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Abstract— In this paper, we study a problem of target track-
ing and circumnavigation with a network of autonomous agents.
We propose a distributed algorithm to estimate the position of
the target and drive the agents to rotate around it while forming
a regular polygon and keeping a desired distance. We formally
show that the algorithm attains exponential convergence of the
agents to the desired polygon if the target is stationary, and
bounded convergence if the target is moving with bounded
speed. Numerical simulations corroborate the theoretical results
and demonstrate the resilience of the network to addition and
removal of agents.

I. INTRODUCTION

The problem of target tracking and circumnavigation finds
applications in numerous fields. A new challenging applica-
tion is the tracking of an underwater target with a network
of AUVs, where the vehicles are employed to study, and
possibly reproduce, the behavior of small sea animals. The
design of a control algorithm that drives an agent to approach
a target and to follow a circle trajectory around it has been
studied in [1]–[5]. The solutions proposed for the single
agent [5], have been extended to multi-agent systems, where
great attention has been given to the formation of a regular
polygon inscribed in a desired circle, centered at the target
position [6]–[9]. This type of formation is optimal to solve
triangulation problems and it is a good solution to control
agents that cannot easily stop moving, such as UAVs. For
example, an application of the circumnavigation to escorting
and patrolling missions is analyzed in [10]. In a large
number of applications, the position of the target is unknown
to the agents, so that a localization procedure is required
to achieve the tracking. In [11] a peer-to-peer collaborative
localization is studied for a network of sensors, while in
[12] a stereo-vision-type estimation is realized by the leading
agent, sending its visual measurements of the target to its
followers. The problem of using the information obtained
from an identification process of unknown characteristics
of a system to update a control algorithm is known in
the literature as the dual problem [13], [14]. In [5], [15],
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the circumnavigation of a target with unknown position is
formally modeled as a dual problem. In particular, in [15] the
dual problem is solved using distance measurements, while
in [5] it is solved using bearing measurements. In [16] the
robot and landmark localization problem is solved using data
originated from bearing-only measurements. Similarly to the
solution adopted in [5] and [9], we propose a distributed
control algorithm based on bearing measurements, and an
estimator to localize a mobile target. In this paper, we pro-
pose a different control strategy where every agent updates
its control signal on the basis of information it received
by other agents within a defined communication radius,
irrespectively of the distance from the target. Moreover,
we let the rotational speed of the agents depend explicitly
on the desired distance from the target. Our analysis leads
to the following improvements: the angular velocity of the
agents about the target does not grow unbounded when the
desired distance from the target is small; we formally prove
exponential convergence of the agents to a regular polygon,
rather than simply asymptotic convergence.

The control algorithm is simulated in ROS [17], where
each simulated agent is implemented as a separate ROS
node. The simulations also demonstrate the resiliency of the
algorithm to addition and removal of some agents, showing
that the agents rearrange themselves to form a different
polygon when one agent enters or leaves the network. Each
agent starts in a monitoring position, and when it receives the
first bearing measurement it effectively enters the network.

II. PRELIMINARIES

The set of the positive integers is denoted as N. All vectors
in Rn, with n ∈ N, are column vectors. Transposition of a
vector or of a matrix is denoted as (·)ᵀ. The operator [·]ij
denotes the element at the ith row and at the jth column of
a matrix. The operator ‖·‖ denotes the Euclidean norm of a
vector and the corresponding induced norm of a matrix. The
set of the unit-norm vectors in R2 is denoted as S1. The circle
of radius d centered at x ∈ R2 is denoted as C(x, d). The n-
by-n identity matrix is denoted as In. Let ϕ ∈ S1; defining
θ(t) as the counterclockwise angle between the vector and
the x-axis of a reference frame, ϕ can be represented as
ϕ = [cos θ, sin θ]ᵀ.

Lemma 1: Let ϕ ∈ S1 and let ϕ̄ be obtained by rotating
ϕ by π/2 radians clockwise. Then I2 − ϕϕᵀ = ϕ̄ϕ̄ᵀ.

