
Multi-Objective Search for Optimal Multi-Robot Planning with Finite
LTL Specifications and Resource Constraints

Philipp Schillinger1,2, Mathias Bürger1 and Dimos V. Dimarogonas2,3

Abstract— We present an efficient approach to plan action
sequences for a team of robots from a single finite LTL mission
specification. The resulting execution strategy is proven to
solve the given mission with minimal team costs, e.g., with
shortest execution time. For planning, an established graph-
based search method based on the multi-objective shortest path
problem is adapted to multi-robot planning and extended to
support resource constraints. We further improve planning ef-
ficiency significantly for missions which consist of independent
parts by using previous results regarding LTL decomposition.
The efficiency and practicality of the ROS implementation of
our approach is demonstrated in example scenarios.

I. INTRODUCTION

Linear Temporal Logic (LTL) has been established as a
mean to formally specify requirements and missions for
robots and autonomous systems [1, 2]. Being originally
developed for model checking [3], LTL integrates well with
planning of execution strategies. In a multi-robot setting,
[4] proposes a bottom-up approach to plan actions, given
an LTL specification for each robot. [5] extends the vehicle
routing problem with LTL constraints and plans a solu-
tion based on Mixed-Integer Linear Programming (MILP).
[2, 6] assume a single mission for the robotic team and
employ trace-closed languages to distribute the mission. A
main challenge in planning for multi-robot systems remains
the computational complexity. To reduce complexity, [7]
abstracts from independent motions of the single agents.
In previous work [8], we proposed a way to identify
independent parts of a finite LTL mission. The named
approaches focus on LTL constraints, which are discrete
in nature. However, more complex missions usually need
to deal with additional constraints on resources. Reactive
approaches [1, 9] can be used to handle resource constraints
online. For cost-optimal strategies, it is required to consider
these constraints already during planning.

This paper proposes a novel multi-robot LTL planning
approach with costs and resource constraints by formulating
it as a multi-objective search problem [10]. Multi-objective

1Bosch Center for Artificial Intelligence, Renningen, Germany.
{philipp.schillinger, mathias.buerger}@de.bosch.com

2KTH Centre for Autonomous Systems and ACCESS Linnaeus Cen-
ter, EES, KTH Royal Institute of Technology, Stockholm, Sweden.
{schillin, dimos}@kth.se

3Supported by the H2020 ERC Starting Grant BUCOPHSYS, the
Swedish Research Council (VR), the Swedish Foundation for Strategic
Research (SSF), and the Knut och Alice Wallenberg Foundation (KAW).

This work was supported by the EU H2020 Research and Innovation
Programme under GA No. 731869 (Co4Robots).

Fig. 1. Two robots operating in an office environment based on the ROS
implementation of our proposed planning approach.

planning is well established in the area of operations re-
search and includes search methods based on label setting
[11, 12] and label correcting [13]. Although assignment
approaches [14, 15] exist to plan allocation if execution
costs of the tasks are known, this is not the case here and
execution needs to planned as well. An established method,
which is proven to find all Pareto optimal solutions of a
multi-criteria search problem, is Martins’ algorithm [16]. In
this context, resource constraints can be modeled efficiently
as additional objectives of the search [17, 18].

The contributions of this paper are as follows: (1) We
formulate a multi-agent team cost-optimal planning problem
with resource constraints based on system models and a
finite LTL mission specification for the team in Sections II
and III. (2) By extending Martins’ algorithm, we propose an
efficient algorithm to solve this planning problem in Section
IV. (3) As a special case of representing a team, we build
upon our previous results of identifying independent parts
of a mission [8] and outline an adaptation in Section V
to improve efficiency for decomposable missions. (4) We
present a case study of our ROS implementation in Section
VI and discuss it for variations of an example mission.

II. PRELIMINARIES

LTL formulas ϕ extend Boolean operators like ¬ "not",
∧ "and", and ∨ "or" by temporal operators like ◦ "next",
♦ "eventually", � "always", and U "until". Consequently,
LTL formulas are not evaluated over a single set of atomic
propositions π ∈ Π where π can either be > "true" or ⊥
"false", but instead over a sequence σ : N→ 2Π of such sets
where σ(t) ⊆ Π contains all propositions which are true at
time t. A sequence σ is said to satisfy an LTL formula
ϕ, denoted by σ � ϕ, according to certain semantics as for
example presented in [3]. Specifically, for any LTL formulas
ϕ1 and ϕ2, the following semantics hold.

– σ � ◦ϕ1 iff σ[1,...] � ϕ1

– σ � ♦ϕ1 iff there exists a t1 such that σ[t1,...] � ϕ1

– σ � �ϕ1 iff for all t1 it holds that σ[t1,...] � ϕ1

– σ � ϕ1 U ϕ2 iff there exists a t2 such that σ[t2,...] � ϕ2

and σ[t1,...] � ϕ1 for all t1 < t2
with σ[t,...] denoting the subsequence starting at t. These
sequences σ can be infinite, although classes of so-called
finite LTL specifications [19], e.g., co-safe LTL [20], can
be satisfied by finite sequences. A finite LTL formula φ
can be translated into a finite automaton [3] such that the
automaton accepts a sequence σ if and only if it satisfies
the corresponding LTL formula.

