall some important properties of local one dimensional rings. Let A be a 1-dimensional Noetherian local ring $\left(\operatorname{dim}\left(m / m^{2}\right)=1\right)$ and $0 \neq a \in A$. Then the ring $A / a A$ has a finite length (maximal length of a decreasing chain of ideals).
Definition 2.1. We define the order of a as $\operatorname{ord}(a)=\operatorname{ord}(A / a A)=\operatorname{length}(A / a A)$. The order finction is

$$
\text { ord }: Q(A)^{*} \rightarrow \mathbb{Z}, \operatorname{ord}(a / b)=\operatorname{ord}(a)-\operatorname{ord}(b) .
$$

Given $X \subseteq \mathbb{C}^{n}$ and $Z \subset X$ of codimension one we have a well defined order funtion:

$$
\begin{aligned}
& \operatorname{ord}_{Z}: Q\left(\mathcal{O}_{Z, X}\right)^{*} \rightarrow \mathbb{Z}, \operatorname{ord}(f / g)=\operatorname{ord}(f)-\operatorname{ord}(g) \\
& \quad=\operatorname{length}\left(\mathcal{O}_{Z, X} / f \mathcal{O}_{Z, X}\right)-\operatorname{length}\left(\mathcal{O}_{Z, X} / g \mathcal{O}_{Z, X}\right)
\end{aligned}
$$

In fact of any rational function $r \in K(X)$ we can define the cycle of r :

$$
[r]=\sum_{\operatorname{cod} 1 \text { subv }} \operatorname{ord}_{Z}(r) Z .
$$

Example 2.2. Consider a plane curve $C \in \mathbb{C}^{2}$ and two other curved defined by the polynomials F, G. the cycle of the rational:

$$
[F / G]=\sum_{p \in C} \operatorname{ord}_{p}(F / G) p=\sum_{p}\left(\operatorname{mult}_{p}(C, F)-\operatorname{mult}_{p}(C, G)\right)
$$

where $\operatorname{mult}_{p}(C, F)=\operatorname{length}\left(\mathcal{O}_{p} / F \mathcal{O}_{p}\right)$.

3 Chow groups

Let X be an algebraic variety. We denote by $Z_{k}(X)$ the group of k-cycles, i.e. the abelian group freely generated by the subvarieties of dimenion k.

For any $(k+1)$-dimensional $W \subset X$ and any $r \in K(W)$ we can define the cycle

$$
[r]=\sum_{V \in Z_{k}(X)} \operatorname{ord}(r) V
$$

A cycle $\alpha \in Z_{k}(X)$ is s said to be equivalent to $0, \alpha \sim 0$, if there are finitely many $(k+1)$ dimensional subvarieties W_{1}, \ldots, W_{s} and rational function $r_{W_{i}}$ such that

$$
\alpha=\sum_{1}^{s}\left[r_{W_{i}}\right]
$$

The cycle equivalent to 0 for a subgroup denoted by $B_{k}(X)$. The k-th Chow group of X is defined as:

$$
A_{k}(X)=Z_{k}(X) / B_{k}(X)
$$

Example 3.1. 1. Any codimension one subvariety $Y \subset \mathbb{C}^{n}$ is the zero of a polynomial. It follows that $A_{n-1}\left(\mathbb{C}^{n}\right)=0$. Similarly for any point $p \in \mathbb{C}^{n}$ and considering $p \in L$ where L is a line through p on sees that $p \sim 0$ so that $A_{0}\left(\mathbb{C}^{n}\right)=0$. Clearly $A_{n}\left(\mathbb{C}^{n}\right)=\left[\mathbb{C}^{n}\right]=\mathbb{Z}$. ($\left[\mathbb{C}^{n}\right]$ must be a basis element and $t \rightarrow t\left[\mathbb{C}^{n}\right]$ is an isomorphism. This is in fact the case for any variety.
2. Consider now \mathbb{P}^{n}. We have seen that $A_{n}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$. Consider a codimension one subvariety $V=V(g)$ for a homogeneous polynomial g of degree d. Then g / x_{0}^{d} is a rational function and $\left[g / x_{0}^{d}\right]=V-d H_{0}$ where $H_{0}=\left(x_{0}\right)$ which implies that $V \sim d H_{0}$. We can then define a rurjective function $\mathbb{Z} \rightarrow A_{n-1}\left(\mathbb{P}^{n}\right)$ assigning m to $m H_{0}$. Note that if $m H_{0} \sim 0$ that there exist $r_{1}, \ldots, r_{s} \in K\left(\mathbb{P}^{n}\right)^{*}$ such that $d H_{0}=\sum\left[r_{i}\right]=\sum_{h} d_{i} H_{0}$. It follows that $\operatorname{deg}\left(r=r_{1} \cdots r_{s}\right)=0=d$. If we write $r=f_{1}^{m_{1}} \cdots f_{k}^{m_{k}} / g_{1}^{h_{1}} \cdots g_{k}^{h_{l}}$ where the f_{i}, g_{j} have no common factors, then $[r]=\sum_{1}^{k} m_{i} V\left(f_{i}\right)-\sum_{1}^{l} h_{j} V\left(g_{j}\right)=d H_{0}$. It is then $h_{j}=0$ for all j and $m_{i}=0$ for all i but one, m_{1}. but since $\sum_{1}^{k} m_{i}=\sum_{1}^{l} h_{j}$ it must be $m_{1}=0$ and thus $d H_{0}=0$. The map is also injective which proves that $A_{n-1}\left(\mathbb{P}^{n}\right)=\mathbb{Z}=<H>$ where H is a coordinate hyperplane. Similarly as for (1) one shows that $A_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$.