Proof: Letting ϕ = [cos θ, sin θ]ᵀ, we have ϕ̄ =
[− sin θ, cos θ]ᵀ, and the claim is verified by inspection.

Definition 1 (Persistence of excitation [18]): A time-
varying vector ϕ̄ : R≥0 → R2 is persistently exciting (p.e.)



if there exist ε1, ε2, T > 0 such that

ε1 ≤
∫ t0+T

t0

(Uᵀϕ̄(t))2 dt ≤ ε2 (1)

for all t0 ≥ 0 and all U ∈ S1. �
Persistence of excitation requires that the vector ϕ̄ rotates

sufficiently in the plane that the integral of the semi-positive
definite matrix ϕ̄ϕ̄ᵀ is uniformly definite positive over any
interval of some positive length T .

Lemma 2 (in [18]): Let ϕ̄ : R≥0 → R2 be piecewise
continuous; if ϕ̄ is p.e., then the system

ẇ(t) = −kϕ̄(t)ϕ̄ᵀ(t)w(t), (2)

with k > 0, is globally exponentially stable. �
Lemma 3 (in [5]): If A(t) ∈ Rn×n is continuous for all

t > 0, and positive constants r, b exist such that for every
solution of the homogeneous differential equation ṗ(t) =
A(t)p(t) it holds that ‖p(t)‖ ≤ b‖p(t0)‖e−r(t−t0) for 0 ≤
t0 < t < ∞, then, for each f(t) bounded and continuous
on [0,∞), every solution of the non-homogeneous equation
ṗ(t) = A(t)p(t) + f(t), with p(t0) = 0, is also bounded for
t ∈ [0,∞). In particular, if ‖f(t)‖ ≤ Kf < ∞, then the
solution of the perturbed system satisfies

‖p(t)‖ ≤ b‖p(t0)‖e−r(t−t0) +
Kf

r
(1− e−r(t−t0)).

�
For the purposes of this paper, a graph is a tuple G =

(V, E), with V = {1, . . . , N}, N ∈ N, and E ⊂ V ×V ,
with the constraint (v, v) /∈ E for all v ∈ V . The elements
of V are called the vertexes of the graph, and the elements
of E are called the edges of the graph. Given two vertexes
v, u, a path from v to u is a sequence of vertexes (v =
v1, v2, . . . , vP = u) such that (vk, vk+1) ∈ E for all k ∈
{1, . . . , P −1}. A graph is connected if there exists a vertex
with a path to all the other vertexes. The Laplacian matrix
of the graph is the matrix L ∈ RN×N such that [L]ij = −1
if (j, i) ∈ E , [L]ij = 0 if i 6= j and (j, i) /∈ E , and [L]ii =
−
∑
j∈V \{i}[L]ij . It is a well-known result in graph theory

[19] that if L is the Laplacian matrix of a connected graph,
then the system ẋ(t) = −Lx(t) converges asymptotically
to the consensus subspace (i.e., |xi(t)− xj(t)| → 0) from
every initial condition.

III. SYSTEM MODEL

In this paper, we consider a set of N planar autonomous
agents indexed as 1, . . . , N , with kinematics

ẏi(t) = ui(t), (3)

where y(t) ∈ R2 is the position of the ith agent, and ui(t)
is a control input. The agents are required to locate and
circumnavigate a target, whose position is denoted as x(t),
while forming a regular polygon inscribed in the desired
circle C(x(t), D∗), where D∗ > 0 is a desired distance
from the target. To achieve this objective, each agent can
measure its bearing with respect to the target; the bearing
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Fig. 1: Counterclockwise angles in a network of three agents. We
have ν1 = 2, ν2 = 3 and ν3 = 1.

is represented as the unit vector ϕi(t) in the direction
x(t)− yi(t):

ϕi(t) =
x(t)− yi(t)
‖x(t)− yi(t)‖

. (4)

