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Abstract— Inspired by the success of imitation and inverse
reinforcement learning in replicating expert behavior through
optimal control, we propose a learning based approach to safe
controller synthesis based on control barrier functions (CBFs).
We consider the setting of a known nonlinear control affine
dynamical system and assume that we have access to safe
trajectories generated by an expert — a practical example
of such a setting would be a kinematic model of a self-
driving vehicle with safe trajectories (e.g., trajectories that avoid
collisions with obstacles in the environment) generated by a
human driver. We then propose and analyze an optimization
based approach to learning a CBF that enjoys provable safety
guarantees under suitable Lipschitz smoothness assumptions on
the underlying dynamical system. A strength of our approach
is that it is agnostic to the parameterization used to represent
the CBF, assuming only that the Lipschitz constant of such
functions can be efficiently bounded. Furthermore, if the CBF
parameterization is convex, then under mild assumptions, so
is our learning process. We end with extensive numerical
evaluations of our results on both planar and realistic examples,
using both random feature and deep neural network param-
eterizations of the CBF. To the best of our knowledge, these
are the first results that learn provably safe control barrier
functions from data.

I. INTRODUCTION

Consider the following safety-critical scenarios: a self-
driving car navigating through traffic, two unmanned aerial
vehicles (UAVs) avoiding collision, and a robotic manip-
ulator in a laboratory setting that must avoid injuring re-
searchers. Although vastly different in terms of their en-
vironments, safety-specifications, and underlying dynamics,
they share several key properties: (i) their dynamics are well
understood and modeled, and can be accurately identified,
(ii) their dynamics are inherently nonlinear, and (iii) expert
demonstrations of safe and desirable behavior are readily
available or can be easily collected. Motivated by these
unifying properties, this paper proposes the design of safe
controllers for known nonlinear dynamical systems based on
control barrier functions learned from expert demonstrations.

Barrier functions, which are also referred to as barrier
certificates, were first proposed in [1] as a means of certi-
fying the safety of dynamical systems with respect to semi-
algebraic safe sets. In that work, a sum-of-squares (SOS) pro-
gramming [2] approach for synthesizing polynomial barrier
functions for given polynomial systems was also described.
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The notion of control barrier functions (CBFs) for dynamical
control systems was first introduced in [3] to guarantee
the existence of a control law that renders a desired safe
set forward invariant. The notion of CBFs was refined by
introducing reciprocal [4] and zeroing CBFs [5], which do
not require that sub-level sets of the CBF be invariant within
the safe set. In particular, zeroing CBFs can be used to
compute a minimally invasive “correction” to a nominal
control law. Importantly, this correction maintains safety by
computing the solution to a quadratic program (QP) [5].

One open problem that has not been fully addressed in
prior work is how such CBFs can be synthesized for general
classes of systems. This challenge is similar to that which
arises when addressing stability using control Lyapunov
functions (CLFs) as the analog to Lyapunov functions [6].
Notably, control Lyapunov functions are a subset of control
barrier functions (see [5] and [7]). Analytic and SOS based
approaches to synthesizing CBFs and CLFs are summarized
in [8] and have appeared in [9], [10]. These approaches,
however, are known to be limited in scope and scalability.

Related work on learning and CBFs: Methods using
barrier and control barrier functions to ensure safety and
guide exploration during episodic supervised learning of un-
certain linear dynamics include [11]–[14]. These approaches
typically assume that a valid (control) barrier function is
provided, and should be viewed as complementary to our
results. In [15], an imitation learning based approach is
used to to train a deep neural network (DNN) to replicate
a CBF based controller. While the authors of [15] present
empirical validation of their results, no theoretical guarantees
of correctness are provided. The authors of [16] jointly learn
a control Lyapunov function, a CBF, and a policy function,
and then verify their validity post-hoc using Lipschitz ar-
guments. In [17], tools from statistical learning theory, are
used to learn Lyapunov functions from data for systems with
unknown dynamics. Most similar in spirit to our paper are
the results in [18] and [19]. In [18], the authors parameterize
a CBF by a support vector machine, and use a supervised
learning approach to characterize regions of the state-space
as safe or unsafe based on collected data. While conceptually
appealing, we note that their training procedure does not
ensure a priori that there exist control actions such that the
learned safe set can be made forward invariant,1 and hence
cannot guarantee safe execution of the system. In [19], a

1In particular, they do not ensure that the derivative condition
〈∇h(x), f(x, u)〉+ α(h(x)) ≥ 0, holds for the learned CBF h(x) at the
observed data points, with f(x, u) the system dynamics, and α an extended
class K function – see Section II for more details.



method is proposed which incrementally learns a linear CBF
by clustering expert demonstrations into linear subspaces and
fitting low dimensional representations. While both papers
[18], [19] empirically validate their methods, neither provide
proofs of correctness of the learned CBF.

Contributions: In this paper, we propose and analyze
an optimization-based approach to learning a zeroing CBF
(henceforth referred to simply as a CBF) from expert trajec-
tories for known control affine nonlinear systems. In particu-
lar, we provide precise and verifiable conditions on the expert
trajectories, an additional auxiliary data-set, and the hyper-
parameters of the optimization problem so as to ensure that
the learned CBF guarantees safe execution of the system. We
further show how the underlying optimization problem can
be efficiently solved when it is cast over different function
spaces. In particular, we show that the problem can be solved
via convex optimization when the function space lies within
a (possibly infinite-dimensional) Reproducing Kernel Hilbert
Space (RKHS); alternatively, when we consider the function
space of Deep Neural Networks (DNNs), the problem can
be solved via first-order stochastic methods such as Adam
or SGD. To the best of our knowledge, these are the first
such results that learn a CBF from expert demonstrations
with provable safety guarantees.

