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Abstract: Motivated by the lack of systematic tools to obtain safe control laws for
hybrid systems, we propose an optimization-based framework for learning certifi-
ably safe control laws from data. In particular, we assume a setting in which the
system dynamics are known and in which data exhibiting safe system behavior
is available. We propose hybrid control barrier functions for hybrid systems as
a means to synthesize safe control inputs. Based on this notion, we present an
optimization-based framework to learn such hybrid control barrier functions from
data. Importantly, we identify sufficient conditions on the data such that feasibil-
ity of the optimization problem ensures correctness of the learned hybrid control
barrier functions, and hence the safety of the system. We illustrate our findings in
two simulations studies, including a compass gait walker.
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1 Introduction

Consider the following safety-critical scenarios: autonomous vehicles in urban areas [1], exoskele-
tons for improving mobility of lower-body impaired users [2], and robots navigating a warehouse
using semantic logic [3]. These systems are all described by hybrid dynamics, i.e., states and transi-
tions are both continuous and discrete, due to either their physics, or to higher level logical decision
making and importantly, share that: 1) data exhibiting safe behavior is readily available or easily
collected, and 2) in most cases, their hybrid system dynamics are well understood and can be identi-
fied. Based on these observations, we propose an optimization-based approach to learning provably
safe controllers for hybrid systems using hybrid control barrier functions (HCBF).

Related work: Barrier functions (BFs) were introduced in [4] to certify the safety of continuous-
time systems. Nonsmooth [5] and hybrid [6] BFs have also been defined. Different to our work,
these focus on BFs with jumps for discontinuous systems. Control barrier functions (CBFs) for
continuous-time control systems appeared in [7] for synthesizing feedback control laws that ensure
safety by enforcing forward invariance of a desired safe set. Reciprocal [8] and zeroing [9] CBFs
were proposed as less restrictive alternatives that do not enforce forward invariance on subsets of the
safe set. Such CBFs can be used as a safety guard via convex quadratic programs [8, 9], a feature
that has been used for safe learning [10, 11]. CBFs for discrete-time control systems can be found
in [12, 13, 14]. Related to this paper, hybrid BFs were proposed in [15, 16] in the hybrid systems
framework of Goebel et al. [17] as a means of certifying the safety of hybrid systems.

The underlying challenge and bottleneck in ensuring safety using (control) BFs is the construc-
tion of these functions. In [4], the authors propose a sum-of-squares programming approach for
finding polynomial (hybrid) barrier functions for polynomial (hybrid) systems and semi-algebraic
sets. For finding CBFs, bilinear sum-of-squares programming and analytic approaches are proposed
in [18, 19, 20]; such methods, however, only apply to a restrictive class of systems and have limited
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scalability. Recent approaches attempt to circumvent these limitations by treating the CBF synthesis
task as a machine learning problem. In [21], a deep neural network is trained to imitate the control
law obtained from a CBF, whereas in [22], a CBF is synthesized from safe and unsafe data samples
using support vector machines. In Saveriano and Lee [23], the authors cluster observed data and
learn a linear CBF for each cluster. While the aforementioned works [21, 22, 23] present detailed
empirical validation of their methods, no formal correctness proofs are provided. In [24], a Lya-
punov, barrier, and a policy function is learned from data: the validity of the learned certificates
are then verified post-hoc using Lipschitz arguments. In [25], a method is proposed that learns a
provably correct neural net safety guards for kinematic bicycle models. Finally, Robey et al. [26]
propose a data-driven approach for learning CBFs for smooth nonlinear systems assuming known
Lipschitz dynamics, as well as availability of expert demonstrations illustrating safe behavior. Suffi-
cient conditions ensuring correctness of the learned CBF using a Lipschitz argument are also given.

Contributions: For a class of hybrid control systems, we define hybrid control BFs as a means to
enforce forward invariance of a safe set. We provide sufficient conditions in terms of a HCBF that,
if satisfied by a control law, ensure safety. We then show that learning HCBFs from data can be cast
as a constrained optimization problem, and provide conditions under which a feasible solution is a
valid HCBF. Finally, we present simulations showcasing the benefits of our framework.

2 Preliminaries and Problem Formulation

Notation: Let dom(z) := {(t, j) ∈ R≥0×N|∃ζ ∈ Rnz s.t. z(t, j) = ζ} be the domain of a function
z : R≥0 × N → Rnz . A function α : R → R is an extended class K function if α is strictly
increasing and α(0) = 0. For ε > 0 and p ≥ 1, let Bε,p(zi) := {z ∈ Rnz

∣∣ ‖z − zi‖p ≤ ε} be the
closed p-norm ball around zi ∈ Rnz . Let bd(C) and int(C) be the boundary and interior of a set C.

Control Barrier Functions At time t ∈ R≥0, let x(t) ∈ Rn be the state of the control system

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), x(0) ∈ Rn (1)

where f : Rn → Rn and g : Rn → Rn×m are continuous functions. Let the solutions to (1) under
a continuous control law u : Rn → Rm be x : I → Rn where I ⊆ R≥0 is the maximum definition
interval of x. We do not assume forward completeness of (1) under u here, i.e., I may be bounded.

Consider next a continuously differentiable function h : Rn → R and define the set C := {x ∈
Rn
∣∣h(x) ≥ 0}, which defines a set that we wish to certify as safe, i.e., that it satisfies prescribed

safety specifications and can be made forward invariant through an appropriate choice of control
action. Note that C is closed and further assume that C is not the empty set. Now, let D be an open
set that is such that D ⊇ C. The function h(x) is said to be a valid control barrier function on D if
there exists a locally Lipschitz continuous extended class K function α : R→ R such that

sup
u∈U
〈∇h(x), f(x) + g(x)u〉 ≥ −α(h(x))

holds for all x ∈ D, where U ∈ Rn defines constraints on the control input u. Consequently,
we define the set of CBF consistent inputs induced by a valid CBF h(x) to be KCBF(x) := {u ∈
Rm

∣∣ 〈∇h(x), f(x) + g(x)u〉 ≥ −α(h(x))}. The next result follows mainly from Ames et al. [9].1

Lemma 1. Assume that h(x) is a valid control barrier function on D and that u : D → U is a
continuous function with u(x) ∈ KCBF(x). Then x(0) ∈ C implies x(t) ∈ C for all t ∈ I. If C is
compact, it follows that C is forward invariant under u(x), i.e., I = [0,∞).