Moreover, the agents have a communication radius ρ > 0,
and can exchange the bearing measurements with other
agents within that radius. We denote as N i(t) the set of
the agents laying within the communication radius of agent
i, namely N i(t) = {j ∈ {1, . . . , N} : ‖yj(t)−yi(t)‖ ≤ ρ}.
Let βij(t) ≥ 0 be the positive counterclockwise angle from
ϕi(t) to ϕj(t). The agent j ∈ N i(t) that attains the minimum
βij(t) is called the counterclockwise neighbor of agent i at
time t, and it is denoted as νi(t), see Figure 1. Moreover,
we let βi(t) = βi,νi(t)(t) if N i(t) is nonempty, βi(t) = 0
if N i(t) is empty. Then, the control objective is formally
written as

lim
t→∞

Di(t) = D∗, (5)

lim
t→∞

βi(t) =
2π

N
, (6)

for all i ∈ {1, . . . , N}, where

Di(t) = ‖x(t)− yi(t)‖. (7)

Each agent maintains an estimate x̂i(t) of the position of
the target, which is updated using the bearing measurements.
Following [5], [9], we set

˙̂xi(t) = −ke(I2 − ϕi(t)ϕᵀ
i (t))(x̂i(t)− yi(t)), (8)

where ke > 0 is an estimation gain. The estimate error
associated to x̂i(t) is denoted x̃i(t) = x̂i(t) − x(t). Con-
sidering (8) and Lemma 1, the dynamics of x̃i(t) can be
written as ˙̃xi(t) = keϕ̄i(t)ϕ̄

ᵀ
i (t)(x̃i(t) +Di(t)ϕi(t))− ẋ(t),

which, exploiting the orthogonality between ϕi(t) and ϕ̄i(t),
becomes

˙̃xi(t) = −keϕ̄i(t)ϕ̄ᵀ
i (t)x̃i(t)− ẋ(t). (9)

The estimate x̂i(t) is used to compute ui(t) as

ui(t) = kd(D̂i(t)−D∗)ϕi(t)+kϕD
∗(α+βi(t))ϕ̄i(t), (10)

where kd, kϕ, α > 0. Note that the control signal ui(t) is
made up of two contributions: a radial term kd(D̂i(t) −
D∗)ϕi(t) drives the agent towards the desired circle, and
a tangential term kϕD

∗(α + βi(t))ϕ̄(t) makes the agent
circumnavigate the target while attaining the desired for-
mation with the other agents. Differently from [5], [9], we



let the tangential term depend on the desired distance from
the target, D∗, in order to avoid high angular velocities
when the desired distance from the target is small. Another
important property of control law (10) is that ui(t) is always
nonzero. In fact, since ϕi(t) and ϕ̄i(t) are orthogonal, and
since α + βi(t) > 0, we have that ui(t) = 0 would require
D̂i(t) −D∗ = 0 and D∗ = 0 , which is not possible since
D∗ > 0. This property also implies that the closed-loop
system has no equilibria.

In order to apply estimate law (8) and control law (10),
we need that the bearing vector ϕi(t) is well defined for
any t ≥ 0, a condition that, by (4), corresponds to Di(t) =
‖x(t) − yi(t)‖ > 0 for all t ≥ 0. Therefore, our results
section will begin by showing that Di(t) > 0 is guaranteed
under appropriate initial conditions.

Differentiating (4) and (7) with respect to time, and ap-
plying (3), (8), and (10), we derive the differential equations
that govern the evolution of Di(t) and ϕi(t) for Di(t) > 0:

Ḋi(t) =kd(D̂i(t)−D∗) + ϕᵀ
i (t)ẋ(t), (11)

ϕ̇i(t) =
−kϕ(α+ βi(t))D

∗ + ϕ̄ᵀ
i (t)ẋ(t)

Di(t)
ϕ̄i(t). (12)

We introduce the error ∆i(t) = Di(t) −D∗ between the
distance of agent i from the target and the desired distance.
The dynamics of ∆i(t) is the same as the dynamics (11) of
Di(t), and can be written as

∆̇i(t) = −kd(∆i(t)− D̃i(t)) + ϕᵀ
i (t)ẋ(t), (13)

where we have denoted D̃i(t) = Di(t)− D̂i(t).