Paper structure: The rest of this paper is structured as fol-
lows. In Section II, we introduce notation and formulate the
general problem of learning a CBF from expert demonstra-
tions. In Section III, we derive a set of sufficient conditions
on the learned CBF and data-set that guarantee safety of
the resulting closed-loop system, and we subsequently use
these conditions to formulate an optimization problem for
computing a function satisfying these conditions. We show in
Section III-C that this optimization problem can be efficiently
solved for CBFs embedded in RKHS and DNN function
classes, and in Section III-D, we provide further details on
the expert trajectory collection process. We present three
numerical studies in Section IV: (i) a two-dimensional planar
problem for which we explicitly compute and verify all of the
conditions of our main theorem, showing that the conditions
are indeed satisfied in practice, (ii) a two UAV collision-
avoidance example where expert trajectories are generated by
the closed form CBF from [20], and (iii) the same two UAV
collision avoidance example, where now expert trajectories
are generated by human players of a video game interface.
We end with conclusions and discussions of directions for
future work in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let R and R≥0 be the set of real and non-negative real
numbers, respectively, and Rn the set of n-dimensional real
vectors. For ε > 0 and p ≥ 1, we let Bε,p(x̄) := {x ∈
Rn
∣∣ ‖x − x̄‖p ≤ ε} denote the closed p-norm ball around

x̄ ∈ Rn. For a given set C, we denote by bd(C), int(C), and
Cc the boundary, interior, and complement of C, respectively.
For two sets C1 and C2, we denote their Minkowski sum by
C1 ⊕C2 := {x1 + x2 ∈ Rn|x1 ∈ C1, x2 ∈ C2}. A continuous
function α : R→ R is an extended class K function if it is

strictly increasing with α(0) = 0. The inner-product between
two vectors x, y ∈ Rn is denoted by 〈x, y〉.

A. Valid Control Barrier Functions

At time t ∈ R≥0, let x(t) ∈ Rn and u(t) ∈ Rm be the
state and input, respectively, of the dynamical control system
described by the initial value problem

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) ∈ Rn (1)

where f : Rn → Rn and g : Rn → Rm are locally Lipschitz
continuous functions. Let the unique solution to (1) under a
locally Lipschitz continuous control law u : Rn → Rm be
x : I → Rn where I ⊆ R≥0 is the maximum definition
interval of x. Note that we do not explicitly assume forward
completeness of (1) under u here, i.e., I may be bounded.

Consider next a twice continuously differentiable function
h : Rn → R, and define the set

C := {x ∈ Rn
∣∣h(x) ≥ 0}, (2)

which defines a set that we wish to certify as safe, i.e., that
it satisfies prescribed safety specifications and can be made
forward invariant through an appropriate choice of control
action. We further assume that C has non-empty interior,
and let D be an open set such that D ⊇ C. The function
h(x) is said to be a valid control barrier function on D if
there exists a locally Lipschitz continuous extended class K
function α : R→ R such that

sup
u∈U
〈∇h(x), f(x) + g(x)u〉 ≥ −α(h(x)) (3)

holds for all x ∈ D, where U ∈ Rm defines constraints on
the control input u. Consequently, we define the set of CBF
consistent inputs induced by a valid CBF h(x) to be

KCBF(x) := {u ∈ Rm
∣∣ 〈∇h(x), f(x)+g(x)u〉 ≥ −α(h(x))}.

The next result follows from [5], [7].
Lemma II.1: Assume that h(x) is a valid control barrier

function on D and that u : D → U with u(x) ∈ KCBF(x)
is locally Lipschitz continuous. Then it holds that x(0) ∈ C
implies x(t) ∈ C for all t ∈ I. If the set C is compact,
it additionally follows that C is: 1) forward invariant, i.e.,
I = [0,∞), and 2) asymptotically stable, which implies that
x(t) approaches C as t→∞ when x(0) ∈ Cc ∩ D.

Note that h(x) 6= 0 when x ∈ bd(C) (see [8, Remark 5])
is not required when using the Comparison Lemma instead
of Nagumo’s theorem to prove the above result. While the
previous result provides strong guarantees of safety given
a valid control barrier function, one is still left with the
potentially daunting task of finding a twice continuously
differentiable function h such that (i) the set C defined in
equation (2) captures a sufficiently large volume of “safe”
states needed for the task at hand, and (ii) that it satisfies
the derivative constraint (3) on an open set D ⊇ C. While
safety constraints are often naturally specified on a subset of
the configuration space of a system, e.g., to avoid collision,
vehicles must maintain a minimum distance, ensuring that a
CBF specified using such geometric intuition also satisfies



constraint (3) can involve verifying complex relationships
between the vector field of the system, the candidate control
barrier function, and its gradient.

As described in the introduction, this challenge motivates
the approach taken in this paper, wherein we propose an
optimization based approach to learning a CBF from expert
demonstrations for a system with known dynamics.

B. Problem Formulation

To formalize the previous discussion, we explicitly distin-
guish between geometric safety specifications, i.e., those that
can be directly specified on (a subset) of the state-space of
the system x ∈ Rn, and the set C defined in equation (2)
that is certified as safe by the CBF. To that end, let S ⊆ Rn
define the aforementioned geometric safe set.