Hybrid Systems We model and analyze hybrid systems using the formalism of [17, 28].
Definition 1. A hybrid system [17] is a tuple H := (C,F,D,G) where C ⊆ Rnz , D ⊆ Rnz ,
F : Rnz → Rnz , and G : Rnz → Rnz are the flow and jump sets and the continuous flow and jump
maps, respectively. At the hybrid time (t, j) ∈ R≥0 × N, let z(t, j) ∈ Rnz be the hybrid state with
initial condition z(0, 0) ∈ C ∪D and the hybrid system dynamics

ż(t, j) = F (z(t, j)) for z(t, j) ∈ C, z(t, j + 1) = G(z(t, j)) for z(t, j) ∈ D. (2)
1We provide a slightly modified version to account for Ames et al. [18, Remark 5] and to not require that

∇h(x) 6= 0 when x ∈ bd(C). The proof (in Appendix A) uses the Comparison Lemma [27, Lemma 3.4].
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Solutions to (2) are parameterized by (t, j), where t indicates continuous flow according to F (z) and
j indicates discontinuous jumps according to G(z). Now let E ⊆ R≥0 ×N be a hybrid time domain
[17, Ch. 2.2], i.e., E is an infinite union of intervals of the form [tj , tj+1]× {j} or a finite union of
intervals of the form [tj , tj+1]×{j} where the last interval, if it exists, has the form [tj , tj+1]×{j},
[tj , tj+1)× {j}, or [tj ,∞)× {j}. We now formally define a hybrid solution z : E → C ∪D toH.
Definition 2. A function z : E → C ∪D is a hybrid solution toH if z(0, 0) ∈ C ∪D and

• for each j ∈ N such that Ij := {t ∈ R≥0|(t, j) ∈ dom(z)} is not a singleton, z(t, j) ∈ C and
ż(t, j) = F (z(t, j)) for all t ∈ [min Ij , sup Ij)

• for each (t, j) ∈ dom(z) s.t. (t, j + 1) ∈ dom(z), z(t, j) ∈ D and z(t, j + 1) = G(z(t, j)).
Example 1. Consider the bouncing ball example from Goebel et al. [17, Example 1.1]. Let x ∈ R
be the (vertical) position and v ∈ R be the (vertical) velocity of a point mass. Let z := [x v]

T and

ż(t, j) = [v(t, j) −ρ]
T for z(t, j) ∈ C, z(t, j + 1) = [x(t, j) −κv(t, j)]

T for z(t, j) ∈ D,
where ρ > 0 (gravity), κ ∈ (0, 1) (damping), C := {z ∈ R2|x > 0 or x = 0, v ≥ 0}, and
D := {z ∈ R2|x = 0, v < 0}. For an initial condition z(0, 0) := [x(0, 0) v(0, 0)]

T with
x(0, 0) > 0, the hybrid time domain E is an infinite union of intervals of the form [tj , tj+1] × {j}
where, as j →∞, tj converges to some constant value and where ‖z(t, j)‖ converges to zero.

Problem Formulation The class of hybrid control systems that we consider is{
ż(t, j) = fc(z(t, j)) + gc(z(t, j))uc(z(t, j)) for z(t, j) ∈ C
z(t, j + 1) = fd(z(t, j)) + gd(z(t, j))ud(z(t, j)) for z(t, j) ∈ D (3)

where uc : C → Uc ⊆ Rmc and ud : D → Ud ⊆ Rmd are continuous control laws during flows
and jumps, respectively. Let fc : Rnz → Rnz , fd : Rnz → Rnz , gc : Rnz → Rnz×nc , and
gd : Rnz → Rnz×md be locally Lipschitz continuous functions.2

We are given a set of expert trajectories consisting of Nc and Nd discretely sampled data-points
along flows and jumps as Zcdyn := {(zi, uic)}

Nc
i=1 for zi ∈ C and Zddyn := {(zi, uid)}

Nd
i=1 for zi ∈ D,

as illustrated in Figure 1 (left).3 It is assumed that each zi ∈ int(S) where S ⊆ Rnz is the geometric
safe set, i.e., the set of safe states as naturally specified on a subset of the system configuration space
(e.g., to avoid collision, vehicles must maintain a minimum separating distance). Our goal is now to
learn, from Zcdyn and Zddyn, a twice continuously differentiable function h : Rnz → R such that

C := {z ∈ Rnz
∣∣h(z) ≥ 0} (4)

is a subset of the geometric safe set S, and that C can be made forward invariant by appropriate
control actions uc(z) ∈ Uc and ud(z) ∈ Ud.

3 Learning Hybrid Control Barrier Functions from Data

We begin by defining a suitable notion of hybrid control barrier functions, and show that they
provide a mechanism for safe control of the hybrid control system (3). We then show how such
HCBFs can be learned from data via a constrained optimization problem, and provide sufficient
conditions under which a feasible solution is a valid HCBF.

Hybrid Control Barrier Functions Let h : Rnz → R be a twice continuously differentiable
function for which the set C in (4) is not empty and such that C ⊆ C ∪ D. Such an assumption is
natural as we are only interested in regions where the system (3) is defined. Consider now the sets
DC ⊆ C and DD ⊆ D that are such that C ∩ C ⊆ DC and C ∩D ⊆ DD so that C ⊆ DC ∪ DD4,
ensuring that the set D := DC ∪ DD fully covers C – see Fig. 1(middle) and (right). The sets DC
and DD are the equivalent to the set D in Section 2, but considered separately for flows and jumps.

2We again do not assume completeness of the system (3) under uc and ud. Completeness here means that
the hybrid time domain dom(z) is unbounded (see Goebel et al. [17, Ch. 2.2] for a formal definition).

3We refer to the collection of data points Zc
dyn and Zd

dyn as expert trajectories to emphasize that this is a
natural way of collecting the {(zi, ui

c)} and {(zi, ui
d)} pairs from the system (3). We note, however, that our

method simply requires a collection of state-action pairs {(zi, ui
c)} and {(zi, ui

d)} demonstrating safe behavior.
4This follows as we assume that C ⊆ C ∪D, which results in (C ∩C)∪ (C ∩D) = C ∩ (C ∪D) = C, and

since (C ∩ C) ∪ (C ∩D) ⊆ DC ∪ DD by the choices of the sets DC and DD .
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Figure 1: Problem setup (left): The flow and jump sets C and D (blue and purple boxes) and the set of safe
expert trajectories during flows and jumps (black lines and dots). Set definitions (middle): The setsDC andDD

(black and light red balls) are the union of ε balls around the expert trajectories during flows and jumps. The
set N (golden rings), defined around DC and DD , ensures that the learned safe set C is such that C ⊂ D ⊆ S.
Note that the geometrical safe set S is not depicted here. Desired result (right): The learned safe set C (red
region) is defined via the learned valid HCBF h(z).

Definition 3. The function h(z) is said to be a valid hybrid control barrier function on D if there
exists a locally Lipschitz continuous extended class K function α : R→ R such that

sup
uc∈Uc

〈∇h(z), fc(z) + gc(z)uc〉 ≥ −α(h(z)) for all z ∈ DC , (5)

sup
ud∈Ud

h(fd(z) + gd(z)ud) ≥ 0 for all z ∈ DD. (6)

We define the sets of HCBF consistent inputs to be KHCBF,c(z) := {uc ∈ Uc
∣∣ 〈∇h(z), fc(z) +

gc(z)uc〉 ≥ −α(h(z))} and KHCBF,d(z) := {ud ∈ Ud
∣∣h(fd(z) + gd(z)ud) ≥ 0}. Assume for the

remainder of the paper that the set DC is open.5 This will allow us, in the next result, to establish
forward invariance of the set C under control laws uc(z) and ud(z) when the set C is compact.
Theorem 1. Assume that h(z) is a valid hybrid control barrier function on D and that uc : DC →
Uc and ud : DD → Ud are continuous functions with uc(z) ∈ KHCBF,c(z) and ud(z) ∈ KHCBF,d(z).
Then z(0, 0) ∈ C implies z(t, j) ∈ C for all (t, j) ∈ dom(z). If C is compact and satisfies C ⊆ C∪D,
then the set C is forward invariant under uc(z) and ud(z), i.e., dom(z) is unbounded.

Proof. The proof is based on showing that h(t, j) ≥ 0 for all (t, j) ∈ dom(z) due to the constraints
(5) and (6) and that z(t, j) can not leaveDC ∪DD. The complete proof is given in Appendix A.