IV. TRACKING A STATIONARY TARGET

In this section, we consider the case of a stationary target
(ẋ(t) = 02), and we show that the algorithm composed of
the estimate law (8), and the control law (10) reaches the
control objectives (5) and (6).

We begin by showing that the distance Di(t) between each
agent and the target is always positive, which guarantees that
the bearing measurements ϕi(t) are always defined. Defining
the initial error of estimate as ‖x̃i(0)‖ = ‖x̂i(0) − x‖, we
are going to need the following assumption on the initial
conditions.

Assumption 1: For every agent of the network it holds that
Di(0) > 0 and ‖x̃i(0)‖ < D∗. �

Lemma 4: Under Assumption 1, estimate law (8), and
control law (10), the distance Di(t) between each agent and
the target is bounded as

Di(t) ≥min{Di(0), D∗ − ‖x̃i(0)‖}, (14)
Di(t) ≤max{Di(0), D∗ + ‖x̃i(0)‖}. (15)

Proof: Integrating (13) with ẋ(t) = 02, adding D∗ on
both sides, and recalling that Di(t) = ∆i(t) +D∗, yields

Di(t) = D∗ + ∆i(0)e−kdt + kd

∫ t

0

e−kd(t−τ)D̃i(τ) dτ .

(16)
Now observe that, by the triangular inequality, we have ‖x−
yi(t)‖ ≤ ‖yi(t)− x̂i(t)‖+‖x̂i(t)−x‖, which, since Di(t) =

‖x− yi(t)‖, D̂i(t) = ‖x̂i(t)− yi(t)‖, and D̃i(t) = Di(t)−
D̂i(t), can be rewritten as

D̃i(t) ≤ ‖x̃i(t)‖. (17)

Using (17), and observing from (9) that with ẋ = 02 the
norm of the estimate error is nonincreasing, we have

D̃i(t) ≤ ‖x̃i(0)‖ (18)

for all t ≥ 0. Using (18) in (16), and computing the integral
explicitly, we have

Di(t) ≥ D∗ + ∆i(0)e−kdt − ‖x̃i(0)‖(1− e−kdt), (19)

Di(t) ≤ D∗ + ∆i(0)e−kdt + ‖x̃i(0)‖(1− e−kdt). (20)

Adding and subtracting D∗e−kdt from the right-hand side of
(19) and (20), we have

Di(t) ≥ Di(0)e−kdt + (D∗ − ‖x̃i(0)‖)(1− e−kdt),(21)

Di(t) ≤ Di(0)e−kdt + (D∗ + ‖x̃i(0)‖)(1− e−kdt).(22)

Finally, using (21) under Assumption 1 and (22), we have
(14) and (15).
Our next step is to prove that the estimates x̂i(t) converge
to the real position of the target x.

Lemma 5: Under Assumption 1, estimate law (8), and
control law (10), the norm of the estimate error ‖x̃i(t)‖ ex-
ponentially converges to zero for every agent in the network.

Proof: Since the dynamics of the estimate error (9)
is a system in the form of (2), it is sufficient to prove that
ϕ̄i(t) is p.e. in order to prove the exponential convergence of
the estimate. Therefore, we need to prove that condition (1)
is satisfied for the vector ϕ̄i(t). Since ϕ̄i(t) ∈ S1, we
have (Uᵀϕ̄i(t))

2 ≤ 1 for all U ∈ S1, and therefore∫ t0+T

t0
(Uᵀϕ̄i(t))

2 dt ≤ T for all t0 ≥ 0 and all U ∈ S1.
Therefore, an upper bound ε2 satisfying condition (1) exists
and it is equal to T ; we shall use Lemma 1 in [5] to
prove that a lower bound ε1 > 0 also exists. Defining
γui(t) as the angle between U ∈ S1 and the bearing
vector ϕ̄i(t), we write the dynamics of its derivative as
γ̇ui(t) = kϕD

∗(α + βi(t))/Di(t). Using (15) and recalling
that βi(t) > 0, we have γ̇ui(t) ≥ kϕD

∗α/Di,max, where
Di,max = max{Di(0), D∗ + ‖x̃i(0)‖}. Therefore, the dy-
namics of γui(t) is lower bounded as γui(t) ≥ γui(t0) +
kϕD

∗αt/Di,max, and we can always find a ε1 > 0 and a
T > 0 such that (1) is satisfied. The previous proof is
valid for each agent independently; therefore, we can state
that ϕ̄i(t) is p.e. for every agent. Hence, by Lemma 2, the
estimate error norms of all the agents of the network globally
exponentially converge to zero.