Definition 1 (NFA). A nondeterministic finite automaton
(NFA) is given as the tuple F := (Q,Q0, α, δ, F) consisting
of (1) a set of states Q, (2) a set of initial states Q0 ⊆ Q,
(3) an alphabet α of Boolean formulas over π ∈ Π, (4)
a set of transition conditions δ : Q × Q → α, (5) a set of
accepting (final) states F ⊆ Q.

Each sequence σ describes a sequence of states q ∈ Q,
called a run ρ : N→ Q, such that ρ starts in an initial state
q0 ∈ Q0 and the Boolean transition conditions are satisfied
σ(t) � δ(ρ(t−1), ρ(t)) for all t. A run ρ is called accepting,
meaning that σ is accepted by the automaton, in the case
that ρ ends in an accepting state qn ∈ F .

III. SYSTEM MODEL

In this paper, we study a cost-optimal planning problem
for a team of mobile agents with limited resources and an
LTL mission specification. An agent is a mobile system in
a given environment with additional actuation capabilities.
Formally, it is represented by a transition system that com-
bines a topological map of the environment with discrete
actions, which can be executed at certain locations.

Definition 2 (Agent Model). An agent model is given as
the transition system A := (SA, s0,A, AA,Π, λ) consisting
of (1) a set of states SA, (2) an initial state s0,A ∈ SA, (3)
a set of actions AA ⊆ SA × SA, (4) a set of propositions
Π, (5) a labeling function λ : SA → 2Π.

For a finite LTL mission specification, a product of the
agent model A and the NFA F can be formulated.

Definition 3 (Product Automaton). A product automaton is
a tuple P = F ⊗ A := (SP , S0,P , AP) consisting of (1)
a set of states SP = Q × SA, (2) a set of initial states
S0,P = {(q, s0,A) ∈ SP : q ∈ Q0}, (3) a set of actions
AP = {((qs, ss), (qt, st)) ∈ SP × SP : (ss, st) ∈ AA ∧
λ(ss) � δ(qs, qt)}.

A run ending in a state sn = (q, sA) with q ∈ F being
an accepting state in F determines an action sequence

β = s0a1s1...ansn (1)

with si ∈ SP , s0 ∈ S0,P , and aj = (sj−1, sj) ∈ AP . If β
is executed by the agent, the LTL specification is fulfilled.

As this paper addresses a multi-agent planning problem
with N agents, it is required to construct a joint team

automaton C := (SC , S0,C , FC , AC) where SC is a set of
states, S0,C ⊆ SC a set of initial states, FC ⊆ SC a set
of final states, and AC ⊆ SC × SC a set of actions. An
action sequence β defined over C instead of P describes a
sequence for the team.

There are several possibilities to construct a team automa-
ton. The most straightforward would be a product automaton
of all N agents’ automata. In this case, a state in the
team automaton is a tuple of all individual states of all
agents. Since this means that the state space is exponential
in N , this approach is only feasible for small team sizes.
An alternative team model representation was proposed in
[8] which is linear in N . We recall this representation
in Section V and discuss implications for the presented
planning approach, although the general planning algorithm
can be used for any construction of a team model C.

In order to decide which action sequence β should be
preferred, we associate non-negative costs C : AC → R≥0

with each action a ∈ AC of C. Please note that in the
context of this paper, we assume that an action is always
performed by a single agent and a cost only occurs for
this agent. Each action sequence β for the whole team is
associated with an N -dimensional cost vector cβ ∈ RN≥0

where each component cβ,r represents the costs associated
with the respective agent r ∈ {1, . . . , N}. Formally, cβ is
given by

cβ =
∑
a∈β

C(a)ea (2)

where ea ∈ {0, 1}N denotes the N -dimensional unit vector
which identifies the agent r associated with the action a.

As cβ specifies a multi-dimensional cost, an overall team
cost κ : RN≥0 → R≥0 needs to be defined. The following
parametrized team cost is shown to be especially relevant
in the context of mobile multi-agent systems:

κ(cβ) = (1− ε) · ‖cβ‖∞ + ε · ‖cβ‖1 (3)

with ε ∈ (0, 1]. The parameter ε determines a trade-off
between the maximal agent costs ‖cβ‖∞ and the sum of
all actions regardless of which agent performs it ‖cβ‖1.
As action costs C(a) often correspond to approximate
execution times, we choose ε close to zero with the goal to
minimize the execution time of the mission. For technical
reasons discussed later in the proof of Lemma 1, ε still
needs to be strictly greater than zero. As such, ‖cβ‖1 can be
interpreted as a regularization term to penalize unnecessary
actions of the agents.

The resource constraints are modeled as inequality con-
straints on a set of M different resource variables. Anal-
ogously to costs, the resource consumption of an action
a ∈ AC is specified by the vector Γ: AC → RM . We require
that the resources available after an action sequence β are
strictly positive, that is

γβ = γ0 +
∑
a∈β

Γ(a) > 0 (4)

where γβ is the status of the resources after the action
sequence and γ0 ∈ RM≥0 denotes the initial resources. The

inequality γβ > 0 is defined as an inequality γβ,i > 0
on each component γβ,i with i ∈ {1, . . . ,M}. Note that
constraints with γβ,i ≥ 0 can be represented as well.
Although γβ,i is continuous, we assume a smallest possible
change γ∆,i between any two actions aj , ak ∈ AC , given by
γ∆,i = min(aj ,ak) |Γ(aj)i−Γ(ak)i|. Consequently, γβ,i ≥ 0
can be written as γβ,i + γ∆,i > 0.