Towards the goal of learning a valid CBF, we assume that
we are given a set of expert trajectories consisting of N1

discretized data-points Zdyn := {(xi, ui)}N1
i=1 so that xi ∈

int(S) (see Fig. 1 (left)). For ε > 0, we define the set

D′ := ∪N1
i=1Bε,p(xi), D := D′\bd(D′) (4)

where D must satsify D ⊆ S to later ensure safety of
the resulting control based on the learned CBF. Several
comments are in order. First, note that we define D based on
expert trajectories for which control inputs ui are available
so that the derivative constraint (3) can be enforced during
learning. Second, by construction, the x component of Zdyn

defines an ε-net over D, i.e., for all x ∈ D, (slightly abusing
notation) there exists xi ∈ Zdyn such that ‖xi − x‖p ≤ ε.
Finally, conditions on ε will be specified later to ensure the
validity of the learned CBF.

Remark 1: We note that a conceptually similar approach,
defined in terms of taking a point-wise union over previously
seen safe trajectories, is used to define a safe terminal set in
the Learning Model Predictive Control method of [21].

We next define the set N , for σ > 0, as

N := {bd(D)⊕ Bσ,p(0)} \ D,

which should be thought of as a “layer” of width σ sur-
rounding D, see Fig. 1 (center) for a graphical depiction. As
will be made clear in the sequel, by enforcing that the value
of the learned CBF h(x) is negative on N , which can be
accomplished through appropriate sampling, we ensure that
the zero level set {x ∈ Rn |h(x) = 0} is contained within
D, which is a necessary condition for h(x) to be valid.

While the above definition of a CBF is specified over all
of Rn, e.g., the definition of C in equation (2) considers all
x ∈ Rn such that h(x) ≥ 0, we make a minor modification
to this definition in order to restrict the domain of interest to
N ∪ D, i.e., we will certify that h(x) is a valid local CBF
over D with respect to the set

C := {x ∈ N ∪ D
∣∣h(x) ≥ 0}. (5)

This restriction is natural, as we are learning a CBF h(x)
from data sampled only over N ∪D, and we will show that
the inclusion C ⊂ D ⊆ S holds. It then follows that if h(x)
is shown to satisfy the derivative constraint (3) for all x ∈ D,

then both C, as defined in (5), and the compact set D can be
made forward invariant by some u ∈ U .

III. AN OPTIMIZATION BASED APPROACH

In this section, we define and analyze an optimization
based approach to generating valid local control barrier
functions from expert demonstrations.

Let H be a normed function space of twice continuously
differentiable functions h : Rn → R for which local
Lipschitz bounds Lh(x) := supx1,x2∈Bε,p(x)

|h(x1)−h(x2)|
‖x1−x2‖p

can be efficiently estimated. Commonly used examples of
such spaces include infinite dimensional Reproducing Kernel
Hilbert Spaces (RKHS) such as those defined by Random
Fourier (RF) features [22], and more recently, DNNs [23].
We defer a discussion of results specific to these two classes
of CBFs to the end of this section, and focus now on a
general method applicable to these, and other, spaces H.

Recall the definition of Zdyn and define the set Xsafe =
{xi : (xi, ui) ∈ Zdyn}. We also assume that points XN =
{xi}N2

i=1 are sampled from the set N such that XN forms an
ε̄-net of N – conditions on ε̄ will be specified in the sequel.
We emphasize that no associated inputs ui are needed for the
samples XN ⊂ N , as these points are not generated by the
expert, and can instead be obtained by simple computational
methods such as gridding or uniform sampling.

We begin by deriving a set of sufficient conditions in
terms of constraints on the learned CBF h(x), as well as
conditions on the data-sets Xsafe and XN , that ensure that
h(x) is a valid local CBF on D. We then use these constraints
to formulate an optimization problem that can be efficiently
solved for the aforementioned function classes H.

A. Guaranteeing C ⊂ D ⊆ S
We begin with the simple and intuitive requirement that

the learned CBF h(x) satisfy

h(xi) ≥ γsafe for all xi ∈ Xsafe, (6)

for a yet to be specified parameter γsafe > 0. This in
particular ensures that the set C over which h(x) ≥ 0, as
defined in equation (5), has non-empty interior.

We now derive conditions under which the learned CBF
satisfies h(x) < 0 for all x ∈ N , which in turn ensures that
C ⊂ D ⊆ S due to constraint (6).

Proposition III.1: Let h(x) be Lipschitz continuous with
local constant Lh(x). Let γunsafe > 0, and XN be an ε̄-net
of N with ε̄ < γunsafe/Lh(xi) for all xi ∈ XN . Then, if

h(xi) ≤ −γunsafe for all xi ∈ XN , (7)

it holds that h(x) < 0 for all x ∈ N .
Proof: By equation (7), we have that h(xi) ≤ −γunsafe

for each xi ∈ XN . We then have, for any x ∈ N , that
there exists a point xi ∈ XN satisfying ‖x − xi‖p ≤
ε̄ < γunsafe/L(xi), from which the following chain of
inequalities follows immediately

h(x) = h(x)− h(xi) + h(xi) ≤ |h(x)− h(xi)| − γunsafe

≤ Lh(xi)‖x− xi‖p − γunsafe ≤ Lh(xi)ε̄− γunsafe < 0,
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Fig. 1: Problem Setup (left): The safe set S (red box) and the set of expert trajectories (black lines). Desired result (center): The set D
(orange ring) is the union of ε balls around the expert trajectories. The set N (black striped rings), defined around D, ensures that the
learned safe set C (green ring), which is defined via the learned valid control barrier function h(x), is such that C ⊂ D ⊆ S. Control
Barrier filter (right): “Artiticial” unsafe samples are no longer introduced in the center of the safe set (denoted by the blue set F).

where the first inequality follows from the assumption that
h(xi) ≤ −γunsafe for all xi ∈ XN , the second by the local
Lipschitz assumption on h(x), the third by the assumption
that XN forms an ε̄-net of N , and the final inequality by the
condition on ε̄ of the proposition.