Next, we prove that the desired circle C(x,D∗) is an
attractive limit cycle for the networked agents.

Lemma 6: Under Assumption 1, estimate law (8), and
control law (10), the circle C(x,D∗) is an attractive limit
cycle for the trajectories of (3).

Proof: When the target is stationary, the dynamics of
the distance error ∆i(t) is

∆̇i(t) = −kd∆i(t) + kdD̃i(t). (23)



From Lemma 5 (resp., (23)), we know that D̃i(t) (resp.,
∆i(t)) converges to zero exponentially. Hence, the desired
circle C(x,D∗) is an attractive invariant region. Since the
closed-loop system has no equilibria and is planar, we can
conclude that the desired circle is an attractive limit cycle.

Last, we need to prove that the agents asymptotically
form a regular polygon on the desired circle, or in other
words, that βi(t) → 2π/N for all i ∈ {1, . . . , N}. The
crucial step to this result is to write down the dynamics of
βi(t). Recalling that βi(t) = βi,νi(t)(t) whenever νi(t) is
defined, let us consider the generic counterclockwise angle
βij(t) from ϕi(t) to ϕj(t). Define the auxiliary variable
cij(t) = cosβij(t) = ϕᵀ

i (t)ϕj(t), and take its derivative
with respect to time, obtaining

ċij(t) = ϕ̇ᵀ
i (t)ϕj(t) + ϕᵀ

i (t)ϕ̇j(t). (24)

Using the dynamics (12) of the bearing vectors with ẋ(t) =
02, we rewrite (24) as

ċij(t) =− kϕ(α+ βi(t))
D∗

Di(t)
ϕ̄ᵀ
i (t)ϕj(t)

− kϕ(α+ βj(t))
D∗

Dj(t)
ϕᵀ
i (t)ϕ̄j(t).

(25)

Simple trigonometrical properties show that ϕ̄ᵀ
i (t)ϕj(t) =

− sinβij(t) and ϕᵀ
i (t)ϕ̄j(t) = sinβij(t), while from the

chain rule we have ċij(t) = − sinβij(t) · β̇ij(t). Therefore,
we can rewrite (25) as

− sinβij(t) · β̇ij(t) =kϕ(α+ βi(t))
D∗

Di(t)
sinβij(t)

− kϕ(α+ βj(t))
D∗

Dj(t)
sinβij(t).

(26)
When sinβij 6= 0, we can rewrite (26) as

β̇ij(t) =kϕ(α+ βj(t))
D∗

Dj(t)
− kϕ(α+ βi(t))

D∗

Di(t)
.

(27)
The case cosβij = 0 can be handled similarly by consid-

ering the auxiliary variable sij(t) = sinβij(t), which leads
again to (27). Adding and subtracting kϕ(βj(t)−βi(t)) from
the right-hand side of (27) leads to

β̇ij(t) =− kϕ(βi(t)− βj(t))− kϕαD∗
(

1

Di
− 1

Dj

)
+ kϕβi(t)

∆i(t)

Di(t)
− kϕβj(t)

∆j(t)

Dj(t)
.

(28)
Now recall that, for each agent in the network, α + βi(t)
is upper-bounded, Di(t) is lower-bounded, and ∆i(t) =
Di(t)−D∗ vanishes exponentially. Therefore, the last three
addends in the right-hand side of (28) vanishes exponentially,
and we shall denote it as δij(t) for brevity. Hence, (28)
becomes β̇ij(t) = kϕ(βj(t) − βi(t)) + δij(t). In particular,
we are interested in the case j = νi(t), which leads to

β̇i(t) =kϕ(βνi(t)(t)− βi(t)) + δi(t), (29)

where we have denoted δi(t) = δiνi(t)(t). We are now in a
suitable position to state the final convergence result of this
section.