Finally, the planning problem can be summarized as
follows. Given a team model C constructed from individual
product automata P for an LTL mission specification M,
find an action sequence βopt with minimal team cost κ(cβ)
such that M is fulfilled and all constraints γβ > 0 are
satisfied.

IV. PLANNING

The planning problem specified above cannot be handled
as a classical shortest path problem due to the structure
of κ resulting from the multi-agent setting, in particular
minimizing the maximal team cost. Consequently, search
algorithms like Dijkstra or Bellman-Ford will fail to find
the action sequence β which minimizes κ(cβ). Instead, we
propose to consider the multi-agent planning problem as a
multi-objective planning problem with the objectives cβ and
the goal to minimize the team cost κ(cβ). In particular, using
multi-object planning opens also the possibility to directly
handle resource constraints as discussed later in Lemma 3.

Algorithm 1 outlines the proposed planning approach.
It is an adaptation of the Martins’ algorithm [16], an
established label-setting approach used for multi-objective
planning in operations research. We transfer this algorithm
to constrained multi-agent mission planning by choosing
a suitable cost function, allowing early termination, and
adding resource constraints, as discussed in the following.

The idea of the classical Martins’ algorithm is similar
to the single-objective shortest path search proposed by
Dijkstra. But instead of operating directly on the states of
the graph, each state is assigned a set of labels of which the
cost vectors are all Pareto optimal and the classical Martins’
algorithm finds all Pareto optimal paths described by these
labels. The algorithm distinguishes for each state s ∈ SC
between a set of temporary labels Lt,s which are candidate
optimal labels during planning time, and permanent labels
Lp,s which form the final set of Pareto optimal labels. Each
label l = (c

(l)
β , γ

(l)
β , v, iv) of s not only consists of a cost

vector c(l)β and a resource vector γ(l)
β of a certain action

sequence β, but also refers a predecessor state v ∈ SC of
s and a label index iv ∈ {1, . . . , card(Lp,v)} to one of v’s
permanent labels, called predecessor label, with card(Lp,v)
denoting the number of permanent labels at state v.

Given a label l at state s, it is possible to construct an
action sequence β leading to s and resulting in the costs
c
(l)
β and resources γ

(l)
β by tracing all predecessor labels

backwards based on their respective predecessor state v and
index iv . Consequently, we will abbreviate c(l)β with c(l) and
γ

(l)
β with γ(l) in the following whenever cβ , γβ refer to a

specific label from which β is constructed.

Algorithm 1 Constrained Optimal Multi-Agent Planning
Input: Team model C, team cost function κ, resources γ0

Output: Optimal final label lfin to construct actions βfin

Notation Remarks:
SC (S0,C , FC), AC – states (initial, final) and actions of C
l = (c(l), γ(l), v, iv) – label with costs, resources, predeces-
sor state, and label index at predecessor
Lt,s (Lp,s) – set of temporary (permanent) labels ∀s ∈ SC
l <P ` – short notation for (c(l),−γ(l)) <P (c(`),−γ(`))

1: Lt,v ← {([0, . . . , 0]T , γ0,∅,∅)},∀v ∈ S0,C
2: Lt,s ← ∅,∀s ∈ SC \ S0,C
3: Lp,s ← ∅,∀s ∈ SC
4: while ∀s ∈ SC : Lt,s 6= ∅ do
I Find label l with lowest costs and make it permanent
5: (s, l)← argmins∈SC,l∈Lt,s

{κ(c(l))}
6: Lt,s ← Lt,s \ {l}
7: Lp,s ← Lp,s ∪ {l}
I Terminate search if any final state is reached
8: if s ∈ FC then return lfin ← l . Best found first

I Calculate labels for all successors v of s
9: for all v ∈ SC : a = (s, v) ∈ AC do

10: cnew ← c(l) + C(a) · ea

11: γnew ← γ(l) + Γ(a)
12: `← (cnew, γnew, s, is) with is = card(Lp,s)

I Only add and keep non-dominated temporary labels
13: if γnew > 0 ∧ @l ∈ Lt,v ∪ Lp,v : l <P ` then
14: Lt,v ← Lt,v \ {l ∈ Lt,v : ` <P l}
15: Lt,v ← Lt,v ∪ {`}
16: return lfin ← ∅ . No final state reachable

In each iteration (line 4), we choose one candidate label
l from Lt,s of all states s ∈ SC such that its cost vector c(l)

minimizes the team cost function κ and extend the action
sequence to l by possible next actions (line 9). The operator
<P denotes a "less than"-relation in the Pareto sense, i.e.,
(a1, . . . , an)T <P (b1, . . . , bn)T ⇔ a 6= b ∧ ai ≤ bi,∀i ∈
{1, . . . , n}. In the case that a <P b, we say that a dominates
b which means b cannot lead to a better result than a.