We note that as stated, the constraints (6) and (7), as well
as the condition ε̄ < γunsafe/Lh(xi) of Proposition III.1, may
be incompatible, leading to infeasibility of an optimization
problem built around them. This incompatibility arises from
the fact that we are simultaneously asking for the value of
h(x) to vary from γsafe to γunsafe over a short distance ε̄
while having a low Lipschitz constant. In particular, as posed,
the constraints require that |h(xs)−h(xu)| ≥ γsafe +γunsafe

for xs ∈ Xsafe and xu ∈ XN safe and unsafe samples,
respectively, but the samplings requirements imply that ‖xs−
xu‖2 ≤ ε̄ + ε for at least some pair (xs, xu), which in turn
implies that L(xu) & |h(xs)−h(xu)|/‖xs−xu‖2 & (γsafe+
γunsafe)/(ε̄+ ε). Thus, if γsafe and γunsafe are chosen to be
too large, we may exceed the required bound of γunsafe/ε̄,
and set over which h(x) ≥ 0 may be undesirably small (i.e.,
the volume of C would be too small).

We address this issue as follows: for fixed γsafe, γunsafe,
and Lh := supxi∈XN

Lh(xi), constraint (6) is relaxed to

h(xi) ≥ γsafe , xi ∈ X̄safe, (8)

where now

X̄safe = {xi ∈ Xsafe

∣∣ inf
x∈XN

‖x− xi‖p ≥
γunsafe + γsafe

Lh
}

(9)
corresponds to an inner subset of expert trajectory samples.
Intuitively, this introduces a buffer region across which h(x)
can vary in value from γsafe to −γunsafe without having
an excessively large Lipschitz constant. A near identical
argument as that used to prove Proposition III.1 can now
be used to guarantee that the set C defined in equation (5)
contains the set D̄ = ∪xi∈X̄safe

Bε,p(xi), defined as the union
of ε-balls around the points in X̄safe, and thus, D̄ ⊆ C can
be seen as a “minimum volume” guarantee on the set C.

Corollary III.2: Let h(x) be Lipschitz continuous with
local constant Lh(x). Let γsafe > 0, and Xsafe be an ε-
net of D with ε ≤ γsafe/Lh(xi) for all xi ∈ X̄safe. Then,

if constraint (8) is satisfied, it holds that h(x) ≥ 0 for all
x ∈ D̄.

B. Guaranteeing Valid Local Control Barrier Functions

The conditions in the previous subsection guarantee that
the level-sets of the learned CBF satisfy the desired proper-
ties. We now derive conditions that ensure that the derivative
constraint (3) is also satisfied by the learned CBF.

Because we assume that the CBF functions h(x) are twice
continuously differentiable over a compact domainN∪D, we
immediately have that ∇h(x) is Lipschitz continuous with
local Lipschitz constant L∇(x).

Note that to verify that a CBF h(x) satisfying the con-
straints of the previous section is valid, it suffices to show
that there exists a single control input u ∈ U such that the
derivative constraint (3) holds. Our approach is to use the
control inputs provided by the expert demonstrations. We
discuss the consequences of this choice further in §III-D.

To that end, note that for a fixed ui, the function q(x) :=
〈∇h(x), f(x) + g(x)ui〉+ α(h(x)) is Lipschitz continuous,
with Lipschitz constant denoted by Lq(x), as∇h, f and g are
all assumed to be Lipschitz continuous. Following a similar
argument as in the previous subsection, we then have the
following result guaranteeing that the learned CBF satisfies
the derivative constraint (3) for all x ∈ D.

Proposition III.3: Suppose q(x) is Lipschitz continuous
with constant Lq(x). Let γdyn > 0, and Xsafe be an ε-net of
D with ε ≤ γdyn/Lq(xi) for all xi ∈ Xsafe. Then if

〈∇h(xi), f(xi) + g(xi)ui〉 ≥ −α(h(xi)) + γdyn (10)

for all xi ∈ Xsafe, it holds that q(x) ≥ 0 for all x ∈ D.
Proof: Following a similar argument as the proof of

Proposition III.1, we note that by equation (10), we have
that q(xi) ≥ γdyn for each xi ∈ Xsafe. We then have, for
any x ∈ D, that there exists a point xi ∈ Xsafe satisfying
‖x − xi‖p ≤ ε ≤ γdyn/Lq(xi), from which the following
chain of inequalities follows immediately

q(x) = q(xi) + q(x)− q(xi) ≥ γdyn − |q(x)− q(xi)|
≥ γdyn − Lq(xi)‖x− xi‖p ≥ γdyn − Lq(xi)ε ≥ 0,



where the first inequality follows from the assumption that
q(xi) ≥ γdyn for all xi ∈ Xsafe, the second by the Lipschitz
assumption on q(x), the third by the assumption that Xsafe

forms an ε-net of Xsafe, and the final inequality by the
condition on ε of the proposition.

The following theorem, which follows immediately from
the previous results, states a set of sufficient conditions
guaranteeing that a learned CBF is locally valid on the
domain N ∪D. We next use these conditions to formulate an
optimization based approach to learning a CBF from data.

