
Topics in Applied Algebraic Geometry
Lecture 1: Algebraic Kinematics

We will introduce the basic algebraic terminology within the theory of serial link-mechanisms.



1 Rigid Body Motion Space
A rigid body motion in 3-space is a composition of a rotation and a translation, the former is an
element of the special orthogonal group SO3(R) and the latter a vector in R3. In other world it
is an element of SE3(R), the semi-direct product of R3 and SO3(R). More precisely SE3(R) is
a 6-dimensional Lie-group, the set SO3(R)× R3 with the group operation:

(R2, t2) ◦ (R1, t1) = (R2R1, R2t1 + t2).

It is convenient to embed R3 in the quaternions. Consider R4 as the division algebra of the
quaternions. Let 1 be the unit element and {i, j, k} be the quaternions units i.e. i2 = j2 = k2 =
ijk = −1. Then {1, i, j, k} is a basis for R4. Moreover for

a = (a1, . . . , a4) = (a0, a) ∈ R4 let a∗ = (−a1, . . . ,−a4), |a| =
√
aa∗.

The multiplication is always intended as moltiplication of quaternions:

(a0, a)(b0,b) = (a0b0 − ab, a0b + b0a + a× b)

We identify R3 ∼= {a ∈ R4 s.t. a0 = 0}
Consider now P3

R (as the quotient of R4) and the map:

φ : P3
R → SO3(R)

defined by φ(a)x = axa∗ for a ∈ P3
R, x ∈ R3. This is an isomophism.

Consider now the following quadric hypersurface:

Q = {(p, q) = (p0, p1, p2, p3, q0, q1, q2, q3) ∈ P7
R s.t.

∑
piqi = 0} ⊂ P7

R

It is called the Study quadric and it is the natural ambient space for all the rigid body motions.
Consider the subset:

Q′ = Q \ {(p, q)|p0 = p1 = p2 = p3 = 0}.

Notice that if (p, q) ∈ Q′ then by viewing p, q as quaternians

pq∗ = (−p0q0 − p1q1 − p2q2 − p3q3, ...) = (0, ..) ∈ R3 ⊂ R4

Consider the map:

φ : Q′ → SO3(R)× R3, (p, q) 7→ (φ(q),
pq∗

qq∗
).

This map is an isomorphism (homework!) and thus

SE3(R) ∼= Q′ ⊂ Q ⊂ P3
R

Q′ has and induced group structure:

(p1, q1)(p2, q2) = (p1p2, p1q2 + p2q1).
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In solving polynomial systems it is convenient to work with algebraically closed fields, so
from now on we will consider:

Q = {(p0, . . . , p3, q1 . . . , q3) : p0q0 + . . .+ p3q3 = 0} ⊂ P7
C

and Q′ = Q \ {p20 + p21 + p21 + p23 = 0} so that QR ⊂ Q and Q′R = Q′ ∩QR.
It will be convenient to embed Q in a much higher dimensional projective space vi 4 × 4

matrices. For t = (x, y, z, w) ∈ C4 consider the matrix M(t) = xId+ yI + zJ + wK where:

Id =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , J =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , K =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


The map M : Q → P63

C defines as

M(p, q) =

[
M(p) 0
M(q) M(p)

]
up to multiplication by scalar. this map is injective. Observe that

M(p, q) =



p0 − − − − − − −
p1 − − − − − − −
p2 − − − − − − −
p3 − − − − − − −
q0 − − − − − − −
q1 − − − − − − −
q2 − − − − − − −
q3 − − − − − − −


The inverse M−1 is then defined by the first column.

Remark 1.1. (Homework) Consider the group of non-degenerate linear maps on C8 preserving
the bi-linear formQ up to scalar: C∗×SO8(Q). The restrictionM |Q∗ identifiesQ′ with SO8(Q).