Since Martins’ algorithm belongs to the class of label-
setting algorithms, it is crucial that temporary labels l ∈ Lt,s

are selected in the correct order. Specifically, it is required
that l is only made permanent (line 7) if it is guaranteed to
be Pareto optimal. Given a certain cost function, in the fol-
lowing denoted by h : RN → R, [11] defines two properties
of h to decide if h selects labels in the correct order. First,
dominance defined as c(l) <P c(`) =⇒ h(c(l)) < h(c(`))
and second, monotonicity defined as h(c(l)) ≤ h(c(`)) for
all ` referring to l as predecessor label. Theorem 4.1 in
[11] then states that h selects labels in the correct order if
it fulfills both properties.

To apply Martins’ algorithm to the domain of constrained
multi-agent planning, we make three adaptations. First, we
choose the cost function h := κ (line 5) to minimize our
team cost function and show that κ is a valid choice.

Lemma 1 (Team Cost Optimization). κ is a cost function
which selects labels in the correct order for ε ∈ (0, 1] and
non-negative action costs.

Proof. As shown by [11] for non-negative costs, ‖cβ‖1
fulfills both dominance and monotonicity while ‖cβ‖∞
fulfills monotonicity. ‖cβ‖∞ does not satisfy dominance
since a dominated cost vector c(l) <P c

(`) could lead to the
same ‖c(l)‖∞ = ‖c(`)‖∞. However, c(l) <P c(`) implies
that ‖c(l)‖1 < ‖c(`)‖1 and consequently κ(c(l)) = (1− ε) ·
‖c(l)‖∞+ε·‖c(l)‖1 < (1−ε)·‖c(`)‖∞+ε·‖c(`)‖1 = κ(c(`))
for ε > 0 and (1 − ε) ≥ 0 fulfills both dominance and
monotonicity.

Second, we terminate the search (line 8) as soon as an
accepting state is reached. This is possible because we are
only interested in an accepting path β which minimizes
κ(cβ) instead of searching all Pareto optimal paths and as
shown in the following, κ(cβ) is minimal for the first β.

Lemma 2 (Early Termination). The first feasible solution
lfin found by Algorithm 1 has minimal team cost κ(c

(fin)
β).

Proof. As shown in Lemma 1, the costs c(l) of a chosen
label l cannot be dominated by the costs c(`) of another
label ` since labels are guaranteed to be selected in the
correct order and κ(c(`)) < κ(c(l)) only if c(`) <P c

(l).

Third, we add constraints γβ to the algorithm and update
γβ for each action similar to updating the costs cβ . Also,
we extend the check for Pareto optimality l <P ` :=
(c(l),−γ(l)) <P (c(`),−γ(`)) in lines 12 and 13 by −γβ .

Lemma 3 (Resource Constraints). All action sequences βfin

to lfin found by Algorithm 1 respect the resource constraints
γβ > 0. Additionally, any Pareto optimal action sequence
βfin which respects γβ > 0 can be found.

Proof. Labels ` are only added if no constraints are violated,
given by γnew > 0 (line 13). Consequently, all sequences β
can only contain actions that do not violate any constraints.

Furthermore, extension of the Pareto optimality check of
labels by −γβ ensures that no label l is considered to be
dominated by another label ` in the case that c(`) <P c(l),
but with −γ(l) <P −γ(`). If c(`) = c(l) while still −γ(l) <P

−γ(`), l dominates ` because γ(`) > 0 only if γ(l) > 0.

Finally, we can show that Algorithm 1 finds the optimal
action sequence for the team of agents, if one exists. For
the termination of the algorithm, cycles in C require special
attention. Considering that the resource modification Γ(a)
of an action a can be positive, cycles can provide a way to
improve resources infinitely often and thus, create an infinite
set of Pareto optimal labels.

Theorem 1 (Constrained Optimal Multi-Agent Planning).
Assume non-negative costs and that no cycles improve
resources with zero cost. If there exists a set of action
sequences β such that all constraints γβ > 0 are satisfied,
Algorithm 1 finds one of these action sequences βopt with
minimal team cost κ(cβopt

).

Proof. As shown by Lemma 3, Algorithm 1 can find any
feasible action sequence and it will only find these. Note
that, in the excluded case that cycles improve resources
with zero cost, the algorithm would get stuck by improving
resources infinitely often. Finally, as shown by Lemma 2,
the first solution βfin found by Algorithm 1 is the one with
optimal team costs βopt = βfin.

If no action sequence β exists such that γβ > 0,
Algorithm 1 will terminate with an empty result, given that
no further non-dominated actions are found. Note that, if C
contains cycles which improve resources infinitely often, the
set of non-dominated actions is infinite and the algorithm
would not terminate. This can be addressed by restricting
resources γβ to a certain range such that γβ < γmax for
an upper bound γmax, or by specifying a suitable abortion
criterion like maximum cost or planning time.

V. MISSION DECOMPOSITION

Our previous work [8] addresses the case that a mission
implicitly consists of multiple independent parts, called
tasks Ti. Instead of requiring to manually declare such tasks,
it presents a way to identify them based on the single given
LTL mission specification M. As summarized in the first
part of this section, this enables the construction of a special
team model with its state space linear in the number agents.
We refer the interested reader to [8] for further details.
Assuming this choice of a team model, in the following
denoted by G to differentiate from the general case C, we
further improve efficiency of applying Algorithm 1 to G.