Theorem III.4: Let a twice continously differentiable
function h(x) be a candidate CBF, and let the sets S, N ,
D, C, and D̄, and the data-sets XN , Xsafe, and X̄safe be
defined as above. Suppose that XN forms a ε̄-net of N
satisfying the conditions of Proposition III.1, and that Xsafe

forms an ε-net of D satisfying the conditions of Corollary
III.2 & Proposition III.3. Then if h(x) satisfies constraints
(7), (8), and (10), it holds that the set C is non-empty,
D̄ ⊆ C ⊂ D ⊆ S, and the function h(x) is a valid local
control barrier function on D with domain N ∪D.

Control Barrier Filters: We introduce a simple and natural
extension to the notion of a local CBF. Consider the exact
same scenario as above, with the additional set F ⊆ S \ C
that satisfies the following condition: for each ζ0 ∈ F there
exists no continuous signal ζ : R≥0 → Rn with ζ(0) := ζ0
and with ζ(t′) 6∈ S for some t′ > 0 and ζ(t′′) 6∈ C for
all t′′ > 0. This means that the set C filters all trajectories
starting from F , i.e., each trajectory starting from F has to
pass through C to escape S and thereby renders F safe (see
Fig. 1(right)). This follows in the spirit of set invariance [24].
As illustrated in Fig. 1(right), this allows us to remove the
perhaps counter-intuitive requirement of having to introduce
“artificial” unsafe samples in a region that is clearly safe,
further reducing the conservatism of the resulting controller.

C. Computing a Control Barrier Function

Using the results of the previous subsection, we propose
solving the following optimization problem to learn a CBF
from expert trajectories:

min
h∈H

‖h‖

s.t. h(xi) ≥ γsafe , ∀xi ∈ X̄safe(Lh)

h(xi) ≤ −γunsafe,

Lip(h(xi), ε̄) ≤ Lh , ∀xi ∈ XN , (11a)
q(xi, ui) := 〈∇h(xi), f(xi, ui)〉+ α(h(xi)) ≥ γdyn ,

Lip(q(xi, ui), ε) ≤ Lq , ∀(xi, ui) ∈ Zdyn . (11b)

The positive constants γsafe, γunsafe, γdyn, Lh and Lq
are hyperparameters that are set according to the conditions
of Theorem III.4 given data-sets Xsafe and XN defining
corresponding ε and ε̄-nets. Here the constraints defined in
equations (11a) and (11b) assume that there exists a func-
tion Lip(·, ε) that returns an upper bound on the Lipschitz
constant of its argument in an ε neighborhood. We note that
it may be difficult to enforce these bounds while solving
the optimization problem, in which case we must resort to

bootstrapping the values of Lh and Lq by iteratively solving
optimization problem (11), computing the values Lh and
Lq for the learned CBF h(x), verifying if the conditions
of Theorem III.4 hold, and readjusting the hyperparameters
accordingly if not. This is a standard approach to hyperpa-
rameter tuning, and we show in Section IV that it can indeed
be successfully applied to verify the conditions of Theorem
III.4 in practice.

Convexity: We first note that optimization problem (11)
is convex in h if the function α is linear in its argument,
and if we exclude the bounds (11a) and (11b), and instead
verify them via the bootstrapping method described above.
Therefore, if H is parameterized as H = {hθ(·) = 〈φ(·), θ〉 :
θ ∈ Θ} with Θ a convex set and φ(·) a known but possibly
nonlinear transformation, then problem (11) is convex, and
can be solved efficiently using standard solvers. Note that
very rich function classes such as infinite dimensional RKHS
from statistical learning theory can be approximated to
arbitrary accuracy as such a H [22].

In the more general case when H = {hθ(·) : θ ∈ Θ},
such as when h is a DNN or when α is a general nonlinear
function of its argument, optimization problem (11) is non-
convex. Due to the computational complexity of general
nonlinear constrained programming, we propose an uncon-
strained relaxation of problem (11) which can be solved
efficiently in practice by first order gradient based methods.
Let [x]+ = max{x, 0} for x ∈ R. Our unconstrained
relaxation is the following optimization problem:

min
θ∈Θ

‖θ‖2 + λs

∑
xi∈X̄safe

[γsafe − hθ(xi)]+ (12)

+ λu

∑
xi∈XN

[hθ(xi) + γunsafe]+

+ λd

∑
(xi,ui)∈Zdyn

[γdyn − (〈∇hθ(xi), f(xi, ui)〉

+ α(hθ(xi))]+ .

The positive parameters λs, λu, λd allow us to trade off the
relative importance of each of the terms in the optimization.
While equation (12) is in general a non-convex optimization
problem, it can be solved efficiently in practice with stochas-
tic first-order gradient methods such as Adam or SGD.

Lipschitz continuity of H: As described earlier, because
we assume that functions in H are twice continuously
differentiable and we restrict ourselves to a compact domain
N ∪ D, we immediately have that h and ∇h are both
uniformly Lipschitz over N∪D. We show here two examples
of H where it is computationally efficient to estimate an
upper bound on the Lipschitz constants of functions h ∈ H.