Assumption 2: The communication radius of the agents
satisfies ρ > 2D∗. �

Lemma 7: Under Assumptions 1 and 2, estimate law (8)
and control law (10), it holds that βi(t)→ 2π/N for all the
agents in the network.

Proof: Thanks to Assumption 2, and recalling that
Di(t) converges to D∗ exponentially, there is a time T > 0
such that, for each t ≥ T , N i(t) = {1, . . . , N} \ {i}. In
particular, this condition implies that, for each t ≥ T , each
agent i has a counterclockwise neighbor νi(t). In this regime,
the dynamics of the angles βi(t) are given by (29). Denoting
β(t) = [β1(t), . . . , βN (t)] and similarly for δ(t), we can
rewrite (29) compactly as

β̇(t) = −L(t)β(t) + δ(t), (30)

where [L(t)]ij = 1 if j = i, [L(t)]ij = −1 if j = νi and
[L(t)]ij = 0 otherwise. Note that L(t) is the Laplacian of
a time-varying graph G = (V, E(t)), with V = {1, . . . , N}
and E(t) = {(νi(t), i) : i ∈ V}.

First we complete the proof in the case that νi(t) is
constant in [T,∞) for all the agents; then, we show that
the proof is easily extended to the case that some agents
change their counterclockwise neighbor. If νi is constant
for all i ∈ {1, . . . , N}, then L is constant, and (30)
reduces to a consensus equation over a strongly connected
graph with bounded and vanishing disturbances. Under such
dynamics, the vector β(t) achieves consensus, which by
definition means that βi(t)− βj(t)→ 0 for all pairs (i, j) ∈
{1, . . . , N}. Since the angles βi(t) sum to 2π, consensus is
equivalent to βi(t) → 2π/N for all i ∈ {1, . . . , N}, which
concludes this part of the proof.

Now consider the case that some agent i changes its
counterclockwise neighbor νi(t) at some time τ ≥ T (cfr.
Figure 2). Without loss of generality, let j = νi(τ

−) and
k = νi(τ

+). Since N i(t) = {1, . . . , N} \ {i} for all t ≥ T ,
this change cannot be caused by some agent entering or
exiting N i(t), but must be due βik(t) becoming as small
as βij(t) for t = τ , which also implies that k = νj(τ

−),
j = νk(τ+) and νk(τ−) = νj(τ

+). Therefore, L(τ+)
is obtained by L(τ−) by simply permuting the jth row
(resp., column) with the kth row (resp., column). Moreover,
since βij(τ) = βik(τ), βi(t) is continuous at t = τ .
Conversely, βj(t) and βk(t) switch their values at τ , in fact:
limt→τ− βj(t) = limt→τ− βjk(t) = 0, limt→τ+ βj(t) =
limt→τ− βk(t), and limt→τ+ βk(t) = limt→τ+ βkj(t) = 0.
Therefore, β(τ+) is obtained by β(τ−) by simply permuting
the jth element with the kth element. Hence, the dynamics
of β(t) are not affected (up to a permutation of two indexes)
if some agents change their counterclockwise neighbor, and
we can conclude that βi(t)→ 2π/N .

Lemmas 4–7 amount to our main result, which is formal-
ized in the following theorem.

Theorem 1: Consider a network of N autonomous agents
under estimate law (8) and control law (10). If Assumptions 1
and 2 hold, the agents converge to the desired circle C(x,D∗)



x

yi

yj

yk

x

yi

yj

yk

Fig. 2: Example of an agent i changing its counterclockwise
neighbor. Left: t = τ− and νi(τ

−) = j. Right: t = τ+ and
νi(τ

+) = k.

while forming a regular polygon; i.e., they achieve the
control objective (5) and (6). �

V. TRACKING A MOBILE TARGET

In this section, we extend our results to the scenario where
the target moves under the constraint ‖ẋ(t)‖ ≤ εT , with
εT > 0. The first result is to prove that the estimate error
converges to a neighborhood of zero for all the agents. To
this aim, we need the following technical assumption.