Proposition 3.2. Let Y be a subvariety if X. Then for any $k \geq 0$ there is an exact sequence:

$$
A_{k}(Y) \rightarrow A_{k}(X) \rightarrow A_{k}(X \backslash Y) \rightarrow 0
$$

The morphisms are induced by inclusion and restriction.
Bevis. A k-dimensional subvariety of Y is defined by restricting a k-dimensional subvariety of X to Y. This proves that the first map is well defined, i.e. $B_{k}(Y)$ is mapped to $B_{k}(X)$. The second map $j: A_{k}(X) \rightarrow A_{k}(X \backslash Y)$ is defined by restriction. Assume that V is a k dimensional subvariety of X contained in the $(k+1)$ subvariety W then for any $r \in \mathcal{O}_{X, W}$

$$
\operatorname{ord}_{W}(r)=\operatorname{ord}_{W \backslash Y}\left(\left.r\right|_{W \backslash Y}\right)
$$

which implies that $j([r])=\left[\left.r\right|_{W \backslash Y}\right]$ and thus $j\left(B_{k}(X)\right) \subset B_{k}(X \backslash Y)$. Surjection is implied by the fact that subvarieties in $X \backslash Y$ can be extended to X. Assume now that $j(\alpha) \sim 0$ which menas that $j(\alpha)=\sum_{1}^{s}\left[r_{W_{i}}\right]$. again by extending (taking the closure) we can assume $\left[r_{W_{i}}\right]=j\left[r_{W_{i}}^{*}\right]$. The cycle $\beta=\alpha-\sum_{1}^{s}\left[r_{W_{i}}^{*}\right]$ is equivalent to α and $j(\beta)=0$ which means that all components are contained in Y. It follows that α is the image of an element of $A_{k}(Y)$.
Example 3.3. Let U be a (non empty) open set of \mathbb{C}^{n}. Then $A_{k}(U)=0$ for $k<n$ and $A_{n}(U)=$ \mathbb{Z}. One sees this by induction. We have remarked that this is true for $n=1$. For $n \geq 2$ consider the projection $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ whose fiber is \mathbb{C}^{1}, i.e. \mathbb{C}^{n} can be viewed as an affine bundle of rank 1 over \mathbb{C}^{n-1}, which implies ([FU, Thm. 1.9]) that there is a surjective map $\pi: A_{k-1}\left(\mathbb{C}^{n-1}\right) \rightarrow$ $A_{k}\left(\mathbb{C}^{n}\right)$ for all $1 \leq k \leq n$. If $k<n$ by induction the groups are 0 . If $k=n$ then both are \mathbb{Z}. To finish the prove we observe that the inclusion $U \subset \mathbb{C}^{n}$ induces a surjection $A_{k}\left(\mathbb{C}^{n}\right) \rightarrow A_{k}(U)$.
Example 3.4. $A_{k}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$ foe all $0 \leq k \leq n$ and it is generated by any k-plane $H_{k}=\mathbb{P}^{k}$. We have observed this for $k=n-1, n$. Let $k<n$ and use induction on n. Let $H \subset \mathbb{P}^{n}$ be a hyperplane, then

$$
A_{k}(H) \rightarrow A_{k}\left(\mathbb{P}^{n}\right) \rightarrow A_{k}\left(\mathbb{P}^{n} \backslash H\right) \rightarrow 0
$$

By induction $A_{k}(H)=\mathbb{Z}$ and $A_{k}\left(\mathbb{P}^{n} \backslash H\right)=0$ because $\mathbb{P}^{n} \backslash H \cong \mathbb{C}^{n}$, which implies that we have a surjective map $\mathbb{Z}=<H_{k}>\rightarrow A_{k}\left(\mathbb{P}^{n}\right)$ induced by the inclusion. Let $d \mathbb{Z}=<d H_{k}>$ be the kernel. This means that $d H_{k}=\sum\left[r_{i}\right]$ where r_{i} are rational on $(k+1)-\operatorname{dim} V_{i}$ and thus $H_{k} \subset V=\cup V_{i}$.

Litteraturförteckning

[FU] W. Fulton, Intersection Theory, Springer 1984
[FUintro] Introduction to Intersection Theory in Algebraic Geometry, AMS regional conference series in mathematics, no 54, 1984.
[Ha] R. Hartshorne, Algebraic Geometry, Springer 1977.

