
Topics in Applied Algebraic Geometry
Lecture 3: Introduction to The Chow group of a variety

We will introduce the basics of intersection theory and the Chow group of an algebraic variety.
We start by stating the basic notations and facts.



1 Notation
We refer to [Ha, chap I] for more details. X ⊆ Cn denotes an algebraic variety (reduced and
irreducible scheme), i.e. the variety defined by a prime ideal I(X) ⊂ C[x1, . . . , xn]. The quotient
ring A(X) = C[x1, . . . , xn]/I(X) is the coordinate ring A projective variety Y ⊆ Pn is defined
by a homogeneous prime ideal of the graded ring S = C[x0, . . . , xn] and its coordinate ring
is S(Y ) = C[x0, . . . , xn]/I(Y ). Recall that a projective variety Y is covered by affine patches
U = ∪Yi for i = 0, . . . n, and A(Yi) =∼= S(Y )(xi).

A function f : Y → C is regular at a point p ∈ Y if there exist an open U containing p and
two polynomials g, h ∈ S of the same degree such that f = g/h on U. A function is regular on
Y if it is regular at every point. We will denote by O(Y ) the ring of regular functions on Y.

Let p ∈ Y. A pair (U, f) where f is a regular function at p and U is the corresponding open
set is called a germ of f near p. Two germs (U, f) = (V, g) are equal if f = g on U ∩ V (eq.
relation). The local ring Op is the the ring of equivalence classes of germs, its maximal ideal
mp is the ideal of germs vanishing at p. More generally, given (U, f), (V, g) where f (resp g) is
regular on U (resp V ) one defines the equivalence relation (U, f) = (V, g) if f = g on U ∩ V
and the ring of eq. classes K(Y ) is called the function field of Y and its elements are rational
functions.

Recall the following facts [Ha, Thm 3.2, Thm 3.4]

• If X ⊆ Cn then A(X) = O(X),Op = A(X)(mp) and K(X) = Q(A(X)).

• Y ⊆ Pn then O(Y ) = C,Op = S(X)(mp) and K(X) = S(X)((0))

Example 1.1. • K(Pn) = {f/g, f, g ∈ C[x0, . . . , xn] homogeneous of the same degree }.

• ....

Recall that a variety X ⊆ Cn defined by I(X) = (f1, . . . , fk) is smooth (non singular) at
p ∈ X if the Jacobian matrix [ ∂fi

∂xj
(p)] has maximal rank. Equivalently if the local ring Op is

regular, i.e. dim(mp/m
2
p) = dim(X).

Let Y ⊆ Pn, a subvariety Z ⊆ Y is a variety defined by a prime ideal of the ring S(Y ). The
local ring of Z on Y is the ring of equivalence classes of (U, f) where f is reg U and U ∩Z 6= ∅
and it is denoted byOZ,Y . If Z is a point p it coincides withOp. Note also that if X is affine then
the defining ideal IZ,Y = {f ∈ OZ,Xs.t.f ∈ I(X)}.

Given an affine algebraic variety X ⊆ Cn its dimension is defined as

• The maximal length och chains of subvarities:

∅ = V0 ⊂ V1 ⊂ . . . ⊂ Vk = X

• Equivalentily dim(X) = dim(A(X)).

The codimension of a subvariety Z ⊆ Y is:

• The maximal length och chains of subvarities:

Z = V0 ⊂ V1 ⊂ . . . ⊂ Vk = X

• Equivalentily codimX(Z) = dimC(OZ,Y ).
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2 Weil divisors
Let Z ⊂ Y be a subvariety of codimension 1 then locally dimC(OZ,Yi

) is one and thus IZ,Yi
=

(fi), where fi ∈ Q(OZ,Yi
). Moreover Q(OZ,Yi

) = K(Yi).
Let us recall some important properties of local one dimensional rings. LetA be a 1-dimensional

Noetherian local ring ( dim(m/m2) = 1) and 0 6= a ∈ A. Then the ring A/aA has a finite length
(maximal length of a decreasing chain of ideals).

Definition 2.1. We define the order of a as ord(a) = ord(A/aA) = length(A/aA). The order
finction is

ord : Q(A)∗ → Z, ord(a/b) = ord(a)− ord(b).

Given X ⊆ Cn and Z ⊂ X of codimension one we have a well defined order funtion:

ordZ : Q(OZ,X)
∗ → Z, ord(f/g) = ord(f)− ord(g)

= length(OZ,X/fOZ,X)− length(OZ,X/gOZ,X).

In fact of any rational function r ∈ K(X) we can define the cycle of r :

[r] =
∑

cod 1 subv

ordZ(r)Z.

Example 2.2. Consider a plane curve C ∈ C2 and two other curved defined by the polynomials
F,G. the cycle of the rational:

[F/G] =
∑
p∈C

ordp(F/G)p =
∑
p

(multp(C,F )−multp(C,G))

where multp(C,F ) = length(Op/FOp).