Example 2. Consider again the bouncing ball example from Example 1, here artificially equipped
with continuous and discrete control inputs for illustrative purposes. The dynamics are

ż(t, j) = [v(t, j) uc − ρ]
T for z(t, j) ∈ C, z(t, j + 1) = [x(t, j) −udv(t, j)]

T for z(t, j) ∈ D,

and the geometric safe set is S := {z ∈ R2|v2 ≤ ζ}. The artificial control inputs uc and ud can
be thought of as controllable wind resistance and floor damping, respectively. Define the candidate
HCBF h(z) := ζ − v2, such that C = S. Evaluating constraint (5) with α(r) := r yields −2vuc +
2vρ ≥ −ζ+v2 and for which we can always find a suitable uc ∈ R. Similarly, evaluating constraint
(6) yields ζ − (udv)2 ≥ 0 and for which we can, again, always find a suitable ud ∈ R.

An Optimization Based Approach First, define the data sets Zcsafe := {zi : (zi, uic) ∈ Zcdyn} and
Zdsafe := {zi : (zi, uid) ∈ Zddyn}. We next define, for εc, εd > 0 and p ≥ 1, the sets

DD := D ∩
⋃

zi∈Zd
safe

Bεd,p(zi) and DC := D′C\bd(D′C) where D′C := C ∩
⋃

zi∈Zc
safe

Bεc,p(zi) (7)

that need to be such that D = DC ∪ DD ⊆ S, which can be easily achieved even when data-points
zi are close to bd(S) by adjusting εc and εd or by omitting zi. Note that the set DC is open by
definition. For σ > 0, define N := {bd(D) ⊕ Bσ,p(0)} \ D, where N is a ring of diameter σ that
surrounds the setD (see the golden ring in Figure 1). We will use the setN to enforce that the value
of the learned HCBF h(z) is negative on N to ensure that the set C is contained within the set D.

5If DC is not open, one can instead assume that C \ DD is strictly contained within DC ∪ DD .
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Hence, also assume that points ZN = {zi}Nu
i=1 are sampled from N , i.e., zi ∈ N . Note that only

state data zi ∈ ZN are sampled from N , while no inputs uic or uid are needed, i.e., unsafe data can
be obtained by gridding or sampling. While the set C defined in (4) considers all z ∈ Rnz such that
h(z) ≥ 0, we modify this definition slightly by restricting the domain to the set N ∪ D. This is a
natural restriction as we are learning a HCBF from data sampled over the domain N ∪ D, and we
therefore instead consider learning a valid local HCBF h(z) over D with respect to the set

C := {z ∈ N ∪ D
∣∣h(z) ≥ 0}. (8)

The optimization problem: We now propose an optimization problem for learning a valid local
HCBF, and then prove its correctness. We solve

min
h∈H

‖h‖

s.t. h(zi) ≥ γsafe, ∀zi ∈ Zcsafe ∪ Zdsafe : safe set with margin γsafe > 0 (9a)

h(zi) ≤ −γunsafe, ∀zi ∈ ZN : unsafe set with margin γunsafe > 0 (9b)

Lip(h(zi), ε̄) ≤ Lh, ∀zi ∈ ZN : Lipschitz constraint on h(z) (9c)

qc(z
i, uic) := 〈∇h(zi), fc(z

i) + gc(z
i)uic)〉

+ α(h(zi)) ≥ γcdyn : grad. constraint (5) with margin γcdyn > 0 (9d)

Lip(qc(z
i, uic), εc) ≤ Lcq, ∀(zi, uic) ∈ Zcdyn : Lipschitz constraint on qc(zi, uic) (9e)

qd(z
i, uid) := h(fd(z

i) + gd(z
i)uid) ≥ γddyn : jump constraint (6) with margin γddyn > 0 (9f)

Lip(qd(z
i, uid), εd) ≤ Ldq , ∀(zi, uid) ∈ Zddyn : Lipschitz constraint on qd(zi, uid) (9g)

where H is a normed function space and where the positive constants γsafe, γunsafe, γcdyn,γddyn, Lh,
Lcq , and Ldq are hyperparameters determined by the data-sets Zcsafe, Zdsafe, and ZN , which must be
sufficiently dense, as quantified by ε̄, εc, and εd (conditions given below).

Lipschitz bounds: The constraints in (9c), (9e), and (9g) assume a function Lip(·, ε) that returns an
upper bound on the Lipschitz constant of its argument with respect to the state z in an ε neighborhood
of zi using the p-norm as detailed in Appendix A. It may be difficult to enforce the constraints (9c),
(9e), and (9g) in the optimization problem (9). One can resort to bootstrapping the values of Lh, Lcq ,
and Ldq by iteratively solving the optimization problem (9), calculating the values of Lh, Lcq , and
Ldq to verify if constraints (9c), (9e), and (9g) hold, and adjusting regularization hyperparameters
accordingly. Appendix A explains how to compute Lipschitz constants for DNNs [29] and RKHS.

Should we trust the experts? Optimization problem (9) approximates the supremums over con-
tinuous and discrete inputs in the constraints (5) and (6) with the expert actions – while compu-
tationally expedient, this may prove conservative. We note that in many cases of interest, the
supremum over the continuous input uc ∈ Uc in constraint (5) admits a closed form expres-
sion. For example, when Uc is an ‖ · ‖-norm ball, the left hand side of constraint (5) reduces to
〈∇h(zi), fc(z

i)〉+ ‖∇h(zi)gTc (zi)‖? +α(h(zi)), for ‖ · ‖? the dual norm. This in turn can be used
to simplify constraint (9d) in optimization problem (9), and in particular eliminates the dependency
on uic. Nevertheless, the availability of expert demonstrations is still valuable as they indicate that a
safe action exists, and we therefore expect a feasible HCBF h and control action uc to exist.

Unconstrained relaxation: For general function classes H := {h(z; θ)|θ ∈ Θ}, e.g., when h(z) is
a DNN, optimization problem (9) is nonconvex: we propose an unconstrained relaxation that can be
solved efficiently using stochastic first-order gradient methods such as Adam or stochastic gradient
descent. Let [r]+ := max{r, 0} for r ∈ R and let the unconstrained optimization problem be

min
θ∈Θ

‖θ‖2 + λs

∑
zi∈Zc

safe∪Zd
safe

[γsafe − hθ(zi)]+ + λu

∑
zi∈ZN

[hθ(z
i) + γunsafe]+ + λd

∑
(zi,ui

c)∈Zc
dyn

[γcdyn

− 〈∇hθ(zi), fc(zi) + gc(z
i)uic〉 − α(hθ(z

i))]+ + λc

∑
(zi,ui

d)∈Zd
dyn

[γddyn − hθ(fd(zi) + gd(z
i)uid)]+

where λs, λu, λd, λc > 0 are hyperparameters that tradeoff between the constraints of problem (9).
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Guaranteeing Safety We next show correctness of the learned HCBF h(z) obtained from (9) in
two steps by: 1) showing that the certified safe set (8) is contained within the geometric safe set,
i.e., that C ⊂ D ⊆ S, and 2) proving that h(z) is a valid local HCBF by ensuring that the set C is
forward invariant under control laws uc(z) ∈ Uc and ud(z) ∈ Ud. All proofs are in the Appendix.