A. Team Model Construction

The main challenge is to find all tasks Ti of M. For
this purpose, [8] defines a decomposition set D ⊆ Q in
the NFA F of M. In order to decide which state belongs
to D, an essential sequence σe is defined as the sequence
σ : N → 2Π of required propositions π ∈ Π such that σe

would violate M if one of the propositions π would be
missing. Then, a state q belongs to D if and only if there
exists an accepting run in the NFA through q such that
application of the essential sequence σe describing this run
still yields an accepting run if both parts of σe, the one
leading to q and the one after q, are swapped.

Based on the mission decomposition choices given by
the decomposition set D, a team model can be constructed
as follows to plan the optimal allocation of tasks across
the team of agents. As illustrated in Figure 2, the product
automata Pr of all individual agents r ∈ {1, ..., N} are
connected by so-called switch transitions.

Definition 4 (Decomposition Team Model). The automaton
G is a union of the N local product automata Pr with r ∈
{1, ..., N} and given by G := (SG , S0,G , FG , AG) consisting
of (1) a set of states SG = {(r, q, s) : r ∈ {1, ..., N}, (q, s) ∈
SPr
}, (2) a set of initial states S0,G = {(r, q, s) ∈ SG : r =

1} (3) a set of final states FG = {(r, q, s) ∈ SG : q ∈ F},
(4) a set of actions AG =

⋃
r APr ∪ ζ which include switch

transitions ζ as defined below.

P1

P2

P3

Fig. 2. Structure of G for three agents. It has one initial state (lower left)
and three final states (right). Between the agent automata, directed switch
transitions to the next agent connect states of the decomposition set.

Above, Pr is the product automaton corresponding to
agent r according to Definition 3. A switch transition is
only present at a state s ∈ SG if M can be decomposed at
s according to the following conditions.

Definition 5 (Switch Transition). The set of switch tran-
sitions in G is given by ζ ⊂ SG × SG . A transition ς =
((rs, qs, ss), (rt, qt, st)) is in ζ if and only if it (i) connects
different agents: rs 6= rt, (ii) preserves the NFA progress:
qs = qt, (iii) points to the next agent: rt = rs + 1, (iv)
points to an initial agent state: st = s0,A, (v) represents a
decomposition choice: qs ∈ D.

Condition (v) ensures a correct decomposition of M in
the planning process based on the results of [8], to which
we refer for further details.

We can thus use the representation G as specific realiza-
tion of the team model C for which Algorithm 1 is defined.

B. Planning Adaptations

Given the special structure of G, additional labels can
be eliminated in the planning process to further accelerate
Algorithm 1. More specifically, we utilize the switch condi-
tion (iii) from Definition 5 to observe the following. Let r
denote the agent associated with a certain state s ∈ SG . All
states v ∈ SG reachable from s can only be associated with
agents ρ1 ≥ r, but it is not possible to consider any of the
agents ρ2 < r again in the planning process. The following
example illustrates a situation where it would be efficient
to eliminate a presumably non-dominated label.

Example. Consider a system with four agents {1, 2, 3, 4}.
Assume that the labels l and ` have been found by Al-
gorithm 1 to reach a certain state s associated with agent
r = 3 with the cost vectors c(l) = [3, 4, 1, 0]T and
c(`) = [5, 2, 1, 0]T . Neither c(l) nor c(`) dominates the other,
so neither of the labels would be eliminated. However,
preserving both labels is too conservative in the team model
G. For our definition of κ, we already get that ‖c(l)‖1 =
‖c(`)‖1 and ‖c(l)‖∞ < ‖c(`)‖∞. Furthermore, only entries
c
(l)
ρ1 , c

(`)
ρ1 with ρ1 ≥ r can still change. Specifically, c(l)2 = 4

is greater than c
(`)
2 = 2, but still less than c

(`)
1 = 5 and

cannot increase anymore. Thus, it would be desirable to
eliminate label `. C

Instead of modifying Algorithm 1, we change the cost
representation cβ ∈ RN≥0 to a new representation ĉβ ∈ R3

≥0

and adapt the team cost function κ : RN≥0 → R≥0 to

κ̂ : R3
≥0 → R≥0 accordingly. First, we define the three-

dimensional cost vector ĉβ such that

ĉβ =

‖(cβ,1, . . . , cβ,r−1)T ‖∞
‖(cβ,1, . . . , cβ,r−1)T ‖1

cβ,r

 (5)

where r denotes the agent associated with the last state of
β. The first two dimensions represent maximum cost and
total cost of all previous agents 1, . . . , r − 1, and the third
dimension the cost of the agent r.

Lemma 4 (Cost Dominance). For all states s ∈ SG , it holds
for a pair of labels l and ` at s that (1) c(l) <P c

(`) only if
ĉ(l) <P ĉ

(`) and (2), if ĉ(l) <P ĉ
(`) while c(l) ≮P c

(`), there
exists an optimal action sequence βopt of which construction
does not include `.