In the case of random Fourier features with ` random
features, where h(x) = 〈φ(x), θ〉 and φ(x) ∈ R` is

φ(x) =
√

2/`(cos(〈x,w1〉+ b1), ..., cos(〈x,w`〉+ b`)) ,

then we can analytically compute upper bounds as follows.
First, we have by the Cauchy-Schwarz inequality |h(x1) −
h(x2)| ≤ ‖φ(x1) − φ(x2)‖2‖θ‖2. To bound ‖φ(x1) −
φ(x2)‖2, we bound the spectral norm of the Jacobian Dφ(x),



which is a matrix where the i-th row is −
√

2/` sin(〈x,wi〉+
bi)w

T
i . Let si = sin(〈x,wi〉 + bi) and observe that

‖Dφ(x)‖ =
√

2/` sup‖v‖2=1(
∑`
i=1 s

2
i 〈wi, v〉2)1/2 ≤√

2/` sup‖v‖2=1(
∑`
i=1〈wi, v〉2)1/2 =

√
2/`‖W‖, where W

is a matrix with the i-th row equal to wi. While the bound√
2/`‖W‖ can be used in computations, we can further

understand order-wise scaling of the bound as follows. For
random Fourier features corresponding to the popular Gaus-
sian radial basis function kernel, wi

iid∼ N(0, σ2I) where σ2

is the (inverse) bandwidth of the Gaussian kernel. Therefore,
by standard results in non-asymptotic random matrix theory
[25], we have that ‖W‖ ≤ σ(

√
`+
√
n+

√
2 log(1/δ)) w.p.

at least 1 − δ. Combining these calculations, we have that
the Lipschitz constant of h can be bounded by

√
2σ2(1 +√

n/`+
√

(2/`) log(1/δ))‖θ‖2 w.p. at least 1− δ.
We now bound the Lipschitz constant of the gradient

∇h(x) = Dφ(x)Tθ. We do this by bounding the spectral
norm of the Hessian ∇2h(x) = −

√
2/`
∑`
i=1 ciθiwiw

T
i ,

with ci = cos(〈x,wi〉+ bi). A simple bound is ‖∇2h(x)‖ ≤√
2/`‖θ‖∞‖W‖2 ≤ 3

√
2‖θ‖∞σ2(` + n + 2 log(1/δ))/

√
`,

where the last inequality holds w.p. at least 1− δ.
When h(x) is a DNN, accurately estimating the Lipschitz

constant is more involved. In general, the problem of exactly
computing the Lipschitz constant of h is known to be NP-
hard [26]. Notably, because most commonly-used activation
functions φ are known to be 1-Lipschitz (e.g. ReLU, tanh,
sigmoid), a naive upper bound on the Lipschitz constant of h
is given by the product of the norms of the weight matrices;
that is, Lh ≤

∏
k ‖W k‖. However, this bound is known to

be quite loose [23]. Recently, the authors of [23] proposed
a semidefinite-programming based approach to efficiently
compute an accurate upper bound on Lh. In particular,
this approach relies on incremental quadratic constraints to
represent the couplings between pairs of neurons in the
neural network h. On the other hand, there are relatively few
results that provide accurate upper bounds for the Lipschitz
constant of the gradient of h when h is a neural network.
While ongoing work looks to extend the results from [23]
to compute upper bounds on Lip(∇h), to the best of our
knowledge, the only general method for computing an upper
bound on Lip(∇h) is through post-hoc sampling [27].

D. Data Collection

We briefly comment on how data should be collected to
ensure that the conditions of Theorem III.4 are satisfied.

What should the experts do?: At a high level, our results
state that if a smooth CBF can be found that satisfies
the constraints (6), (7), and (10) over a sufficiently fine
sampling of the state-space, then the resulting function is
a valid CBF. We focus here on the derivative constraint
(10), which must be verified to hold for some u ∈ U , by
using the expert example data (xi, ui). In particular, the more
transverse the vector field f(xi, ui) is to the level sets of the
learned CBF h(xi) (i.e., the more parallel it is to the inward
pointing normal ∇h(xi)), the larger the inner-product term
in constraint (10) without increasing the Lipschitz constant

of h(x). In words, this says that the expert demonstrations
should demonstrate how to move away from the unsafe set.

Constructing ε-nets: In order to construct a ε-net of a
set S, a simple randomized algorithm which repeatedly
uniformly samples from S works with high probability (see,
for example, [25]). Hence, as long as we can efficiently
sample from S (e.g. when S is a basic primitive set or
has an efficient set-membership oracle), uniform sampling
is a viable strategy. Alternatively, a gridding approach can
be taken. We note that in either case, for a set of diameter
r on the order of O(

(
r
ε

)d
) samples are required. While this

exponential dependence is undesirable, we observe that in
practice, the expert demonstrations allow us to focus on a
subset of the state-space associated with desirable behavior,
significantly reducing the diameters of the sets to be sampled.

IV. NUMERICAL EXPERIMENTS

All code is publicly available at https://github.
com/unstable-zeros/learning-cbfs.

1) Planar Example: Our first experiment is the following
two dimensional planar system adapted from [28]:

ẋ1 = −x1 + (x2
1 + δ)u1 , ẋ2 = −x2 + (x2

2 + δ)u2 , (13)

where δ > 0 is a fixed parameter guaranteeing that the
system is globally feedback linearizable. We set δ = 1 in
our experiments. The desired safe set is S = {x : x1 ≤
1 , x2 ≤ 1}. We generate expert data for this system as
follows. Because the system is feedback linearizable, given
a desired trajectory xd(t), we can easily design a nominal
controller which tracks xd(t). We can then construct a safe
controller (w.r.t. S) by solving the CBF-QP problem [4], [5]
with the CBF h(x) = min{1− x1, 1− x2}.