1) Guaranteeing C ⊂ D ⊆ S: Let h(z) be Lipschitz continuous with local constant Lh(z),6 and ZN
be an ε̄-net of N , i.e., for all z ∈ N , there exists zi ∈ ZN such that ‖zi − z‖p ≤ ε̄. Assume that
ε̄ < γunsafe/Lh(zi) for all zi ∈ ZN and γunsafe > 0. Then a standard covering and Lipschitz argument
(see Proposition 3 in Appendix A) shows that if h(z) satisfies constraint (9b) for all zi ∈ ZN , we
have that h(z) < 0 for all z ∈ N . We can use a similar argument on constraint (9a), which ensures
that the set C over which h(z) ≥ 0, as defined in equation (8), has non-empty interior.

Proposition 1. Let h(z) be Lipschitz continuous with local constantLh(z), andZcsafe andZdsafe be εc-
and εd-nets of DC and DD, respectively, with max(εc, εd) ≤ γsafe/Lh(zi) for all zi ∈ Zcsafe ∪ Zdsafe
and γsafe > 0. Then, if h(z) satisfies constraint (9a), we have that h(z) ≥ 0 for all z ∈ D.

Propositions 3 and 1 then ensure that C ⊂ D ⊆ S. Note that the constraints (9a) and (9b) may lead
to infeasibility of (9). Similarly to Robey et al. [26, equation (3.4)], we instead enforce the constraint
(9a) on smaller sets Z̄csafe and Z̄dsafe with Z̄csafe ⊂ Zcsafe and Z̄dsafe ⊂ Zdsafe, i.e., replace (9a) by

h(zi) ≥ γsafe, ∀zi ∈ Z̄csafe ∪ Z̄dsafe. (10)

2) Guaranteeing a valid local HCBF: For a state z ∈ DC , define the function qc(z, u
i
c) :=

〈∇h(z), fc(z) + gc(z)u
i
c〉 + α(h(z)) where the control sample uic is associated with the sample

zi that is such that ‖zi − z‖p ≤ εc. Note that such a pair (zi, uic) ∈ Zcdyn is guaranteed to exist
when the set Zcsafe is an εc-net of DD. The function qc(z, uic) is Lipschitz continuous in z with lo-
cal constant denoted by Lcq(z, u

i
c), as we have assumed h to be twice continuously differentiable.

Similarly, define qd(z, uid) := h(fd(z) + gd(z)u
i
d) and note that qd(z, uid) is Lipschitz continuous

with local constant denoted by Ldq(z, u
i
d). We next provide conditions guaranteeing that the learned

HCBF satisfies the constraint (5) for all z ∈ DC and the constraint (6) for all z ∈ DD.

Proposition 2. Suppose qc(z, u
i
c) and qd(z, u

i
d) are Lipschitz continuous with local constants

Lcq(z, u
i
c) and Ldq(z, u

i
d), respectively. Let γcdyn, γ

d
dyn > 0, and assume that (i) Zcsafe is an εc-net

of DC with εc ≤ γcdyn/L
c
q(z

i, uic) for all (zi, uic) ∈ Zcdyn, and (ii) Zdsafe is an εd-net of DD with
εd ≤ γddyn/L

d
q(z

i, uid) for all (zi, uid) ∈ Zddyn. Then, if h(z) satisfies constraints (9d) and (9f), we
have that qc(z, uic) ≥ 0 for all z ∈ DC and qd(z, uid) ≥ 0 for all z ∈ DD.

We can now ensure that the function h(z) from (9) defines a set C that is such that C ⊂ D ⊆ S and
that can be rendered forward invariant by control actions satisfying the constraints (5) and (6). The
next theorem follows without proof and summarizes under which conditions h(z) is a valid HCBF.

Theorem 2. Let h(z) be a twice continuously differentiable function and let the sets S, N , DC ,
DD, D, C, and the data-sets Zcdyn, Zddyn, Zcsafe, Zdsafe, and ZN be defined as above. Suppose that ZN
forms an ε̄-net of N satisfying ε̄ < γunsafe/Lh(zi) for all zi ∈ ZN , and that Zcsafe and Zdsafe are
εc- and εd-nets of DC and DD, respectively, satisfying the conditions of Propositions 1 & 2. Let
h(z), qc(z, uic), and qd(z, uic) be Lipschitz continuous with local constants Lh(z), Lcq(z, u

i
c), and

Ldq(z, u
i
d), respectively. Then, if h(z) satisfies constraints (10), (9b), (9d), and (9f), the set C is

non-empty, C ⊂ D ⊆ S , and the function h(z) is a valid local HCBF on D with domain N ∪D.

4 Case Studies

The code for both case studies is available at https://github.com/unstable-zeros/learning-hcbfs.
In both our simulations, we numerically integrate the hybrid dynamics of interest using an
integrator implementation inspired by Drake [30]. We build our implementation on top of
scipy.integrate.solve ivp’s event detection API. This allows us to get precise notifications
for when a system makes a discrete jump.

6By local constant, we here mean a Lipschitz constant in an ε̄ neighborhood of z.
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Bouncing ball Our first experiment considers the controlled bouncing ball discussed in Example 2.
Here we define a safe set S := {z ∈ R2||v| ≤ 2}, and set ρ = 9.81. Details as to how expert data
is generated can be found in Appendix B. At a high level, we use an exploratory controller that
covers much of the state-space but does not guarantee safety, in combination with a safe controller
composed of a continuous component based on the analytical HCBF in Example 2 and the CBF-QP
problem [8], and a discrete component obtained by analytically solving the constraint described in
Example 2. Using the above controllers, we obtain data-sets Zcsafe and Zdsafe containing 5000 safe
states and expert demonstrations uic and uid. Those expert states, shown as the green and magenta
dots in Fig. 2(left), are evenly gridded near the boundary of the safe set S. We in addition sample
4560 unsafe samples by gridding along the boundary of N to form the data-set ZN .

We parametrize the HCBF candidate h as a two-hidden-layer fully-connected DNN with tanh acti-
vation functions and 64 neurons in each hidden layer. The training is implemented using jax [31]
and the Adam algorithm with a cosine decay learning rate. We craft a loss function by relaxing the
constraints in (9) – hyperparameter choices and other training details can be found in Appendix B.
The set C of the learned HCBF is shown as green dots in the middle subplot of Figure 2. One may
clearly observe that C is strictly contained within the geometric safe set, i.e. C ⊂ S.

Figure 2: Left: Plot of the expert states Zc
safe (green) and Zd

safe (magenta), and unsafe samples ZN (red).
Dashed red lines indicate bounds on the velocity. Middle: Closed-loop simulation of the bouncing ball using
the learned HCBF where the initial state, state before jump, state after jump and terminal state are indicated by a
red diamond, magenta star, magenta circle and red cross, respectively. The solid black line and dash-dotted blue
line represent the closed-loop trajectory and desired reference path. The green dots denote the safe invariant set
(8) of the learned HCBF. Right: Closed-loop simulation of the bouncing ball using the analytical HCBF.

We now test if the learned HCBF is able to produce safe control inputs that keep the system within
the set C. We consider a nominal control law uc,nom that looks to track the reference path shown in
dash-dotted blue in Fig. 2(middle) and (right): as the system has full control, it can exactly track the
reference path, but without correction, this would lead to violation of the velocity constraint. Starting
from an initial state (0.2,−1.9), we simulate the controlled system for 2.25 seconds. During flow,
we solve the CBF-QP problem for the continuous input uc (see Appendix B.2). During jump, we
perform line search with a decay factor 0.95 to find the scalar discrete input ud that satisfies (6).
The closed-loop trajectory produced by the learned HCBF is plotted in Figure 2 (middle). As a
comparison, we also plot in Figure 2 (right) the trajectory obtained using the analytical HCBF.
Albeit slightly more conservative, the learned HCBF keeps the ball within C at all times during both
flows and jumps.