Proof. Let r denote the agent to whose partition state s
belongs and note that in both cases ĉ(l) <P ĉ(`) implies
that ĉ(l) 6= ĉ(`) and consequently c(l) 6= c(`). Also recall
that c(l)R , c

(`)
R = 0 for all R ∈ {r + 1, . . . , N}, given by the

switch condition (iii) from Definition 5.
(1) From c(l) <P c(`) follows that c(l)i ≤ c

(`)
i for all i

and there exists a j such that c(l)j < c
(`)
j . Consequently,

we get for the components of ĉ(l) and ĉ(`) that ĉ(l)1 ≤ ĉ
(`)
1 ,

ĉ
(l)
2 < ĉ

(`)
2 , and ĉ(l)3 = ĉ

(`)
3 for j 6= r as well as ĉ(l)1 ≤ ĉ

(`)
1 ,

ĉ
(l)
2 ≤ ĉ

(`)
2 , and ĉ

(l)
3 < ĉ

(`)
3 for j = r, which shows that

ĉ(l) <P ĉ
(`).

(2) For c(l) ≮P c(`) and ĉ(l) 6= ĉ(`), there needs to
exist at least one k such that c(l)k > c

(`)
k . In addition,

ĉ(l) <P ĉ(`) implies that k < r. Furthermore, ĉ(l)1 ≤ ĉ
(`)
1

and ĉ
(l)
2 ≤ ĉ

(`)
2 following from ĉ(l) <P ĉ(`) show that

all components k where label l is worse than ` are non-
critical. Non-critical means that sum and maximum over
all agents 1, . . . , r − 1 for l are still at least as good as for
`. Now consider continuations L of l and L of ` in the sense
that constructing an action sequence from L includes l.
Again given by the switch condition (iii), no entry c(L)

ρ , c
(L)
ρ

with ρ ∈ {1, . . . , r − 1} can change. This implies that the
components where L is worse than L will remain non-
critical. Consequently, either ` is not part of constructing an
optimal action sequence or there is another optimal action
sequence of which construction instead includes l.

In case (2) of Lemma 4, ` is called dominated and can
be eliminated in the planning process. Next, we define the
adapted team cost function κ̂ such that

κ̂(ĉβ) = (1−ε) ·‖(ĉβ,1, ĉβ,3)T ‖∞+ε ·‖(ĉβ,2, ĉβ,3)T ‖1 (6)

with ε ∈ (0, 1]. Then, we can show that κ̂(ĉβ) with ĉβ
calculated from a certain cβ always equals κ(cβ).

Lemma 5 (Team Cost Equivalence). For ĉβ and κ̂ as
defined above (Eq. 5 and 6), we get κ̂(ĉβ) = κ(cβ) for
all possible cβ on G.

Proof. From cβ,ρ2 = 0 for all ρ2 ∈ {r + 1, . . . , N}
follows that ‖cβ‖∞ = ‖(cβ,1, . . . , cβ,r)T ‖∞ and ‖cβ‖1 =
‖(cβ,1, . . . , cβ,r)T ‖1. Consequently,

κ̂(ĉβ) = (1− ε) · ‖(ĉβ,1, ĉβ,3)T ‖∞ + ε · ‖(ĉβ,2, ĉβ,3)T ‖1
= (1− ε) · ‖(cβ,1, . . . , cβ,r)T ‖∞

+ε · ‖(cβ,1, . . . , cβ,r)T ‖1
= (1− ε) · ‖cβ‖∞ + ε · ‖cβ‖1
= κ(cβ)

for all action sequences β to all states s ∈ SG .

Finally, the resulting team action sequence βfin over G for
the team of agents, which is a concatenation of independent
and parallel executable action sequences for all agents r ∈
{1, . . . , N}, can be split to form individual action sequences
β(r). Specifically, β(r) is given by the respective part of
βfin of which all states and intermediate actions belong to
partition r, and all β(r) are separated by switch transitions.
Agents for which β(r) does not contain any action are not
considered as part of the team involved in the mission M.

VI. CASE STUDY

The presented approach has been implemented in ROS
and any robot capability available in ROS can be encapsu-
lated as an action of the agent model A. Specifically, we use
a topological map like the one shown in Figure 3 (top) to
represent navigation and define further actions like pick-up,
restricted to certain locations.

In order to execute the planned action sequences, the
behavior executive FlexBE1 [21] is leveraged. FlexBE lets
a system provide a set of parametrizable capabilities, for
example navigation to a certain waypoint. This can be
annotated to the agent model A such that each edge in
the model refers to one executable robot action. For the
translation of an LTL formula to its equivalent NFA, the
model checking library Spot2 [22] is used.

Our implementation supports a robotic system where each
robot communicates with a common base station. Each
robot registers with its agent model A when available for a
new mission. When given a new LTL specification M, the
base station plans execution for the currently available team
and finally distributes the respective action sequences β(r)

to all robots r which are part of the optimal solution.

A. Mission Description

Assume a multi-robot system with three robots in a hotel
setting based on Figure 3. The robots start at the indicated
positions in their default state, each with an agent model
formed as the product of both parts of Figure 3. In the
considered missionM1, the robots need to deliver drinks to
hotel rooms h1, h2, h3, h4. In addition, robots should avoid
public areas p while carrying a drink.