2 The 3R-chain and the 6R-chain
An m-revolute serial chain linkage (mR-chain) consists of (m + 1) rigid links connected by m
revolute joints. Here is a 6-R chain.
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One end is attached to the ground and at the other end there is hand intended to move around
in space. After fixing an initial pose we can measure the rotation angles at the m-joints (with
respect to the initial). The initial pose fixes a coordinate frame at the ground and at the hand. The
transformation from hand-coordinates to ground-coordinates is a function of the rotation angles.
The angles are elements of the unit circle identified with P1

R. This transformation can be then
described as:

ΦR : P1
R × . . .× P1

R︸ ︷︷ ︸
m

→ SE3(R) ∼= Q′ ⊂ Q.

This map maps an m-ple of angles to the corresponding transformation from hand to ground.
Forward and inverse kinematics are two basis tasks of mechanism analysis. Usually the direct

kinematics problem is relatively easy for serial manipulators but often difficult for parallel mani-
pulators. Conversely, the inverse kinematics problem is usually simple for parallel manipulators
and often complicated for parallel manipulators.

The forward kinematic problem (FKP) is about constructing such a map. If the rotation angles
of the individual joints are known, computing the end effector frame is just a matter of multiply-
ing consecutive transformation matrices. it is not obvious at all how to choose the joint angles
such that the end effector attains a certain specified pose (inverse kinematics). The inverse kine-
matic problem(IKP) is about computing the fiber Φ−1R (x) for any x ∈ Q′R.

We will see that the IKP for a general 6-R chain has a finite number of solutions:16. See
[S96, SW07] for more details on the mechanism. In fact for m = 6 the map ΦR is onto a
generically 16 : 1.

We can be a bit more specific about the map Φ. Consider a the case of a 6R-chain. We have
L0, . . . , L6 links connected by 6 joints. Let the joint i connect Li−1 to Li. Fix (x, y, z) standard
coordinates in R3. for any coordinate v ∈ {x, y, z} denote by Rv(θ) the rotation of an angle θ
about the v-axis and by Tθ(d) the translation of distance d in the direction of v.As the mechanism
is in the initial pose place coinciding coordinate frames at the links:Ai−1 at the (i−1)-th link and
Bi at the i-th link, with origin on the rotation axis of joint i and z-direction parallel to the rotation
axis. B0 denotes a frame at the ground link and A6 at the hand. We denote by Ti ∈ SE3(R) the
linear transformation from Ai coordinates to Bi coordinates. Since these coordinates are along
the i-th link the transformations only depend on the properties of the mechanism.
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In fact the map Φ is given by:

(θ1, . . . , θ6)→ T0 ◦Rz(θ1) ◦ T1 ◦Rz(θ2) ◦ . . . ◦ T5 ◦Rz(θ6) ◦ T6.

A classical technique to solve the IKP for a 6R-chain is to split the problem into two 3R-chains.

We introduce a joint on the link L3 which becomes the ending point of a left 3R and a right
3R. Consider S1 ∈ SO3(R) and S2 = T−13 ◦ S1, The transformation S1 is the last Ti on the left
and S2 is the hand point of a 3R on the right, S1 ◦ S−12 = T3. Given a hand position H , then
(θ1, . . . , θ6) is a solution of the IKP for the 6R if and only if it is composed by common solutions
of the two FKP of two 3R with the following transformation links:

Φ1 : P1 × P1 × P1 → Q, T0, T1, T2, S1

Φ1 : P1 × P1 × P1 → Q, H ◦ T−16 , T−15 , T−14 , S2

In other words: Φ(θ1, . . . , θ6) = H ⇔ Φ1(θ1, θ2, θ3) = φ2(θ4, θ5, θ6)
Let us consider the maps Φi in the complex projective space. Notice that up to projective

equivalence the maps Φ1,Φ2 are the Segre embeddings : P1 × P1 × P1 → P7 and thus the
solutions of the IKS are given by:

{(θ, α) ∈ (P1
C)3 × (P1

C)3 : Φ1(θ) = Φ2(α)}.

Geometrically this is the intersection of two 3-dimensional subspaces of Q. We will see how
to compute it using intersection theory.
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