Compass gait We consider the compass gait walker [32, 33]. Originally introduced by Goswami
et al. [32], the compass gait dynamics describe a passive bipedal robot walking down an inclined
plane at a constant velocity. This system is described by a four-dimensional continuous state z =
[θstance, θswing, θ̇stance, θ̇swing] consisting of the angle and angular velocity of each leg. In this notation,
the “stance” foot corresponds to the foot that is in contact with the ground as the compass gait walker
makes its descent down the ramp; hence, the “swing” foot refers to the foot that is not in contact
with the ramp at a particular instant in time. In our simulations, the walker’s initial stance leg is
its left leg, and therefore its initial swing leg is its right leg. To improve the walking capabilities,
we add actuation to hip joint and the ankle of the stance leg. To collect expert trajectories, we
use the energy-based controller of Goswami et al. [34]. Implementation details can be found in
Appendix C. Learning and analyzing a HCBF for the compass gait walker hybrid system poses
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Figure 3: (Left) In red, we show the phase portrait of the right foot using the CBF-QP controller. On the vertical
axis, we plot the values of h(x) associated with this phase portrait. The regions where uHCBF 6= unom, i.e., where
the HCBF corrects the nominal controller, are shown in green; values of h(x) where uHCBF = unom are shown
in blue. Notice that when the value of h(z) dips below the “safe” threshold γsafe = 0.3, the HCBF-QP almost
always intervenes. (Right) From a fixed initial state, we show a trajectory with the CBF-QP controller (top) and
the nominal zero-valued controller (bottom). The states are down-sampled for clarity, the left and right feet are
shown in red and blue respectively, and torques applied by the CBF-QP controller are shown as green arrows.

several challenges, including the well-known sensitivity of the compass gait walker to its initial
conditions and the inherent difficulties in visualizing a four-dimensional state space. To facilitate a
meaningful visualization of the four-dimensional state space, when collecting expert data, we fix the
stance leg initial condition to the point [θstance, θ̇stance] = [0, 0.4] on the passive limit cycle, and vary
the initial condition of the swing leg by adding uniform noise to corresponding passive limit cycle
state [θswing, θ̇swing] = [0, 2.0] of the swing leg.

We again parameterize the candidate HCBF h with a two-hidden-layer fully-connected neural net-
work with tanh activations, and as before, determine the hyperpameters by grid search. However,
unlike the previous example, the task of identifying boundary points is complicated by the higher
dimensionality of the state space. Therefore, we propose a novel algorithm that can be used to iden-
tify boundary points by sampling from the space of expert trajectories. The algorithm, described
in Appendix C, identifies boundary points by computing the pairwise distances between all of the
expert states and thresholding based on the number of neighbors a point has within an ε-norm ball.

In the left panel of Fig. 3, we visualize the learned HCBF. Starting from an initial condition with
the same left leg state as the expert trajectories, we identify the values for h(z) at which uHCBF 6=
unom > 0 in green, i.e. where the HCBF controller corrects the nominal controller. In red, we
plot the phase portrait for the right leg corresponding to a trajectory using the CBF-QP controller.
To demonstrate the physical interpretation of this learned HCBF, in the right top panel of Fig. 3,
we show the motion of the compass gait walker down the ramp, marking in green where the CBF-
based controller takes over; in the right lower panel of Fig. 3 we see the failure of a zero-valued
controller from the same initial condition, showing that the learned HCBF preserves safety. We
refer to Appendix C for further illustrative visualizations. Videos of both the safe HCBF and unsafe
nominal controller trajectories can be found in the supplementary material.

5 Conclusion

We presented a framework for learning safe control laws for hybrid systems. We introduced HCBFs
and sufficient conditions under which an HCBF based control law guarantees safety, i.e., a desired
safe set is made forward invariant. We then showed how to learn such HCBFs from data using an
optimization-based framework. We gave sufficient conditions under which feasible solutions to the
optimization problem are valid HCBFs, and illustrated our methods on two case studies. Future
work will look to extend this approach to hybrid systems described by differential inclusions, so as
to be applicable to systems with friction and stiction, as well as to develop statistical guarantees of
correctness to alleviate the sampling burden of our method.
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A Appendix A

A.1 Computing the Lipschitz constants Lh, Lcq , and Lcq

To verify (9c), (9e), and (9g), the Lipschitz constant Lh of the learned function h(z) as well the
Lipschitz constant L∇h of its gradient ∇h(z) need to be calculated first. The following discussion
is mainly taken from Robey et al. [26, Section 3.4.2]. When H consists of twice continuously
differentiable functions, as is the case when h ∈ H is parametrized by a Deep Neural Net with
twice continuously differentiable activation functions or a Reproducing Kernel Hilbert Space, the
following is shown to hold.

Reproducing Kernel Hilbert Space: In the case of random Fourier features with l random features
where h(z) := 〈φ(z), θ〉 with θ ∈ Θ where Θ is a convex set and with φ : Rnz → Rl where

φ(z) =
√

2/l(cos(〈z, w1〉+ b1), ..., cos(〈z, wl〉+ bl)) ,

an upper bound on the Lipschitz constant of h(z) is provided as
√

2σ2(1 +
√
nz/l +√

(2/l) log(1/δ))‖θ‖2 with probability at least 1 − δ where σ is as explained in Robey et al. [26,
Section 3.4.2]. An upper bound on the Lipschitz constant of ∇h(z) can be derived by the bound
‖∇2h(z)‖ ≤ 3

√
2‖θ‖∞σ2(l + nz + 2 log(1/δ))/

√
l that holds with probability at least 1− δ.

Deep Neural Net: When h(z) is a DNN, the problem of exactly computing the Lipschitz constant
of h(z) is known to be NP-hard. Because most commonly-used activation functions φ are known to
be 1-Lipschitz (e.g., ReLU, tanh, sigmoid), a naive upper bound on the Lipschitz constant of h(z)
is given by the product of the norms of the weight matrices; that is, Lh ≤

∏
k ‖W k‖. However,

this bound is known to be quite loose [29]. Recently, the authors of Fazlyab et al. [29] proposed
a semidefinite-programming based approach to efficiently compute an accurate upper bound on
Lh. On the other hand, there are relatively few results that provide accurate upper bounds for the
Lipschitz constant of the gradient of h(z). The only general method for computing an upper bound
on L∇h is through post-hoc sampling.

Now, using these Lipschitz constants Lh and L∇h of h(z) and ∇h(z), respectively, it can be seen
that the functions qc(z, uic) and qd(z, uid) in (9d) and (9f) are locally Lipschitz continuous in z since
∇h(z), fc(z), fd(z), gc(z), gd(z), and α(h(z)) are locally Lipschitz continuous and since function
composition preserves Lipschitz continuity. Upper bounds of the Lipschitz constants Lcq and Ldq
follow immediately.