Assumption 3: The desired distance from the target satis-
fies kϕαD∗ − εT ≥ ω > 0. �

Lemma 8: Under Assumption 3, estimate law (8) and
control law (10), the estimate error x̃i(t) satisfies

‖x̃i(t)‖ ≤ b‖x̃i(0)‖e−rt +
εT
r

(1− e−rt) (31)

for all t ≥ 0, and some r, b > 0.
Proof: Using Assumption 3, the proof is similar to that

of Lemma 3, and it is omitted for brevity.
Now we show that the distance between each agent and

the target is always positive. Again we need a technical
assumption that the desired circumnavigation distance is
large enough with respect to the unknown target motion.

Assumption 4: The desired distance D∗ satisfies D∗ >
b‖x̃i(0)‖+ εT /r+ εT /kd for all i ∈ {1, . . . , N}, with r and
b as defined in Lemma 8. �

Lemma 9: Under Assumption 4, the estimate law (8) and
the control law (10), the distance from the target Di(t) is
always positive.

Proof: Integrating (13) and reasoning as in Lemma 4
gives

Di(t) =D∗(1− e−kdt) +Di(0)e−kdt

+

∫ t

0

e−kd(t−τ)[kdD̃i(τ) + ẋᵀ(τ)ϕi(τ)]dτ.
(32)

Using (17) and (31), we have

D̃i(t) ≥− b‖x̃i(0)‖ − εT
r
. (33)

Using (33) in (32), and since |ẋᵀ(t)ϕi(t)| ≤ εT , we have

Di(t) ≥Di(0)e−kdt

+

(
D∗ − εT

kd
− εT

r
− b‖x̃i(0)‖

)
(1− e−kdt).

(34)
From Assumption 4, it follows from (34) that Di(t) ≥ 0 for
all t ≥ 0 and all i ∈ V .

Lemma 10: Consider a network of N agents under (8)
and (10) with a mobile target; then, the distance error ∆i(t)
converges exponentially to a ball centered at zero, of radius
ε∆ = εT (1/kd + 1/r).

Proof: Integrating (13), taking the absolute value of
both sides, and using the triangular inequality, we have

|∆i(t)| ≤ |∆i(0)|e−kdt +

∫ t

0

e−kd(t−τ)[kd‖x̃i(τ)‖+ εT ]dτ.

(35)
Using (31), we can rewrite (35) as

|∆i(t)| ≤|∆i(0)|e−kdt

+

(
−kdb‖x̃i(0)‖

r − kd
+

kdεT
r(r − kd)

)
e−(r+kd)t

−
(
εT
r

+
εT
kd

)
e−kdt +

εT
r

+
εT
kd
.

Letting t→∞, we have finally

lim
t→∞

|∆i(t)| ≤ εT
(

1

kd
+

1

r

)
(36)

for all i ∈ {1, . . . , N}.
In order to prove the bounded convergence of the

counterclockwise angles, we introduce the error variables
β̃i(t) = βi(t) − 2π/N ; we define the vector β̃(t) =
[β̃1(t), . . . , β̃N (t)]ᵀ.

Lemma 11: Under Assumptions 3 and 4, the estimate
law (8) and the control law (10), the vector β̃(t) converges
exponentially to a ball centered at 0.

Proof: Reasoning as in Lemma 7, we write the dynam-
ics of the counterclockwise angle errors as

˙̃
β(t) = −kϕLβ̃(t) + fα(t) + fβ(t) + fT (t), (37)

where L is the Laplacian matrix of the network graph,
defined in the proof of Lemma 7, and

[fα(t)]i =− kϕαD∗
(

1

Di(t)
− 1

Dνi(t)

)
,

[fβ(t)]i =kϕ

(
βi(t)

∆i(t)

Di(t)
− βνi(t)(t)

∆νi(t)(t)

Dνi(t)(t)

)
,

[fT (t)]i =ẋᵀ(t)

(
ϕ̄i(t)

Di(t)
−
ϕ̄νi(t)(t)

Dνi(t)(t)

)
.