We design two sets of desired trajectories. Let the unit
vector v(θ) = [− cos θ sin θ]T. The first set is defined for
a fixed r > 0 as xd(t) = rv(t) from t ∈ [0, 2π]. We do
this for r ∈ {0.2666, 0.3, 0.3333}, sampling 80 time equi-
spaced points along each curve. The second set of desired
trajectories are for a fixed θ ∈ [0, 2π], where we consider a
trajectory that starts at x(0) = 0.4666v(θ) and ends up at
x(tf ) = 0.3666v(θ), and one where x(0) = 0.1333v(θ) and
x(tf ) = 0.2333v(θ). We grid across both θ ∈ [0, 2π] and t ∈
[0, tf ] to ensure a densely sampled set of points. All sample
points Zdyn are shown in Figure 2(left). We consider the xi
corresponding to the circular trajectories (green in Fig. 2)
as defining X̄safe. We then set Xunsafe to be points sampled
(red in Fig. 2) along the circle at r = −0.5 and r = −0.1.
Our samples are specifically chosen to form a net over D
and N , with ε = 0.01666 and ε̄ = 0.0333, respectively.

We parameterizeH using ` = 200 random Fourier features
corresponding to the Gaussian kernel with σ = 1.2. We set
α(x) = x and then solve the optimization problem with
γsafe = 0.1, γunsafe = 0.3, γdyn = 0.01 using cvxpy with the
MOSEK backend. Next, we verify that our specific choices
of γsafe, γunsafe, γdyn satisfied the necessary conditions, com-
puting ‖∇h(xi)‖ and ‖∇xq(xi, ui)‖ to obtain Lh(xi) and
Lq(xi), respectively. This verification is shown in Fig. 3. The
level sets of the resulting CBF h are plotted in Fig. 2(right).
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Fig. 2: Left: Plot of the expert trajectories (green), dynamic samples
(black) and unsafe samples (red) used for training. Right: Level set
plot of the learned CBF for the two dimensional planar example.
The dotted black line represents the boundary of the safe set S.
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Fig. 3: Safe, derivative, and unsafe slacks which verify the sufficient
conditions given in Theorem III.4. (a) the safe slack plot, for each
constraint, shows the value h(xi) − Lh(xi)ε, which needs to be
positive. (b) the derivative slack plot, for each constraint, shows
the value of q(xi, ui) − Lq(xi)ε, which also needs to be positive
(c) the unsafe slack plot, for each constraint, shows the value of
h(xi) + Lh(xi)ε̄, which needs to be negative.

2) Aircraft Collision Avoidance: In this subsection, we
apply the control barrier filter technique (Sec. III-B) to
the aircraft collision avoidance problem in [20]. The joint
state vector of the two aircraft, indexed with a and b,
is x = [px,a py,b θa px,b py,b θb]

T ∈ R6, denoting
positions in the (x, y)-plane and orientations. The controls
u = [va ωa vb ωb]

T ∈ R4 are the translational and angular
velocities with constraints 0.1 ≤ va ≤ 1.0 and −1.0 ≤
ωa ≤ 1.0. The control goal is to reach the target states
xg = [−5 0 π 5 0 0]T if px,a(0) ≥ 0, px,b(0) ≤ 0 or
xg = [5 0 0 − 5 0 π]T if px,a(0) ≤ 0, px,b(0) ≥ 0. The
safety specification is that the two airplanes should maintain
a minimal distance Ds = 0.5 to avoid collisions. To this end,
we define the geometric safe set as,

S :=
{
x ∈ R6

∣∣ p2
x,r + p2

y,r ≥ D2
s

}
. (14)

where pi,r = pi,a − pi,b, i ∈ {x, y} is the relative position.
Generating training data: We consider two ways of

generating expert demonstrations. First, we used a standard
tracking MPC as the nominal controller equipped with the
closed form constructive CBF in [20] for collision avoidance
(which we refer to as CBF-MPC). To generate the expert tra-
jectories, we started the system from 400 randomly generated
initial conditions inside the set S. Each run terminated when
the airplanes were sufficiently far away from each other.
Furthermore, we uniformly sampled safe and unsafe states;
these states as well as the expert trajectories are shown in
Figure 4 in relative coordinates.

Secondly, we built a web-based simulator that allows a
user to control two simulated aerial vehicles. As before, the
goal of the simulation is to control the two aerial vehicles
such that they do not collide. We emphasize that these
trajectories were solely by human guidance; no nominal
controller was used. The data is plotted in Figure 4.
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Fig. 4: Left: Plot of the expert trajectories Zdyn generated by CBF-
MPC (green), safe samples XS (blue) and unsafe samples XN
(red). Right: Plot of the expert trajectories obtained from human
demonstrations with the safe and unsafe samples.

Training procedure: We parametrized the CBF candidate
h(x) with a two-hidden-layer fully-connected neural network
with 64 neurons in each layer and tanh activation functions.
The training procedure was implemented using jax [29] and
the Adam algorithm with a cosine decay learning rate. We
trained the neural network for 105 epochs using the loss
in (12) with λs = 2.0, λu = 2.0, λd = 15.0, γsafe = 3.0,
γunsafe = 0.5 and γdyn = 0.05. Each of these hyperparameters
was chosen via grid-search. The learned CBFs and the closed
form CBF [20] evaluated at the training points are plotted in
Figure 5 in relative coordinates.

Fig. 5: Left: The CBF learned from CBF-MPC (blue) and the closed
form CBF in [20] (red) evaluated at the states in training data-set.
Right: The CBF learned from human demonstrations.