A.2 Proof of Lemma 1

Proof of Lemma 1. First note that v̇(t) = −α(v(t)) with v(0) ≥ 0 admits a unique solution v(t)
that is such that v(t) ≥ 0 for all t ≥ 0 [27, Lemma 4.4]. Each solution x(t) to (1) under u(x) is
now, due to the chain rule and since u(x) ∈ KCBF(x), such that ḣ(x(t)) ≥ −α(h(x(t))) for all
t ∈ I. Using the Comparison Lemma [27, Lemma 3.4] and assuming that h(x(0)) ≥ 0, it follows
that h(x(t)) ≥ v(t) ≥ 0 for all t ∈ I, i.e., x(0) ∈ C implies x(t) ∈ C for all t ∈ I. Note next that
(1) is defined on D since u(x) is only defined for x ∈ D. Since x ∈ C for all t ∈ I and when C is
compact, it follows by Khalil [27, Theorem 3.3] that I = [0,∞), i.e., C is forward invariant.

A.3 Proof of Theorem 1

Proof of Theorem 1. During flows with Ij not being a singleton, and if h(z(min(Ij), j)) ≥ 0, we
infer that h(z(t, j)) ≥ 0 for all t ∈ [min Ij , sup Ij) due to (5) and as in the proof of Lemma 1.
By continuity of h(z) and z(t, j) and since C is closed, it also holds that h(z(sup Ij , j)) ≥ 0 if
Ij = [tj , tj+1] × {j}, i.e., the right end point is included in Ij . After each jump, it holds that
h(z(tj+1, j+ 1)) ≥ 0 as a consequence of (6). Consequently, z(0, 0) ∈ C implies z(t, j) ∈ C for all
(t, j) ∈ dom(z).

We next show that C is forward invariant under uc(z) and ud(z), i.e., dom(z) is unbounded, if C is
compact and if C ⊆ C∪D . First recall that C ⊆ DC ∪DD due to C ⊆ C∪D and since C∩C ⊆ DC
and C ∩D ⊆ DD. Assume now that the hybrid solution z(t, j) to the system (3) under control laws
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uc(z) and ud(z) is maximal7 and that the hybrid time domain dom(z) is bounded. By defining
(T, J) := sup(t,j) dom(z), we distinguish between the two cases: 1) z(T, J) 6∈ dom(z) and 2)
z(T, J) ∈ dom(z). 1) Note that z(T, J) 6∈ dom(z) can only happen when IJ is not a singleton and
when z(t, j) has left the set DC by flowing without entering DD, which would enable a successive
jump that is not possible since it is assumed that the solution z(t, j) is maximal. Since the set C is
compact and since DC is open, there has to exist a time t < T such that z(t, J) ∈ DC \ C according
to Khalil [27, Theorem 3.3], which does not hold since (t, J) ∈ dom(z) and since z(t, J) ∈ C as
shown previously. Since z(t, j) is maximal, it follows by contradiction that dom(z) is unbounded.
2) If z(T, J) ∈ dom(z), it holds that z(T, J) ∈ C so that either z(T, J) ∈ DD ∩ C or z(T, J) ∈
(DC ∩ C) \ (DD ∩ C). In the former case, the solution z(t, j) can be extended by a jump. In the
latter case, note that z(T, J) is strictly contained within the set DC ∪DD so that the solution z(t, j)
can be extended into DC or into DD by flowing. By contradiction, it again follows that dom(z) is
unbounded.

A.4 Proposition 3

Proposition 3. Let h(z) be Lipschitz continuous with local constant Lh(z)8, γunsafe > 0 and ZN be
an ε̄-net of N with ε̄ < γunsafe/Lh(zi) for all zi ∈ ZN . Then, if h(z) satisfies constraint (9b), we
have that h(z) < 0 for all z ∈ N .

Proof of Proposition 3. Note first that, for all z ∈ N , it follows that there exists a point zi ∈ ZN
satisfying ‖z − zi‖p ≤ ε̄ due to the assumption that ZN is an ε̄-net of N . For any z ∈ N , we can
now select a point zi ∈ ZN satisfying ‖z − zi‖p ≤ ε̄ for which it follows that

h(z) = h(z)− h(zi) + h(zi)
(a)

≤ |h(z)− h(zi)| − γunsafe

(b)

≤ Lh(zi)‖z − zi‖p − γunsafe

(c)

≤ Lh(zi)ε̄− γunsafe
(d)
< 0

In particular, inequality (a) follows from the constraint (9b) which says that h(zi) ≤ −γunsafe for all
zi ∈ ZN . Inequality (b) follows by the local Lipschitz constant Lh(z) on h(z) in an ε̄ neighborhood
of zi, while inequality (c) follows again by the assumption that ZN forms an ε̄-net of N . The strict
inequality (d) follows simply by the assumption that ε̄ < γunsafe/Lh(zi) for all zi ∈ ZN .

A.5 Proof of Proposition 1

Proof of Proposition 1. Note first that, for all z ∈ DC , it again follows that there exists a point
zi ∈ Zcsafe satisfying ‖z − zi‖p ≤ εc due to the assumption that Zcsafe is an εc-net of DC . For any
z ∈ DC , we can now select a point zi ∈ Zcsafe satisfying ‖z − zi‖p ≤ εc for which it follows that

0
(a)

≤ h(zi)− γsafe = h(zi)− h(z) + h(z)− γsafe ≤ |h(zi)− h(z)|+ h(z)− γsafe

(b)

≤ Lh(zi)‖zi − z‖p + h(z)− γsafe

(c)

≤ Lh(zi)εc + h(z)− γsafe

(d)

≤ h(z)

In particular, inequality (a) follows from the constraint (9a) which says that h(zi) ≥ γsafe for all zi ∈
Zcsafe. Inequality (b) follows by the local Lipschitz constant Lh(z) on h(z) in an εc neighborhood of
zi, while inequality (c) follows again by the assumption that Zcsafe is an εc-net ofDC . The inequality
(d) follows simply by the assumption that max(εc, εd) ≤ γsafe/Lh(zi) for all zi ∈ Zcsafe ∪Zdsafe. The
same analysis holds for all z ∈ DD, so that h(z) ≥ 0 for all z ∈ D.

A.6 Proof of Proposition 2

Proof of Proposition 2. Note first that, for all z ∈ DC , it follows that there exists a pair (zi, uic) ∈
Zcdyn satisfying ‖z− zi‖p ≤ εc due to the assumption that Zcsafe is an εc-net of DC . For any z ∈ DC ,

7A hybrid solution z(t, j) is maximal if there exists no other hybrid solution z′(t, j) with dom(z) ⊂
dom(z′) and with z(t, j) = z′(t, j) for all (t, j) ∈ dom(z).

8By local constant, we here mean a Lipschitz constant in an ε̄ neighborhood of z.
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we can now select a pair (zi, uic) ∈ Zcdyn satisfying ‖z − zi‖p ≤ εc for which it follows that

0
(a)

≤ qc(z
i, uic)− γcdyn = qc(z

i, uic)− qc(z, uic) + qc(z, u
i
c)− γcdyn

≤ |qc(zi, uic)− qc(z, uic)|+ qc(z, u
i
c)− γcdyn

(b)

≤ Lcq(z
i, uic)‖zi − z‖p + qc(z, u

i
c)− γcdyn

(c)

≤ Lcq(z
i, uic)εc + qc(z, u

i
c)− γcdyn

(d)

≤ qc(z, u
i
c)

In particular, inequality (a) follows from the constraint (9d) which says that qc(zi, uic) ≥ γcdyn for
all (zi, uic) ∈ Zcdyn. Inequality (b) follows by the local Lipschitz constant Lcq(z, u

i
c) on qc(z, uic)

in an εc neighborhood of zi, while inequality (c) follows again by the assumption that Zcsafe is an
εc-net of DC . The inequality (d) follows simply by the assumption that εc ≤ γcdyn/L

c
q(z

i, uic) for all
zi ∈ Zcsafe. This implies that qc(z, uic) ≥ 0 for all z ∈ DC . The same analysis holds for all z ∈ DD,
so that qd(z, uid) ≥ 0 for all z ∈ D.
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B Appendix B: Bouncing Ball

The code for the bouncing ball case study can be found in https://github.com/
unstable-zeros/learning-hcbfs/tree/main/bouncing_ball_for_share.