M1 =
(
♦i∈{1,2,3,4}(hi ∧ c ∧ ◦¬c)

)
∧�(c =⇒ ¬p)

Resulting from the constraint, robot R3 cannot pick up a
drink at s2, but needs to go to s1. As a consequence, R3 only

1http://flexbe.github.io 2http://spot.lrde.epita.fr

l

p

b

s1

o

h1

h2

h3

m1

h4

p

p

h5

s2

h6

m2

R1 R2

R3

c

carrying

x

default

w

soiled

"pick-up" {s}

"deliver" {h} "clean" {h}

"dispose" {s}

Fig. 3. (top) Topological map of the environment to represent navigation
actions, while nodes are labeled with atomic propositions. (bottom)
Location-independent states of a robot. Each action, modeled as a tran-
sition, has propositional conditions, for example "pick-up" is only possible
at room service locations (proposition s = {s1, s2}).

serves h3, which is close to s1. The complete result is shown
in Figure 4 (left) and has the cost vector cβ = (29, 26, 28)T .

As a variation of M1, we assume M2 with additional
resource constraints as follows. Each robot has a battery
level and can repeatedly recharge 5% battery at maintenance
locations m1,m2 if not carrying a drink. Initially, R1 has
65% battery, R2 has 58%, and R3 has 53%. Furthermore,
the public area constraint is removed and instead, the
amounts of drinks at s1 is limited to only two drinks,
resulting in γ0 = (0.65, 0.58, 0.53, 2)T . The result is as well
depicted in Figure 4 (right) with costs cβ = (42, 40, 28)T

and final resources γβ = (0.05, 0.04, 0.02, 0)T . All three
robots need to charge during the mission3.

B. Discussion

Although there exist conceptually related approaches,
e.g., [5] based on MILP, we are not aware of any other
implementation that minimizes maximal execution time for
a team of robots, given an LTL mission and resource
constraints. Thus, the following discussion is limited to
different aspects of our proposed planning approach.

Figure 5 lists experimental results regarding planning
performance for the two missions and additional variations
ofM2 to illustrate the effect of resource constraints on plan-
ning performance. Label updates is the number iterations
of the while-loop in Algorithm 1. The increased planning
time for M2 results from the additional Pareto optimal

3Video of simulated M2 and another demonstration with two real
robots: https://youtu.be/Boor9kW44ko

Fig. 4. Localization recordings of a simulation run, (left) mission M1

and (right) mission M2.

http://flexbe.github.io
http://spot.lrde.epita.fr
https://youtu.be/Boor9kW44ko

tplan (sec) label updates
M1 0.378 2,474
M2 3.804 19,248
Mbattery

2 2.358 12,409
Mdrinks

2 0.428 2,999
Mnone

2 0.265 1,825

Fig. 5. Planning time and number of label updates for the two missions.
In addition, we evaluate M2 with only constraining battery Mbattery

2 ,
only drinks Mdrinks

2 , and no constraints Mnone
2 .

labels, caused by resource consumptions and recharging
actions. Especially recharging, inversely proportional to
costs, appears to significantly impact planning time since
many more Pareto optimal choices need to be explored.

Besides the considered resources, also the complexity of
the mission influences planning time. Primarily, this results
from constructing F from M, which has a worst-case
complexity exponential in the length of the formula [3]. This
is inherent from the expressiveness of LTL, e.g., consider
that a traveling salesman problem can be formulated in
LTL. Figure 6 depicts the planning time for M1 with
different team sizes. Ten robots need roughly 1s planning
time and one hundred robots around 40s. This scalability
mainly results from the model representation and planning
adaptations discussed in Section V.

VII. CONCLUSIONS

We presented an efficient approach for optimal LTL
multi-robot planning based on multi-objective shortest path
search in a graph representation which combines both the
robot system and a finite LTL mission specification. The
planning algorithm enables to consider resource constraints,
as illustrated in the discussed case study, which is especially
relevant for the application of multi-robot planning in mid-
and long-term scenarios. Combined with previous results
from the area of LTL mission decomposition, the presented
algorithm plans optimal distribution of a given mission
specification among a dynamically formed team of robots.

REFERENCES

[1] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-
logic-based reactive mission and motion planning,” IEEE
Trans. on Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[2] A. Ulusoy, S. Smith, X. C. Ding, and C. Belta, “Robust multi-
robot optimal path planning with temporal logic constraints,”
in Int. Conf. on Robotics and Automation (ICRA). IEEE,
2012, pp. 4693–4698.

1 10 100
10−1

100

101

102

team size (robots)

t p
la

n
(s

ec
)

Fig. 6. Average planning time for M1 with respect to the team size and
random initial positions. In total, more than 1,000 runs have been recorded.
Error bars indicate minimal and maximal values.

[3] C. Baier and J.-P. Katoen, Principles of model checking.
MIT Press, 2008.

[4] M. Guo and D. V. Dimarogonas, “Bottom-up motion and task
coordination for loosely-coupled multi-agent systems with
dependent local tasks,” in CASE. IEEE, 2015, pp. 348–355.

[5] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle
routing with applications to multi-UAV mission planning,”
International Journal of Robust and Nonlinear Control,
vol. 21, no. 12, pp. 1372–1395, 2011.

[6] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal
approach to the deployment of distributed robotic teams,”
IEEE Trans. on Robotics, vol. 28, no. 1, pp. 158–171, 2012.

[7] J. Tumova and D. V. Dimarogonas, “Decomposition of Multi-
Agent Planning under Distributed Motion and Task LTL
Specifications,” in CDC. IEEE, 2015, pp. 1775–1780.