Closed-loop control with learned CBF: To demonstrate
the efficacy of the CBF learned from expert demonstrations,
we used it in the aircraft collision avoidance problem with
the same control goal and safety specification as in (14). The
two airplanes were initialized at various symmetric initial
positions on the circle p2

x + p2
y = 1 such that they were

facing each other. In this way, if both airplanes used the
nominal MPC controller, they would collide.

The closed-loop state trajectories using our learned CBF
are shown in Figure 6. The CBFs learned on both data-sets



successfully steer the airplanes away from each other for
all initial states, which experimentally validates the forward
invariance of S. As a comparison, we also plotted the state
trajectories produced by the CBF from [20] under the same
settings in Figure 6. Since this CBF is derived analytically,
it appears to render more aggressive control actions which
manage to separate the airplanes at a closer distance.

Fig. 6: Closed-loop control of the two airplanes starting from
multiple initial conditions using closed form CBF from [20] (top
left), the CBF learned from CBF-MPC (top right), and the CBF
learned from human demonstrations (bottom). Trajectories of the
same run are marked with an identical color. The initial states of
agent a are marked with diamonds, and those of agent b with circles.

V. CONCLUSION

We proposed and analyzed an optimization based approach
to learning CBFs from expert demonstrations for known
nonlinear control affine dynamical systems. We showed that
under suitable assumptions of smoothness on the underlying
dynamics and the learned CBF and under sufficiently fine
sampling, the learned CBF is provably valid, guaranteeing
safety. This work provides a firm theoretical foundation for
future exploration that will look to leverage tools from statis-
tical learning theory to reduce the sample complexity burden
of the proposed method by focusing on guaranteeing safety
for “typical” behaviors, as opposed to uniform coverage of
the state-space.
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[3] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” in Proc. IFAC Symp. Nonlin. Control Syst., Pretoria, South
Africa, August 2007, pp. 462–467.

[4] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in Proc. Conf. Decis. Control, Los Angeles, CA, December 2014, pp.
6271–6278.

[5] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[6] E. D. Sontag, “A ’universal’ construction of artstein’s theorem on
nonlinear stabilization,” Systems & control letters, vol. 13, no. 2, pp.
117–123, 1989.

[7] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of
control barrier functions for safety critical control,” in Proc. Conf.
Analys. Design Hybrid Syst., Atlanta, GA, October 2015, pp. 54–61.

[8] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in Proc. European Control Conf., Naples, Italy, June 2019, pp. 3420–
3431.

[9] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness
guarantees for the composition of lane keeping and adaptive cruise
control,” IEEE Transactions on Automation Science and Engineering,
vol. 15, no. 3, pp. 1216–1229, 2017.

[10] L. Wang, D. Han, and M. Egerstedt, “Permissive barrier certificates
for safe stabilization using sum-of-squares,” in Proc. American Control
Conf., Milwaukee, WI, June 2018, pp. 585–590.

[11] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. Conf. Artificial Intel., Honolulu, HI,
February 2019, pp. 3387–3395.

[12] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of
quadrotor dynamics using barrier certificates,” in Proc. Conf. Robot.
Automat., Brisbane, Australia, May 2018, pp. 2460–2465.

[13] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-
critical control with control barrier functions,” in Proc. Conf. Learning
for Dynamics and Control, June 2020, pp. 708–717.

[14] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “A control barrier
perspective on episodic learning via projection-to-state safety,” arXiv
preprint arXiv:2003.08028, 2020.

[15] S. Yaghoubi, G. Fainekos, and S. Sankaranarayanan, “Training neural
network controllers using control barrier functions in the presence of
disturbances,” arXiv preprint arXiv:2001.08088, 2020.

[16] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Neural certificates for safe
control policies,” arXiv preprint arXiv:2006.08465, 2020.

[17] N. M. Boffi, S. Tu, N. Matni, J.-J. E. Slotine, and V. Sind-
hwani, “Learning stability certificates from data,” arXiv preprint
arXiv:2008.05952, 2020.

[18] M. Srinivasan, A. Dabholkar, S. Coogan, and P. Vela, “Synthesis
of control barrier functions using a supervised machine learning
approach,” arXiv preprint arXiv:2003.04950, 2020.

[19] M. Saveriano and D. Lee, “Learning barrier functions for constrained
motion planning with dynamical systems,” in Proc. Conf. Intelligent
Robots Systems, Macau, China, November 2019.

[20] E. Squires, P. Pierpaoli, and M. Egerstedt, “Constructive barrier cer-
tificates with applications to fixed-wing aircraft collision avoidance,”
in Proc. Conf. Control Techn. Appl., Copenhagen, Denmark, August
2018, pp. 1656–1661.

[21] U. Rosolia and F. Borrelli, “Learning model predictive control for
iterative tasks. a data-driven control framework,” IEEE Trans. Autom.
Control, vol. 63, no. 7, pp. 1883–1896, 2017.

[22] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. Advances Neur. Inform. Proc. Syst., Vancouver,
Canada, December 2008, pp. 1177–1184.

[23] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas,
“Efficient and accurate estimation of lipschitz constants for deep neural
networks,” in Proc. Advances Neur. Inform. Proc. Syst., Vancouver,
Canada, December 2019, pp. 11 423–11 434.

[24] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[25] R. Vershynin, High-dimensional prob.: An introduction with applica-
tions in data science. Cambridge university press, 2018, vol. 47.

[26] A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural
networks: analysis and efficient estimation,” in Proc. Advances Neur.
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