B.1 Generating and tracking the reference path

The control goal of the bouncing ball case study is to track a desired reference path shown as dash-
dotted blue lines in Fig. 2 (middle and right). This reference path is obtained by dropping the ball
from (1, 0) without applying any control input, i.e., uc := 0, until it hits the ground. The discrete
control input ud is set to 1.0 when this happens. Reversing the velocity in sign while keeping the
position unchanged gives the reference path in the right half plane.

In order to track the reference path, we design a linear error-feedback control law uc,nom =

K(z(t, j) − zref(t)) with K = [10 5.48]
T via solving the Riccati equation. The reference state

zref(t) is selected as the state on the reference path that is the closet to z(t, j) in Euclidean distance.
We set the nominal discrete input to be ud,nom = 1.2 such that it amplifies the velocities after colli-
sions and thus is more likely to cause constraint violation. Note that neither the reference path nor
the closed-loop trajectory obtained by applying the nominal controllers uc,nom and ud,nom complies
with the geometric safe set S.

B.2 Training data

To obtain training data during flows, we use the above reference controller uc,nom together with the
analytical HCBF in Example 2, which, per solving the CBF-QP problem [8], gives a safe controller
uc during flow. The CBF-QP basically consists of solving a convex quadratic program with decision
variable uc, cost function ‖uc− uc,nom‖, and the constraint 〈∇h(z), fc(z) + gc(z)uc〉 ≥ −α(h(z)).
The safe control input ud used to obtain training data during jumps is essentially a thresholding
function and can be found analytically as mentioned in Example 2. Based on these safe controllers
uc and ud, we obtain data-sets Zcsafe and Zdsafe containing 5000 safe states zi and associated expert
demonstrations uic and uid, which are shown as the green and magenta dots in the left subplot of
Figure 2.

B.3 Hyperparameters for training the neural network

We train the neural network for 1.5 × 103 epochs using the loss given by unconstrained relaxation
of Problem (9) in Section 3. The hyperparameters, shown in Table 1, are found by grid search.

Parameter name Value

λs 4.0
λu 5.0
λd 1.0
λc 1.0
γsafe 0.0025
γunsafe 0.075
γcdyn 0.055
γddyn 0.055

Table 1: Hyperparameters used for training the neural network based HCBF for the bouncing ball.

B.4 Visualization of the learned HCBF

We visualize the learned and analytical HCBFs in (v, x, h(z))-space in Figure 4 by plotting their
level sets. The green dots indicate where h(z) ≥ 0 on C ∪ D, while the purple dots additionally
indicate where h(z) ≥ 0 on {z ∈ C | x = 0 , 0 ≤ v ≤ 2}, i.e. the possible set of states after an
impact with the ground.
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Figure 4: Left: Level sets of the learned HCBF. Right: Level sets of the analytical HCBF. For both plots,
green dots indicate where h(z) ≥ 0 on C ∪D, while the purple dots additionally indicate where h(z) ≥ 0 on
{z ∈ C | x = 0 , 0 ≤ v ≤ 2}. Deeper color indicates a lower value of h(z).

B.5 Validness of the learned HCBF

We performed post-verification of the learned HCBF satisfying Propositions 1, 2 and 3, which serve
as sufficient conditions for learning a valid HCBF as stated in Theorem 2. Since all of our data sets
were gridded evenly on the state space, densities of the ε-nets are equal to the gridding resolutions,
which are ε̄ = 0.01 and εc = εd = 0.02. The local Lipschitz constants Lh(·), Lcq(·), Ldq(·) were
approximated using the norm of their gradients, e.g. Lh(z) ≈ ‖∇h(z)‖2, which gives a tight
estimation of the Lipschitz constants due to our dense gridding scheme. The percentages of data
points that satisfy those conditions are summarized in Table 2.

Condition Involved datasets Satisfaction rate

(9a) Zcsafe, Zdsafe 95.38%
(9b) ZN 96.6%
(9d) Zcsafe, Zcdyn 100%

(9f) Zdsafe, Zddyn 100%

Proposition 1 Zcsafe, Zdsafe 98.81%
Proposition 2 Zcsafe, Zdsafe, Zcdyn, Zddyn 98.74%
Proposition 3 ZN 100%

Table 2: Satisfaction rates of sufficient conditions for learning a valid HCBF for the bouncing ball.
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C Appendix C: Compass Gait Walker

The code for the compass gait walker case study can be found in https://www.dropbox.com/
sh/4dzborvnav4su59/AABHfU7mgc5ACqQyM9NxKZ7Ea?dl=0.

C.1 Sampling boundary points

Algorithm 1 Neighbor-based Unsafe Trajectory Sampling (NUTS)
Input: Tuple of nz-dimensional vectors Z := Zcsafe ∪ Zdsafe, minimum number of neighbors
N ∈ Z+, neighbor threshold η > 0
Output: Binary vector y := {y1, . . . , yn} ⊂ {0, 1}n

1: tree← KDTree(Z)
2: num nbrs← tree.query radius(Z, radius = η)
3: y = 1(num nbrs < N)

The approach we have described crucially relies on being able to sample from “unsafe” regions of
state space, i.e. to sample states zi ∈ ZN . For low-dimensional state spaces, it is often possible to
take advantage of the underlying geometry of the hybrid system to sample from this region as for
instance in the bouncing ball case study. However, for higher-dimensional state spaces such as the
compass gait walker, it may not be possible to easily leverage the underlying geometry to obtain
these states.

To collect unsafe states zi ∈ ZN for dynamical or hybrid systems with high dimensional state
spaces, we propose an algorithm for obtaining these unsafe states by sampling the expert trajecto-
ries. The pseudocode for this algorithm is given in Algorithm 1. This algorithm takes two input
parameters: a positive integer N ∈ Z+ and a small nonnegative constant η > 0. In line 1, we first
compute the pairwise distances between each of the n := Nc + Nd states in our expert trajectories
Zcsafe∪Zdsafe; the result is a symmetric n×nmatrixM , where the element at position (i, j) inM rep-
resents the pairwise distance between states zi and zj . Next, we threshold M so that all values in M
that are greater than η are set to zero in M̃ and all values in M that are less than η are set to one. In
line 2, we use the specific notation 1(Mi,j ≤ η) := 1 if Mi,j ≤ η and 1(Mi,j ≤ η) := 0 otherwise.
Intuitively, the idea in this step is to identify the neighbors of each data point. More specifically, the
ith row of M̃ corresponds to a state zi; then the indices j in this row with Mij < η correspond to
states zj which we deem neighbors of zi. In line 3, we sum along the rows of M̃ to create the vector
ỹ ∈ Rn, which counts the number of neighbors for each state zi for i ∈ {1, 2, . . . , n}. Finally in
line 4, we threshold this vector ỹ based on the minimum number of neighbors N . Note here that
1(ỹ ≤ N) operates element-wise. The result is a binary vector y ∈ Rn, where the indices i that are
set to one correspond to states zi that the algorithm identifies as boundary points. In this way, the
total number of boundary points identified by the algorithm is

∑n
i=1 yi.