[8] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decom-
position of finite LTL specifications for efficient multi-agent
planning,” in Int. Symp. on Distributed Autonomous Robotic
Systems (DARS). Springer, 2016.

[9] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient reactive
controller synthesis for a fragment of linear temporal logic,”
in Int. Conf. on Robotics and Automation (ICRA). IEEE,
2013, pp. 5033–5040.

[10] M. Ehrgott, Multicriteria optimization. Springer Science &
Business Media, 2006.

[11] J. M. Paixão and J. L. Santos, “Labeling Methods for the
General Case of the Multi-objective Shortest Path Problem–
A Computational Study,” in Computational Intelligence and
Decision Making. Springer, 2013, pp. 489–502.

[12] X. Gandibleux, F. Beugnies, and S. Randriamasy, “Martins’
algorithm revisited for multi-objective shortest path problems
with a MaxMin cost function,” 4OR, vol. 4, no. 1, pp. 47–59,
2006.

[13] D. P. Bertsekas, F. Guerriero, and R. Musmanno, “Parallel
asynchronous label-correcting methods for shortest paths,”
Journal of Optimization Theory and Applications, vol. 88,
no. 2, pp. 297–320, 1996.

[14] D. W. Pentico, “Assignment problems: A golden anniversary
survey,” European Journal of Operational Research, vol.
176, no. 2, pp. 774–793, 2007.

[15] R. E. Burkard and E. Cela, “Linear assignment problems
and extensions,” in Handbook of combinatorial optimization.
Springer, 1999, pp. 75–149.

[16] E. Q. V. Martins, “On a multicriteria shortest path problem,”
European Journal of Operational Research, vol. 16, no. 2,
pp. 236–245, 1984.

[17] S. Irnich and G. Desaulniers, “Shortest path problems with
resource constraints,” in Column generation. Springer, 2005,
pp. 33–65.

[18] N. Boland, J. Dethridge, and I. Dumitrescu, “Accelerated la-
bel setting algorithms for the elementary resource constrained
shortest path problem,” Operations Research Letters, vol. 34,
no. 1, pp. 58–68, 2006.

[19] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning
on LTL on Finite Traces: Insensitivity to Infiniteness.” in
AAAI. Citeseer, 2014, pp. 1027–1033.

[20] O. Kupferman and M. Vardi, “Model checking of safety
properties,” Formal Methods in System Design, vol. 19, no. 3,
pp. 291–314, 2001.

[21] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-
Robot Collaborative High-Level Control with Application
to Rescue Robotics,” in IEEE Int. Conf. on Robotics and
Automation, Stockholm, Sweden, May 2016.

[22] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud,
E. Renault, and L. Xu, “Spot 2.0 — a framework for LTL
and ω-automata manipulation,” in ATVA. Springer, 2016.

http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TRO.2009.2030225
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224792
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224792
https://mitpress.mit.edu/books/principles-model-checking
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7294103
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7294103
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7294103
http://dx.doi.org/10.1002/rnc.1715
http://dx.doi.org/10.1002/rnc.1715
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6016243
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6016243
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7403396
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7403396
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7403396
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-199915
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-199915
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-199915
http://dx.doi.org/10.1109/ICRA.2013.6631296
http://dx.doi.org/10.1109/ICRA.2013.6631296
http://www.springer.com/de/book/9783540213987
http://dx.doi.org/10.1007/978-94-007-4722-7_46
http://dx.doi.org/10.1007/978-94-007-4722-7_46
http://dx.doi.org/10.1007/978-94-007-4722-7_46
http://dx.doi.org/10.1007/s10288-005-0074-x
http://dx.doi.org/10.1007/s10288-005-0074-x
http://dx.doi.org/10.1007/s10288-005-0074-x
http://dx.doi.org/10.1007/BF02192173
http://dx.doi.org/10.1007/BF02192173
http://dx.doi.org/10.1016/j.ejor.2005.09.014
http://dx.doi.org/10.1016/j.ejor.2005.09.014
http://dx.doi.org/10.1007/978-1-4757-3023-4_2
http://dx.doi.org/10.1007/978-1-4757-3023-4_2
http://dx.doi.org/10.1016/0377-2217(84)90077-8
http://dx.doi.org/10.1007/0-387-25486-2_2
http://dx.doi.org/10.1007/0-387-25486-2_2
http://dx.doi.org/10.1016/j.orl.2004.11.011
http://dx.doi.org/10.1016/j.orl.2004.11.011
http://dx.doi.org/10.1016/j.orl.2004.11.011
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.445&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.445&rep=rep1&type=pdf
http://rd.springer.com/article/10.1023/A:1011254632723
http://rd.springer.com/article/10.1023/A:1011254632723
http://dx.doi.org/10.1109/ICRA.2016.7487442
http://dx.doi.org/10.1109/ICRA.2016.7487442
http://dx.doi.org/10.1109/ICRA.2016.7487442
http://www.lrde.epita.fr/dload/papers/duret.16.atva2.pdf
http://www.lrde.epita.fr/dload/papers/duret.16.atva2.pdf

	Introduction
	Preliminaries
	System Model
	Planning
	Mission Decomposition
	Team Model Construction
	Planning Adaptations

	Case Study
	Mission Description
	Discussion

	Conclusions