By Theorem 3.17 in [19], the homogeneous form of (37),
˙̃
β(t) = −kϕLβ̃(t), is exponentially stable. According to
Lemma 3, in order to prove the bounded convergence
of (37), we need to prove the boundedness of fα(t) +
fβ(t) + fT (t). Since |βi(t)| < 2π and |ẋᵀ(t)ϕ̄i(t)| ≤ εT ,
using (36), we have, for t sufficiently large, |fα(t)| ≤
2
√
NkϕαD

∗/(D∗−ε∆), |fβ(t)| ≤ 4π
√
Nkϕε∆/(D

∗−ε∆),
and |fT (t)| ≤ 2

√
NεT /(D

∗ − ε∆). From Lemma 3, we
know that there exist bβ > 0 and rβ = kϕ such that
‖β̃(t)‖ ≤ bβ‖β̃(0)‖e−rβt + Uβ/rβ(1− e−rβt) for all t ≥ 0,
where

Uβ =

√
N(2kϕαD

∗ + 4πkϕε∆ + 2εT )

D∗ − ε∆
, (38)

which, letting t→∞, yields the desired convergence.
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Fig. 3: Results of the simulation. Left: trajectories of the agents. The black circles represent the position of agents 1, 3, 4, and 5 at the
end of the simulation (agent 2 is removed at t = 55), while the red circle represents the position of the target at the end of the simulation.
Center: angles βi(t). Right: estimate errors ‖x̃i(t)‖.

Lemmas 8–11 amount to the main result of this section,
which is formalized as the following theorem.

Theorem 2: Consider a network of N autonomous agents
under the estimate law (8) and the control law (10), with
‖ẋ(t)‖ ≤ εT . Under Assumption 3 and Assumption 4, the
agents converge to an annulus of radii D∗−ε∆ and D∗+ε∆,
containing C(x(t), D∗), and they are in a formation such that,
as t → ∞, ‖β̃(t)‖ ≤ Uβ/kϕ, where kϕ is the control gain
for the tangential term in (10), and Uβ is given by (38). �

VI. SIMULATION

In this section, we present a simulation of the pro-
posed algorithm, where we also demonstrate addition and
removal of agents. We consider N = 4 agents, tracking
a target with a slow motion, whose kinematics is ẋ(t) =
0.05[cos 0.05t, sin 0.05t]ᵀ, with initial position [0, 0]ᵀ. The
reference distance is D∗ = 1; notice that, approximating r
with ke = 0.7, and recalling that, for the chosen trajectory
of the target, εT = 0.07, D∗ satisfies Assumption 4. The
agents wait for the detection of ϕi(t) in monitoring positions,
belonging to the line yi2 = 4. The gains of the control law
are chosen as kd = 2, kϕ = 0.2, α = 1, while the estimate
gain is chosen as ke = 0.7. The activation times are a1 = 2,
a2 = 5, a3 = 20, a4 = 40, a5 = 38, while the removal time
for the agent 2 is r2 = 55. The results of the simulation are
shown in Figures 3, where we can clearly see the persistent
oscillations caused by the target’s unknown motion.

VII. CONCLUSIONS

We have proposed a distributed algorithm for a problem
of target tracking and circumnavigation with a network of
planar autonomous agents. The algorithm is amenable to
time-varying networks, where agents may come in and out
of the network asynchronously. For a stationary target, we
have shown that the proposed control algorithm drives the
agents to form a regular polygon around the target, while
keeping a desired distance from the target. For a mobile
target, the agents converge to a region containing the desired
configuration, and the size of this region is proportional to the
maximum speed of the target. The algorithm is demonstrated
in a ROS simulation. Future work includes extending the
proposed algorithm to event-triggered communication.
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