Before demonstrating how we used this algorithm in the compass gait case study, we provide some
simple examples to illustrate the efficacy of this algorithm toward identifying the boundaries of
different sets of points. In Figure 5, we show the result of running Algorithm 1 on mixtures of two
Gaussians. In Figure 6, we show a three-dimensional example in the unit cube.

Finally, we show the result of running Algorithm 1 on ten rollouts from the compass gait walker
in Figure 7. In this case, the majority of the collected states are located in the first bin, which is
corroborated by the histogram of swing foot angular velocity in Figure 8. In the following sections,
we will use these sampled unsafe states for training the HCBF function.

C.2 Collecting expert trajectories for the compass gait walker

Our implementation of the compass gait walker relies heavily on the C++ implementation in the
Drake package [30]. In particular, we re-implement the compass gait walker in Python with Jax
[31]: our implementation is publicly available on the project Github repository. We use the same
default settings for the compass gait walker as are used in the Drake implementation. Specifically,
for the walker itself we set the hip and leg masses to be mH = 10.0 kg and leg mass mL = 5.0 kg
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(a) We generate 20000 data points accord-
ing to z ∼ N (0, I). The marginals of the
distribution are shown above and to the right
of the plot.

(b) We mix two Gaussians. In this case,
we generate 20000 data points z accord-
ing to z|y ∼ N (1.7y1, I) with x ∼
Bernoulli(1/2) and y = 2x− 1

(c) Again, we mix two Gaussians. In this
case, we generate 20000 data points z ac-
cording to z|y ∼ N (2.7y1, I) with x ∼
Bernoulli(1/2) and y = 2x− 1

Figure 5: We run Algorithm 1 on data generated from two-dimensional Gaussian distributions with η = 0.3
and N = 5. All boundary points are marked in orange, and the non-boundary points are marked in blue.

Figure 6: (Top) We uniformly sample 1000 points (x, y, z) ∈ R3 in the unit cube. We then run Algorithm
1 with η = 0.13 and N = 70 and show slices of this state space {(x, y, z)|z0 − 0.05 ≤ z ≤ z0 + 0.05}
for z0 ∈ {0, 0.3, 0.5, 0.7, 1}. Notice that on the boundary slices z0 = 0 and z0 = 1, the algorithm identifies
the majority of the slice as a boundary points. On the other hand, for the slices in the middle of the unit
cube, generally only the outline of the slice contains boundary points. In this way, the algorithm successfully
identifies the boundary of the cube. (Bottom) We repeat the same experiment as the top panel, except in this
case we grid the unit cube with 8000 points and rerun the algorithm with the same parameters. Notice that the
boundary of the cube is identified exactly in this case.
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Figure 7: We show the result of running Algorithm 1 with η = 0.035 and N = 50 on 10 rollouts for the com-
pass gait walker from different initial conditions sampled in the neighborhood of a point [0.0, 0.0, 0.4,−2.0]
on the passive limit cycle. As the state space is four-dimensional, we bin the states in these rollouts according
to the angular velocity of the swing leg and plot the other components of the state in each subplot. In particular,
the x, y, and z axes of each plot are angle of the stance leg, the angle of the swing leg, and the angular velocity
of the stance leg respectively. Boundary points are shown in orange, whereas the interior points are shown in
blue.

Figure 8: Histogram of swing foot angular velocity in Figure 7.
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Figure 9: Left: We show the constraint satisfaction rates for the soft constraints imposed in the unconstrained
relaxation of (9) as described in the paper while training the HCBF. Middle: We plot the training loss as a
function of the training epoch. Right: We show boxplots corresponding to the values of the trained HCBF on
the safe and unsafe states. Notice that for states marked safe, we generally have h(z) > 0, whereas for states
marked unsafe, we generally have h(z) < 0.

respectively. Furthermore, we use a leg length ` = 1.0 meters, and we set the center of mass of each
leg to be 0.5 meters from the ground. Finally, we use a ramp slope angle of γ = 0.0525 radians, and
we set gravity to be g = 9.81 m/s2.

To collect expert trajectories, we use the energy-based controller described in eq. (24) in [34]. This
controller applies actuation to the hip joint, leaving the ankle joints unactuated. In particular, this
controller takes the following form

uH = − λ(E − E∗)
θ̇stance − θ̇swing

where we set λ = 0.3 and where E∗ is the reference energy from the passive limit cycle, and E
is the current total mechanical energy of the compass gait walker. Throughout, we use a reference
energy of E∗ = 153.244J as suggested by [34].

As described in the main text, we collect expert trajectories by fixing the initial condition of the left
leg to [θstance, θ̇stance] = [0, 0.4] and varying the initial condition of the right foot [θswing, θ̇swing] = [0+
u1, 2.0+u2] where u1 ∼ Uniform([−0.2, 0.2]) and u2 ∼ Uniform([−0.5, 0.5]). In Figure 10 (right),
we show the successful right foot initial conditions for the energy-based controller corresponding to
this initial condition. In particular, to train the HCBF described in the next section, we collected 500
rollouts using this scheme. For each rollout, we used a horizon of T = 750 steps and a time interval
of ∆t = 0.01.

C.3 Training the HCBF

To train the neural-network based HCBF, we relax (9) into the unconstrained problem of Section
3. The hyperparameters used for this problem are given in Table 3. In Figure 10, we show the
constraint satisfaction rates, the training loss, and the state separation attained by the learned HCBF.

In the main text, we showed that our HCBF controller can be used in conjunction with a nominal
control law that does not actuate the system. In particular, in the experiments shown in Figure 3, we
used trajectories obtained by simulating the compass gait walker with an energy-based controller to
train the HCBF. Following this, we used no control as the nominal controller for the HCBF-based
controller. In Figure 10, we show that despite the fact that our nominal controller is not providing
any control inputs, the HCBF-based controller has a similar safe set to that of the energy-based
controller. In this way, the HCBF causes the uncontrolled system to match the safety characteristics
of the expert energy-based controller. In particular, it can be observed that the safe set C, which is
described by the zero superlevel set of h(z), under-approximates the safe expert behavior. As can
further be observed, there are regions in the state space where our HCBF-based controller provides
safe system trajectories while the energy-based controller results in unsafe system trajectories (e.g.,
the top left corner or also the bottom right corner in Figure 10). We suspect, at this point, that the

19



Parameter name Value

λs 5.0
λu 5.0
λd 0.5
λc 0.5
γsafe 0.3
γunsafe 0.3
γcdyn 0.05
γddyn 0.05

Table 3: Hyperparameters used for training the neural network based HCBF for the compass gait.

Figure 10: For a fixed standing foot initial condition of [θstance, θ̇stance] = [0, 0.4], we vary the swing foot initial
condition and simulate the compass gait walker with the HCBF controller on top of a nominal zero-valued
controller (left) and the energy-based controller (right). Each blue dot denotes a swing foot initial condition
that corresponds to a trajectory in which the walker travels eight or more steps; red dots denote trajectories in
which the walker travels fewer than eight steps. We also plot the level sets of the learned HCBF for reference.

safe set C is attractive similarly to the continuous case [9] and provides hence more safety in some
regions. A more detailed investigation of this observation is, however, subject to future work.
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