3 Chow groups
Let X be an algebraic variety. We denote by Zk(X) the group of k-cycles, i.e. the abelian group
freely generated by the subvarieties of dimenion k.

For any (k + 1)-dimensional W ⊂ X and any r ∈ K(W ) we can define the cycle

[r] =
∑

V ∈Zk(X)

ord(r)V

A cycle α ∈ Zk(X) is s said to be equivalent to 0, α ∼ 0, if there are finitely many (k + 1)-
dimensional subvarieties W1, . . . ,Ws and rational function rWi

such that

α =
s∑
1

[rWi
]

The cycle equivalent to 0 for a subgroup denoted by Bk(X). The k-th Chow group of X is
defined as:

Ak(X) = Zk(X)/Bk(X).
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Example 3.1. 1. Any codimension one subvariety Y ⊂ Cn is the zero of a polynomial. It
follows that An−1(Cn) = 0. Similarly for any point p ∈ Cn and considering p ∈ L where
L is a line through p on sees that p ∼ 0 so that A0(Cn) = 0. Clearly An(Cn) = [Cn] = Z.
([Cn] must be a basis element and t→ t[Cn] is an isomorphism. This is in fact the case for
any variety.

2. Consider now Pn. We have seen that An(Pn) = Z. Consider a codimension one subvariety
V = V (g) for a homogeneous polynomial g of degree d. Then g/xd0 is a rational function
and [g/xd0] = V − dH0 where H0 = (x0) which implies that V ∼ dH0. We can then
define a rurjective function Z → An−1(Pn) assigning m to mH0. Note that if mH0 ∼ 0
that there exist r1, . . . , rs ∈ K(Pn)∗ such that dH0 =

∑
[ri] =

∑
diH0. It follows that

deg(r = r1 · · · rs) = 0 = d. If we write r = fm1
1 · · · f

mk
k /gh1

1 · · · g
hl
k where the fi, gj have

no common factors, then [r] =
∑k

1miV (fi) −
∑l

1 hjV (gj) = dH0. It is then hj = 0 for
all j and mi = 0 for all i but one, m1. but since

∑k
1mi =

∑l
1 hj it must be m1 = 0 and

thus dH0 = 0. The map is also injective which proves that An−1(Pn) = Z =< H > where
H is a coordinate hyperplane. Similarly as for (1) one shows that A0(Pn) = Z.

Proposition 3.2. Let Y be a subvariety if X . Then for any k ≥ 0 there is an exact sequence:

Ak(Y )→ Ak(X)→ Ak(X \ Y )→ 0.

The morphisms are induced by inclusion and restriction.

Bevis. A k-dimensional subvariety of Y is defined by restricting a k-dimensional subvariety of
X to Y. This proves that the first map is well defined, i.e. Bk(Y ) is mapped to Bk(X). The
second map j : Ak(X)→ Ak(X \Y ) is defined by restriction. Assume that V is a k dimensional
subvariety of X contained in the (k + 1) subvariety W then for any r ∈ OX,W

ordW (r) = ordW\Y (r|W\Y )

which implies that j([r]) = [r|W\Y ] and thus j(Bk(X)) ⊂ Bk(X \ Y ). Surjection is implied by
the fact that subvarieties inX \Y can be extended toX.Assume now that j(α) ∼ 0 which menas
that j(α) =

∑s
1[rWi

]. again by extending (taking the closure) we can assume [rWi
] = j[r∗Wi

]. The
cycle β = α −

∑s
1[r
∗
Wi
] is equivalent to α and j(β) = 0 which means that all components are

contained in Y. It follows that α is the image of an element of Ak(Y ).

Example 3.3. Let U be a (non empty) open set of Cn. Then Ak(U) = 0 for k < n and An(U) =
Z. One sees this by induction. We have remarked that this is true for n = 1. For n ≥ 2 consider
the projection Cn → Cn−1 whose fiber is C1, i.e. Cn can be viewed as an affine bundle of rank
1 over Cn−1, which implies ([FU, Thm. 1.9]) that there is a surjective map π : Ak−1(Cn−1) →
Ak(Cn) for all 1 ≤ k ≤ n. If k < n by induction the groups are 0. If k = n then both are Z. To
finish the prove we observe that the inclusion U ⊂ Cn induces a surjection Ak(Cn)→ Ak(U).

Example 3.4. Ak(Pn) = Z foe all 0 ≤ k ≤ n and it is generated by any k-plane Hk = Pk.
We have observed this for k = n − 1, n. Let k < n and use induction on n. Let H ⊂ Pn be a
hyperplane, then

Ak(H)→ Ak(Pn)→ Ak(Pn \H)→ 0
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By induction Ak(H) = Z and Ak(Pn \ H) = 0 because Pn \ H ∼= Cn, which implies that we
have a surjective map Z =< Hk >→ Ak(Pn) induced by the inclusion. Let dZ =< dHk >
be the kernel. This means that dHk =

∑
[ri] where ri are rational on (k + 1)-dim Vi and thus

Hk ⊂ V = ∪Vi.
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